1
|
Stolarek P, Bernat P, Różalski A. Adjustment in the Composition and Organization of Proteus mirabilis Lipids during the Swarming Process. Int J Mol Sci 2023; 24:16461. [PMID: 38003652 PMCID: PMC10671106 DOI: 10.3390/ijms242216461] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/07/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Proteus mirabilis, an opportunistic pathogen of the urinary tract, is known for its dimorphism and mobility. A connection of lipid alterations, induced by the rods elongation process, with enhanced pathogenicity of long-form morphotype for the development of urinary tract infections, seems highly probable. Therefore, research on the adjustment in the composition and organization of P. mirabilis lipids forming elongated rods was undertaken. The analyses performed using the ultra-high performance liquid chromatography with tandem mass spectrometry showed that drastic modifications in the morphology of P. mirabilis rods that occur during the swarming process are directly related to deprivation of the long-form cells of PE 33:1 and PG 31:2 and their enrichment with PE 32:1, PE 34:1, PE 34:2, PG 30:2, PG 32:1, and PG 34:1. The analyses conducted by the gas chromatography-mass spectrometry showed negligible effects of the swarming process on fatty acids synthesis. However, the constant proportions between unsaturated and saturated fatty acids confirmed that phenotypic modifications in the P. mirabilis rods induced by motility were independent of the saturation of the phospholipid tails. The method of the Förster resonance energy transfer revealed the influence of the swarming process on the melting of ordered lipid rafts present in the short-form rods, corresponding to the homogeneity of lipid bilayers in the long-form rods of P. mirabilis. Confocal microscope photographs visualized strong Rhod-PE fluorescence of the whole area of swarmer cells, in contrast to weak membrane fluorescence of non-swarmer cells. It suggested an increased permeability of the P. mirabilis bilayers in long-form rods morphologically adapted to the swarming process. These studies clearly demonstrate that swarming motility regulates the lipid composition and organization in P. mirabilis rods.
Collapse
Affiliation(s)
- Paulina Stolarek
- Department of Biology of Bacteria, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland;
| | - Przemysław Bernat
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland;
| | - Antoni Różalski
- Department of Biology of Bacteria, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland;
| |
Collapse
|
2
|
Yang H, Song H, Zhang J, Li W, Han Q, Zhang W. Proteomic analysis reveals the adaptation of Vibrio splendidus to an iron deprivation condition. Appl Microbiol Biotechnol 2023; 107:2533-2546. [PMID: 36922441 DOI: 10.1007/s00253-023-12460-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/18/2023]
Abstract
Vibrio splendidus is a ubiquitous Gram-negative marine bacterium that causes diseases within a wide range of marine cultured animals. Since iron deprivation is the frequent situation that the bacteria usually encounter, we aimed to explore the effect of iron deprivation on the proteomic profile of V. splendidus in the present study. There were 425 differentially expressed proteins (DEPs) responded to the iron deprivation condition. When the cells were grown under iron deprivation condition, the oxidation‒reduction processes, single-organism metabolic processes, the catalytic activity, and binding activity were downregulated, while the transport process, membrane cell component, and ion binding activity were upregulated, apart from the iron uptake processes. Kyoto Encyclopedia of Genes and Genomes analysis showed that various metabolism pathways, biosynthesis pathways, energy generation pathways of tricarboxylic acid cycle, and oxidative phosphorylation were downregulated, while various degradation pathways and several special metabolism pathways were upregulated. The proteomic profiles of cells at a OD600 ≈ 0.4 grown under iron deprivation condition showed high similarity to that of the cells at a OD600 ≈ 0.8 grown without iron chelator 2,2'-bipyridine. Correspondingly, the protease activity, the activity of autoinducer 2 (AI-2), and indole content separately catalyzed by LuxS and TnaA, were measured to verify the proteomic data. Our present study gives basic information on the global protein profiles of V. splendidus grown under iron deprivation condition and suggests that the iron deprivation condition cause the cell growth enter a state of higher cell density earlier. KEY POINTS: • Adaptation of V. splendidus to iron deprivation was explored by proteomic analysis. • GO and KEGG of DEPs under different iron levels or cell densities were determined. • Iron deprivation caused the cell enter a state of higher cell density earlier.
Collapse
Affiliation(s)
- Huirong Yang
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Zhejiang Province, Ningbo, 315832, People's Republic of China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Beilun District, 169 Qixingnan RoadZhejiang Province, Ningbo, 315832, People's Republic of China
| | - Huimin Song
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Zhejiang Province, Ningbo, 315832, People's Republic of China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Beilun District, 169 Qixingnan RoadZhejiang Province, Ningbo, 315832, People's Republic of China
| | - Jinxia Zhang
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Zhejiang Province, Ningbo, 315832, People's Republic of China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Beilun District, 169 Qixingnan RoadZhejiang Province, Ningbo, 315832, People's Republic of China
| | - Weisheng Li
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Zhejiang Province, Ningbo, 315832, People's Republic of China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Beilun District, 169 Qixingnan RoadZhejiang Province, Ningbo, 315832, People's Republic of China
| | - Qingxi Han
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Zhejiang Province, Ningbo, 315832, People's Republic of China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Beilun District, 169 Qixingnan RoadZhejiang Province, Ningbo, 315832, People's Republic of China
| | - Weiwei Zhang
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Zhejiang Province, Ningbo, 315832, People's Republic of China.
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Beilun District, 169 Qixingnan RoadZhejiang Province, Ningbo, 315832, People's Republic of China.
| |
Collapse
|
3
|
Wani AK, Akhtar N, Sher F, Navarrete AA, Américo-Pinheiro JHP. Microbial adaptation to different environmental conditions: molecular perspective of evolved genetic and cellular systems. Arch Microbiol 2022; 204:144. [PMID: 35044532 DOI: 10.1007/s00203-022-02757-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 01/01/2023]
Abstract
Microorganisms are ubiquitous on Earth and can inhabit almost every environment. In a complex heterogeneous environment or in face of ecological disturbance, the microbes adjust to fluctuating environmental conditions through a cascade of cellular and molecular systems. Their habitats differ from cold microcosms of Antarctica to the geothermal volcanic areas, terrestrial to marine, highly alkaline zones to the extremely acidic areas and freshwater to brackish water sources. The diverse ecological microbial niches are attributed to the versatile, adaptable nature under fluctuating temperature, nutrient availability and pH of the microorganisms. These organisms have developed a series of mechanisms to face the environmental changes and thereby keep their role in mediate important ecosystem functions. The underlying mechanisms of adaptable microbial nature are thoroughly investigated at the cellular, genetic and molecular levels. The adaptation is mediated by a spectrum of processes like natural selection, genetic recombination, horizontal gene transfer, DNA damage repair and pleiotropy-like events. This review paper provides the fundamentals insight into the microbial adaptability besides highlighting the molecular network of microbial adaptation under different environmental conditions.
Collapse
Affiliation(s)
- Atif Khurshid Wani
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Nahid Akhtar
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | | | | |
Collapse
|