1
|
Liang X, Ishfaq S, Liu Y, Jijakli MH, Zhou X, Yang X, Guo W. Identification and genomic insights into a strain of Bacillus velezensis with phytopathogen-inhibiting and plant growth-promoting properties. Microbiol Res 2024; 285:127745. [PMID: 38733724 DOI: 10.1016/j.micres.2024.127745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/27/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024]
Abstract
The use of biological agents offers a sustainable alternative to chemical control in managing plant diseases. In this study, Bacillus velezensis IFST-221 was isolated from the rhizosphere of a healthy maize plant amidst a population showing severe disease symptoms. The investigation demonstrated a broad-spectrum antagonistic activity of IFST-221 against eight species of pathogenic ascomycetes and oomycetes, suggesting its potential utility in combating plant diseases like maize ear rot and cotton Verticillium wilt. Additionally, our study unveiled that IFST-221 has demonstrated significant plant growth-promoting properties, particularly in maize, cotton, tomato, and broccoli seedlings. This growth promotion was linked to its ability to produce indole-3-acetic acid, nitrogen fixation, phosphate and potassium solubilization, and biofilm formation in laboratory conditions. A complete genome sequencing of IFST-221 yielded a genome size of 3.858 M bp and a GC content of 46.71%. The genome analysis identified 3659 protein-coding genes, among which were nine secondary metabolite clusters with known antimicrobial properties. Additionally, three unknown compounds with potentially novel properties were also predicted from the genomic data. Genome mining also identified several key genes associated with plant growth regulation, colonization, and biofilm formation. These findings provide a compelling case for the application of B. velezensis IFST-221 in agricultural practices. The isolate's combined capabilities of plant growth promotion and antagonistic activity against common plant pathogens suggest its promise as an integrated biological agent in disease management and plant productivity enhancement.
Collapse
Affiliation(s)
- Xiaoyan Liang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; Gembloux Agro-Bio Tech, Liege University, Laboratory of Integrated and Urban Plant Pathology, Passage des déportés 2, Gembloux 5030, Belgium
| | - Shumila Ishfaq
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Yang Liu
- School of Food Science and Engineering, Foshan University/National Technical Center (Foshan) for Quality Control of Famous and Special Agricultural Products (CAQS-GAP-KZZX043)/Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan, Guangdong 528231, China
| | - M Haissam Jijakli
- Gembloux Agro-Bio Tech, Liege University, Laboratory of Integrated and Urban Plant Pathology, Passage des déportés 2, Gembloux 5030, Belgium
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiuling Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Wei Guo
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| |
Collapse
|
2
|
Sun W, Zhao L, Zhou J, Feng H, Zhang Y, Feng Z, Zhu H, Wei F. VdP5CDH is involved in melanin formation, stress resistance and play a regulatory role in virulence of Verticillium dahliae. Front Microbiol 2024; 15:1429755. [PMID: 39113834 PMCID: PMC11303183 DOI: 10.3389/fmicb.2024.1429755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/09/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction Verticillium dahliae, a soil-borne fungal pathogen, can cause cotton Verticillium wilt. In this study, VdP5CDH, the member of the ALDH_F4-17 family of carboxylate dehydrogenases, was identified in the genome of V. dahliae and investigated function in regulating virulence by generating gene deletion mutants and complementary mutants. Methods Homologous recombination method was used to construct mutants, transcriptome sequencing revealed gene-related metabolic pathways, and disease degree of cotton was observed through pathogen infection experiments. Results The conidial surface of VdP5CDH deletion strains was dented and shriveled, and the number of conidial spores increased. Compared with the wild-type (WT), the mycelial diameter of deletion mutants increased by 10.59%-11.16%, the mycelial growth showed irregular branching patterns, and misaligned arrangement. Although capable of penetrating cellophane, deletion mutants were unable to produce melanin. VdP5CDH was mainly associated with glucose metabolism, nitrogen metabolism, ABC transporter activity as well as various amino acid metabolic processes. After gene knockout, raffinose and pectin were used as the main carbon sources to promote the growth of strains and the growth rate of deletion strains in the medium containing raffinose was higher than that of WT. Consequently, the deletion mutant strains decreased utilization efficiency with which they utilized various nitrogen sources. The deletion mutants maintain responsiveness to osmotic stress and oxidative stress stimuli. Additionally, compared to WT strains, the deletion mutant strains exhibited differences in culture temperature tolerance, UV exposure response, and fungicide sensitivity. After cotton was infected with deletion strains conidial suspension, its disease index increased dramatically, while it gradually decreased after spraying with 2 mM glutamate in batches. With the increase of spraying times, the effect was more significant, and the disease index decreased by 18.95%-19.66% at 26 dpi. Discussion These results indicated that VdP5CDH regulates the pathogenicity of fungi and controls mycelia growth, melanin formation, conidia morphology, abiotic stress resistance, and the expression of infecting structure-related genes.
Collapse
Affiliation(s)
- Wanqing Sun
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Lihong Zhao
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, Xinjiang, China
| | - Jinglong Zhou
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, Xinjiang, China
| | - Hongjie Feng
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, Xinjiang, China
| | - Yalin Zhang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, Xinjiang, China
| | - Zili Feng
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, Xinjiang, China
| | - Heqin Zhu
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, Xinjiang, China
| | - Feng Wei
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, Xinjiang, China
| |
Collapse
|
3
|
Wang D, Zhao Z, Long Y, Fan R. Protein Kinase C Is Involved in Vegetative Development, Stress Response and Pathogenicity in Verticillium dahliae. Int J Mol Sci 2023; 24:14266. [PMID: 37762573 PMCID: PMC10531995 DOI: 10.3390/ijms241814266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Potato Verticillium wilt, caused by Verticillium dahliae, is a serious soil-borne vascular disease, which restricts the sustainable development of the potato industry, and the pathogenic mechanism of the fungus is complex. Therefore, it is of great significance to explore the important pathogenic factors of V. dahliae to expand the understanding of its pathology. Protein kinase C (PKC) gene is located in the Ca2+ signaling pathway, which is highly conserved in filamentous fungi and involved in the regulation of a variety of biological processes. In the current study, the PKC gene in V. dahliae (VdPKC) was characterized, and its effects on the fungal pathogenicity and tolerance to fungicide stress were further studied. The results showed that the VdPKC positively regulated the growth and development, conidial germination, and production of V. dahliae, which was necessary for the fungus to achieve pathogenicity. It also affected the formation of melanin and microsclerotia and changed the adaptability of V. dahliae to different environmental stresses. In addition, VdPKC altered the tolerance of V. dahliae to different fungicides, which may be a potential target for polyoxin. Therefore, our results strongly suggest that VdPKC gene is necessary for the vegetative growth, stress response, and pathogenicity of V. dahliae.
Collapse
Affiliation(s)
| | | | | | - Rong Fan
- College of Agriculture, Guizhou University, Guiyang 550025, China; (D.W.); (Z.Z.); (Y.L.)
| |
Collapse
|
4
|
VdGAL4 Modulates Microsclerotium Formation, Conidial Morphology, and Germination To Promote Virulence in Verticillium dahliae. Microbiol Spectr 2023; 11:e0351522. [PMID: 36475739 PMCID: PMC9927093 DOI: 10.1128/spectrum.03515-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Verticillium dahliae Kleb is a typical soilborne pathogen that can cause vascular wilt disease on more than 400 plants. Functional analysis of genes related to the growth and virulence is crucial to revealing the molecular mechanism of the pathogenicity of V. dahliae. Glycosidase hydrolases can hydrolyze the glycosidic bond, and some can cause host plant immune response to V. dahliae. Here, we reported a functional validation of VdGAL4 as an α-galactosidase that belongs to glycoside hydrolase family 27. VdGAL4 could cause plant cell death, and its signal peptide plays an important role in cellular immune response. VdGAL4-triggered cell death depends on BAK1 and SOBIR1 in Nicotiana benthamiana. In V. dahliae, the function of VdGAL4 in mycelial growth, conidia, microsclerotium, and pathogenicity was studied by constructing VdGAL4 deletion and complementation mutants. Results showed that the deletion of VdGAL4 reduced the conidial yield and conidial germination rate of V. dahliae and changed the microscopic morphology of conidia; the mycelia were arranged more disorderly and were unable to produce microsclerotium. The VdGAL4 deletion mutants exhibited reduced utilization of different carbon sources, such as raffinose and sucrose. The VdGAL4 deletion mutants were also more sensitive to abiotic stress agents of SDS, sorbitol, low-temperature stress of 16°C, and high-temperature stress of 45°C. In addition, the VdGAL4 deletion mutants lost the ability to penetrate cellophane and its mycelium were disorderly arranged. Remarkably, VdGAL4 deletion mutants exhibited reduced pathogenicity of V. dahliae. These results showed that VdGAL4 played a critical role in the pathogenicity of V. dahliae by regulating mycelial growth, conidial morphology, and the formation of microsclerotium. IMPORTANCE This study showed that α-galactosidase VdGAL4 of V. dahliae could activate plant immune response and plays an important role in conidial morphology and yield, formation of microsclerotia, and mycelial penetration. VdGAL4 deletion mutants significantly reduced the pathogenicity of V. dahliae. These findings deepened the understanding of pathogenic virulence factors and how the mechanism of pathogenic fungi infected the host, which may help to seek new strategies for effective control of plant diseases caused by pathogenic fungi.
Collapse
|
5
|
Palmitoyl Transferase FonPAT2-Catalyzed Palmitoylation of the FonAP-2 Complex Is Essential for Growth, Development, Stress Response, and Virulence in Fusarium oxysporum f. sp. niveum. Microbiol Spectr 2023; 11:e0386122. [PMID: 36533963 PMCID: PMC9927311 DOI: 10.1128/spectrum.03861-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Protein palmitoylation, one of posttranslational modifications, is catalyzed by a group of palmitoyl transferases (PATs) and plays critical roles in the regulation of protein functions. However, little is known about the function and mechanism of PATs in plant pathogenic fungi. The present study reports the function and molecular mechanism of FonPATs in Fusarium oxysporum f. sp. niveum (Fon), the causal agent of watermelon Fusarium wilt. The Fon genome contains six FonPAT genes with distinct functions in vegetative growth, conidiation and conidial morphology, and stress response. FonPAT1, FonPAT2, and FonPAT4 have PAT activity and are required for Fon virulence on watermelon mainly through regulating in planta fungal growth within host plants. Comparative proteomics analysis identified a set of proteins that were palmitoylated by FonPAT2, and some of them are previously reported pathogenicity-related proteins in fungi. The FonAP-2 complex core subunits FonAP-2α, FonAP-2β, and FonAP-2μ were palmitoylated by FonPAT2 in vivo. FonPAT2-catalyzed palmitoylation contributed to the stability and interaction ability of the core subunits to ensure the formation of the FonAP-2 complex, which is essential for vegetative growth, asexual reproduction, cell wall integrity, and virulence in Fon. These findings demonstrate that FonPAT1, FonPAT2, and FonPAT4 play important roles in Fon virulence and that FonPAT2-catalyzed palmitoylation of the FonAP-2 complex is critical to Fon virulence, providing novel insights into the importance of protein palmitoylation in the virulence of plant fungal pathogens. IMPORTANCE Fusarium oxysporum f. sp. niveum (Fon), the causal agent of watermelon Fusarium wilt, is one of the most serious threats for the sustainable development of the watermelon industry worldwide. However, little is known about the underlying molecular mechanism of pathogenicity in Fon. Here, we found that the palmitoyl transferase (FonPAT) genes play distinct and diverse roles in basic biological processes and stress response and demonstrated that FonPAT1, FonPAT2, and FonPAT4 have PAT activity and are required for virulence in Fon. We also found that FonPAT2 palmitoylates the core subunits of the FonAP-2 complex to maintain the stability and the formation of the FonAP-2 complex, which is essential for basic biological processes, stress response, and virulence in Fon. Our study provides new insights into the understanding of the molecular mechanism involved in Fon virulence and will be helpful in the development of novel strategies for disease management.
Collapse
|
6
|
Cheng X, Zhao C, Gao L, Zeng L, Xu Y, Liu F, Huang J, Liu L, Liu S, Zhang X. Alternative splicing reprogramming in fungal pathogen Sclerotinia sclerotiorum at different infection stages on Brassica napus. FRONTIERS IN PLANT SCIENCE 2022; 13:1008665. [PMID: 36311105 PMCID: PMC9597501 DOI: 10.3389/fpls.2022.1008665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Alternative splicing (AS) is an important post-transcriptional mechanism promoting the diversity of transcripts and proteins to regulate various life processes in eukaryotes. Sclerotinia stem rot is a major disease of Brassica napus caused by Sclerotinia sclerotiorum, which causes severe yield loss in B. napus production worldwide. Although many transcriptome studies have been carried out on the growth, development, and infection of S. sclerotiorum, the genome-wide AS events of S. sclerotiorum remain poorly understood, particularly at the infection stage. In this study, transcriptome sequencing was performed to systematically explore the genome-scale AS events of S. sclerotiorum at five important infection stages on a susceptible oilseed rape cultivar. A total of 130 genes were predicted to be involved in AS from the S. sclerotiorum genome, among which 98 genes were differentially expressed and may be responsible for AS reprogramming for its successful infection. In addition, 641 differential alternative splicing genes (DASGs) were identified during S. sclerotiorum infection, accounting for 5.76% of all annotated S. sclerotiorum genes, and 71 DASGs were commonly found at all the five infection stages. The most dominant AS type of S. sclerotiorum was found to be retained introns or alternative 3' splice sites. Furthermore, the resultant AS isoforms of 21 DASGs became pseudogenes, and 60 DASGs encoded different putative proteins with different domains. More importantly, 16 DASGs of S. sclerotiorum were found to have signal peptides and possibly encode putative effectors to facilitate the infection of S. sclerotiorum. Finally, about 69.27% of DASGs were found to be non-differentially expressed genes, indicating that AS serves as another important way to regulate the infection of S. sclerotiorum on plants besides the gene expression level. Taken together, this study provides a genome-wide landscape for the AS of S. sclerotiorum during infection as well as an important resource for further elucidating the pathogenic mechanisms of S. sclerotiorum.
Collapse
Affiliation(s)
- Xiaohui Cheng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of the People’s Republic of China (PRC), Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Chuanji Zhao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of the People’s Republic of China (PRC), Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Lixia Gao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Lingyi Zeng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of the People’s Republic of China (PRC), Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yu Xu
- Hebei Provincial Academy of Ecological and Environmental Sciences, Shijiazhuang, China
| | - Fan Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of the People’s Republic of China (PRC), Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Junyan Huang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of the People’s Republic of China (PRC), Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Lijiang Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of the People’s Republic of China (PRC), Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Shengyi Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of the People’s Republic of China (PRC), Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xiong Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of the People’s Republic of China (PRC), Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
7
|
Identification and Functional Analysis of a Novel Hydrophobic Protein VdHP1 from Verticillium dahliae. Microbiol Spectr 2022; 10:e0247821. [PMID: 35377232 PMCID: PMC9045179 DOI: 10.1128/spectrum.02478-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Verticillium dahliae could cause destructive vascular wilt disease on hundreds of plant species around the world, including cotton. In this study, we characterized the function of a hydrophobin gene VdHP1 in pathogen development and pathogenicity. Results showed that VdHP1 could induce cell death and activate plant immune responses. The VdHP1 deletion mutants (ΔVdHP1) and the complement mutants (C-ΔVdHP1) were obtained by the homologous recombination method. The VdHP1 deletion mutants exhibited increased hydrophilicity, inhibited microsclerotial formation, and reduced spore smoothness. In addition, the deletion mutants were more sensitive to NaCl, while relatively insensitive to KCl and sorbitol. Mutants also had greater resistance to Congo red, UV radiation, and high temperature, which suggested that ΔVdHP1 strains have stronger resistance to abiotic stress in general. Different carbon source assays showed that the utilization ability of skim milk, cellulose, and starch was greatly enhanced in ΔVdHP1, compared with that of WT and complemented strains. Furthermore, VdHP1 did not affect mycelium penetration on cellophane but contributed to mycelium growth on surface of the living plant cells. The pathogenicity test found that the crude toxin content, colonization, and dispersal of ΔVdHP1 was significantly increased compared with the WT and complementary strains. In addition, cotton seedlings showed more severe wilting symptoms after inoculation with ΔVdHP1 strains. These results suggested that the hydrophobin VdHP1 negatively regulated the virulence of V. dahliae, and played an important role in development, adaptability, and pathogenicity in V. dahliae, which maybe provide a new viewpoint to further understand the molecular mechanisms of pathogen virulence. IMPORTANCE Verticillium dahliae is a soilborne fungal pathogen that causes a destructive vascular disease on a large number of plant hosts, resulting in great threat to agricultural production. In this study, it was illustrated that the hydrophobin VdHP1 could induce cell death and activate plant immune responses. VdHP1 affected the hydrophobicity of V. dahliae, and negatively regulated the strains resistant to stress, and the utilization ability of different carbon sources. In addition, VdHP1 did not affect mycelium penetration on cellophane but contributed to mycelium growth on surface of the living plant cells. The VdHP1 gene negatively regulated the total virulence, colonization, and dispersal of V. dahliae, with enhanced pathogenicity of mutant strains in this gene. These results suggested that the hydrophobin VdHP1 played an importance in development, adaptability, and pathogenicity in V. dahliae, and would provide a new viewpoint to further understand the molecular mechanisms of pathogen virulence.
Collapse
|
8
|
Deciphering the Host-Pathogen Interactome of the Wheat-Common Bunt System: A Step towards Enhanced Resilience in Next Generation Wheat. Int J Mol Sci 2022; 23:ijms23052589. [PMID: 35269732 PMCID: PMC8910311 DOI: 10.3390/ijms23052589] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/09/2022] [Indexed: 02/05/2023] Open
Abstract
Common bunt, caused by two fungal species, Tilletia caries and Tilletia laevis, is one of the most potentially destructive diseases of wheat. Despite the availability of synthetic chemicals against the disease, organic agriculture relies greatly on resistant cultivars. Using two computational approaches—interolog and domain-based methods—a total of approximately 58 M and 56 M probable PPIs were predicted in T. aestivum–T. caries and T. aestivum–T. laevis interactomes, respectively. We also identified 648 and 575 effectors in the interactions from T. caries and T. laevis, respectively. The major host hubs belonged to the serine/threonine protein kinase, hsp70, and mitogen-activated protein kinase families, which are actively involved in plant immune signaling during stress conditions. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of the host proteins revealed significant GO terms (O-methyltransferase activity, regulation of response to stimulus, and plastid envelope) and pathways (NF-kappa B signaling and the MAPK signaling pathway) related to plant defense against pathogens. Subcellular localization suggested that most of the pathogen proteins target the host in the plastid. Furthermore, a comparison between unique T. caries and T. laevis proteins was carried out. We also identified novel host candidates that are resistant to disease. Additionally, the host proteins that serve as transcription factors were also predicted.
Collapse
|