1
|
Barsalote-Wei EM, Nichols D, Tegg RS, Eyles A, Wilson AJC, Wilson CR. Rhizosphere bacteria degrade a key root exudate metabolite critical for pathogen germination and root infection. J Appl Microbiol 2025; 136:lxaf090. [PMID: 40240295 DOI: 10.1093/jambio/lxaf090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/27/2025] [Accepted: 04/14/2025] [Indexed: 04/18/2025]
Abstract
AIMS Glutamine (Gln), present within potato root exudates, stimulates germination of resting spores and chemotactic attraction of zoospores of the plasmodiophorid pathogen, Spongospora subterranea. We hypothesized that rhizosphere bacteria could alter the rhizosphere metabolome by diminishing the occurrence of Gln with the eventual aim of reducing pathogen activation, attraction and infection. This study aimed to isolate and characterize bacteria capable of substantially degrading Gln within the potato rhizosphere. METHODS AND RESULTS Eleven bacteria were isolated from potato rhizosphere samples using Gln as a sole carbon source. Of these, Pantoea sp. (RR15) and Rhodococcus sp. (RR09) showed superior Gln degradation potential. Both isolates established within the potato rhizosphere and reduced Gln concentrations in situ. Further analysis of the rhizosphere metabolome showed significant treatment effects for a range of other organic compounds, including some known to stimulate or inhibit Spongospora subterranea germination and/or taxis. CONCLUSIONS We demonstrate that establishing selected bacteria in the rhizosphere of potatoes can successfully modify the root rhizosphere metabolome.
Collapse
Affiliation(s)
- Eda Marie Barsalote-Wei
- Tasmanian Institute of Agriculture, New Town Research Laboratories, University of Tasmania, 13 St. Johns Avenue, New Town, TAS 7008, Australia
| | - David Nichols
- Central Science Laboratory, University of Tasmania, Private Bag 74, Hobart, TAS 7001, Australia
| | - Robert Steven Tegg
- Tasmanian Institute of Agriculture, New Town Research Laboratories, University of Tasmania, 13 St. Johns Avenue, New Town, TAS 7008, Australia
| | - Alieta Eyles
- Tasmanian Institute of Agriculture, School of Agricultural Science, University of Tasmania, Private Bag 98, Hobart, TAS 7001, Australia
| | - Annabel Jun-Chn Wilson
- Tasmanian Institute of Agriculture, New Town Research Laboratories, University of Tasmania, 13 St. Johns Avenue, New Town, TAS 7008, Australia
| | - Calum Rae Wilson
- Tasmanian Institute of Agriculture, New Town Research Laboratories, University of Tasmania, 13 St. Johns Avenue, New Town, TAS 7008, Australia
| |
Collapse
|
2
|
Balla A, Silini A, Cherif-Silini H, Mapelli F, Borin S. Root colonization dynamics of alginate encapsulated rhizobacteria: implications for Arabidopsis thaliana root growth and durum wheat performance. AIMS Microbiol 2025; 11:87-125. [PMID: 40161245 PMCID: PMC11950683 DOI: 10.3934/microbiol.2025006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/11/2025] [Accepted: 01/20/2025] [Indexed: 04/02/2025] Open
Abstract
Bioencapsulation in alginate capsules offers an interesting opportunity for the efficient delivery of microbial inoculants for agricultural purposes. The present study evaluated the ionic gelation technique to prepare beads loaded with two plant growth-promoting bacteria (PGPB), Bacillus thuringiensis strain B25 and Pantoea agglomerans strain Pa in 1% alginate supplemented with 5mM proline as an osmoprotectant. Capsule morphology, survival rate, encapsulation efficiency, and viability during 24 months of storage as well as the stability of PGP activities were studied. Our results indicate that more than 99% of bacteria were effectively trapped in the alginate beads, which successfully released live bacteria after 60 days of storage at room temperature. A considerable survival of B. thuringiensis B25 throughout the storage period was detected, while the inoculated concentration of 8.72 × 109 (±0.04 ×109) CFU/mL was reduced to 99.9% for P. agglomerans Pa after 24 months of storage. Notably, a higher survival of individually encapsulated bacteria was observed compared to their co-inoculation. The colonization capacity of model plant Arabidopsis thaliana roots by free and encapsulated bacteria was detected by the triphenyltetrazolium chloride test. Moreover, both strains effectively colonized the rhizosphere, rhizoplane, and endosphere of durum wheat plants and exerted a remarkable improvement in plant growth, estimated as a significant increase in the quantities of total proteins, sugars, and chlorophyll pigments, besides roots and shoots length. This study demonstrated that alginate-encapsulated B. thuringiensis B25 and P. agglomerans Pa could be used as inoculants in agriculture, as their encapsulation ensures robust protection, maintenance of viability and PGP activity, and controlled bacterial biostimulant release into the rhizosphere.
Collapse
Affiliation(s)
- Amel Balla
- Laboratory of Applied Microbiology, Department of Microbiology, Faculty of Natural and Life Sciences, University Ferhat Abbas of Setif -1, 19000 Setif, Algeria
| | - Allaoua Silini
- Laboratory of Applied Microbiology, Department of Microbiology, Faculty of Natural and Life Sciences, University Ferhat Abbas of Setif -1, 19000 Setif, Algeria
| | - Hafsa Cherif-Silini
- Laboratory of Applied Microbiology, Department of Microbiology, Faculty of Natural and Life Sciences, University Ferhat Abbas of Setif -1, 19000 Setif, Algeria
| | - Francesca Mapelli
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, 20133 Milan, Italy
| | - Sara Borin
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, 20133 Milan, Italy
| |
Collapse
|
3
|
Shin GY, Asselin JA, Smith A, Aegerter B, Coutinho T, Zhao M, Dutta B, Mazzone J, Neupane R, Gugino B, Hoepting C, Khanal M, Malla S, Nischwitz C, Sidhu J, Burke AM, Davey J, Uchanski M, Derie ML, du Toit LJ, Stresow-Cortez S, Bonasera JM, Stodghill P, Kvitko B. Plasmids encode and can mobilize onion pathogenicity in Pantoea agglomerans. THE ISME JOURNAL 2025; 19:wraf019. [PMID: 39883081 PMCID: PMC11896626 DOI: 10.1093/ismejo/wraf019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/20/2024] [Accepted: 01/29/2025] [Indexed: 01/31/2025]
Abstract
Pantoea agglomerans is one of four Pantoea species reported in the USA to cause bacterial rot of onion bulbs. However, not all P. agglomerans strains are pathogenic to onion. We characterized onion-associated strains of P. agglomerans to elucidate the genetic and genomic signatures of onion-pathogenic P. agglomerans. We collected >300 P. agglomerans strains associated with symptomatic onion plants and bulbs from public culture collections, research laboratories, and a multi-year survey in 11 states in the USA. Combining the 87 genome assemblies with 100 high-quality, public P. agglomerans genome assemblies we identified two well-supported P. agglomerans phylogroups. Strains causing severe symptoms on onion were only identified in Phylogroup II and encoded the HiVir pantaphos biosynthetic cluster, supporting the role of HiVir as a pathogenicity factor. The P. agglomerans HiVir cluster was encoded in two distinct plasmid contexts: (i) as an accessory gene cluster on a conserved P. agglomerans plasmid (pAggl), or (ii) on a mosaic cluster of plasmids common among onion strains (pOnion). Analysis of closed genomes revealed that the pOnion plasmids harbored alt genes conferring tolerance to Allium thiosulfinate defensive chemistry and many harbored cop genes conferring resistance to copper. We demonstrated that the pOnion plasmid pCB1C can act as a natively mobilizable pathogenicity plasmid that transforms P. agglomerans Phylogroup I strains, including environmental strains, into virulent pathogens of onion. This work indicates a central role for plasmids and plasmid ecology in mediating P. agglomerans interactions with onion plants, with potential implications for onion bacterial disease management.
Collapse
Affiliation(s)
- Gi Yoon Shin
- Department of Plant Pathology, University of Georgia, Athens, GA 30602, United States
| | - Jo Ann Asselin
- Emerging Pests and Pathogens Research Unit, Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, United State Department of Agriculture, Ithaca 14853, NY, United States
| | - Amy Smith
- Department of Plant Pathology, University of Georgia, Athens, GA 30602, United States
| | - Brenna Aegerter
- University of California Cooperative Extension, Stockton, CA 95206, United States
| | - Teresa Coutinho
- Department of Biochemistry, Genetics, and Microbiology, Centre for Microbial Ecology and Genomics/Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0002, South Africa
| | - Mei Zhao
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, 100193 Beijing, China
| | - Bhabesh Dutta
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, United States
| | - Jennie Mazzone
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA 16802, United States
| | - Ram Neupane
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA 16802, United States
| | - Beth Gugino
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA 16802, United States
| | - Christy Hoepting
- Cornell Cooperative Extension, Cornell Vegetable Program, Albion, NY 14411, United States
| | - Manzeal Khanal
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, United States
- Department of Environmental Science, University of Arizona, Tucson, AZ 85719, United States
| | - Subas Malla
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, United States
| | - Claudia Nischwitz
- Department of Biology, Utah State University, Logan, UT 84322, United States
| | - Jaspreet Sidhu
- University of California Cooperative Extension, Bakersfield, CA 93307, United States
| | - Antoinette Machado Burke
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO 80523, United States
| | - Jane Davey
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO 80523, United States
| | - Mark Uchanski
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO 80523, United States
| | - Michael L Derie
- Department of Plant Pathology, Washington State University, Mount Vernon, WA 98273, United States
| | - Lindsey J du Toit
- Department of Plant Pathology, Washington State University, Mount Vernon, WA 98273, United States
| | - Stephen Stresow-Cortez
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, United States
| | - Jean M Bonasera
- Plant Pathology & Plant-Microbe Biology Section, School of Integrated Plant Science, Cornell University, Ithaca, NY 14853, United States
| | - Paul Stodghill
- Emerging Pests and Pathogens Research Unit, Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, United State Department of Agriculture, Ithaca 14853, NY, United States
- Plant Pathology & Plant-Microbe Biology Section, School of Integrated Plant Science, Cornell University, Ithaca, NY 14853, United States
| | - Brian Kvitko
- Department of Plant Pathology, University of Georgia, Athens, GA 30602, United States
| |
Collapse
|
4
|
Joubert O, Arnault G, Barret M, Simonin M. Sowing success: ecological insights into seedling microbial colonisation for robust plant microbiota engineering. TRENDS IN PLANT SCIENCE 2025; 30:21-34. [PMID: 39406642 DOI: 10.1016/j.tplants.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/14/2024] [Accepted: 09/11/2024] [Indexed: 01/11/2025]
Abstract
Manipulating the seedling microbiota through seed or soil inoculations has the potential to improve plant health. Mixed in-field results have been attributed to a lack of consideration for ecological processes taking place during seedling microbiota assembly. In this opinion article, we (i) assess the contribution of ecological processes at play during seedling microbiota assembly (e.g., propagule pressure and priority effects); (ii) investigate how life history theory can help us identify microbial traits involved in successful seedling colonisation; and (iii) suggest how different plant microbiota engineering methods could benefit from a greater understanding of seedling microbiota assembly processes. Finally, we propose several research hypotheses and identify outstanding questions for the plant microbiota engineering community.
Collapse
Affiliation(s)
- Oscar Joubert
- Master de Biologie, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Université de Lyon, 69342 Cedex 07 Lyon, France; Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France.
| | - Gontran Arnault
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
| | - Matthieu Barret
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
| | - Marie Simonin
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France.
| |
Collapse
|
5
|
Wang K, Wang Q, Hong L, Liu Y, Yang J, Asiegbu FO, Wu P, Huang L, Ma X. Distribution and characterization of endophytic and rhizosphere bacteriome of below-ground tissues in Chinese fir plantation. TREE PHYSIOLOGY 2024; 44:tpae137. [PMID: 39423250 DOI: 10.1093/treephys/tpae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/19/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024]
Abstract
Plantations of Chinese fir, a popular woody tree species, face sustainable issues, such as nutrient deficiency and increasing disease threat. Rhizosphere and endophytic bacteria play important roles in plants' nutrient absorption and stress alleviation. Our understanding of the microbiome structure and functions is proceeding rapidly in model plants and some crop species. Yet, the spatial distribution and functional patterns of the bacteriome for the woody trees remain largely unexplored. In this study, we collected rhizosphere soil, non-rhizosphere soil, fine root, thick root and primary root samples of Chinese fir and investigated the structure and distribution of bacteriome, as well as the beneficial effects of endophytic bacterial isolates. We discovered that Burkholderia and Paraburkholderia genera were overwhelmingly enriched in rhizosphere soil, and the abundance of Pseudomonas genus was significantly enhanced in fine root. By isolating and testing the nutrient absorption and pathogen antagonism functions of representative endophytic bacteria species in Pseudomonas and Burkholderia, we noticed that phosphorus-solubilizing functional isolates were enriched in fine root, while pathogen antagonism isolates were enriched in thick root. As a conclusion, our study revealed that the endophytic and rhizosphere environments of Chinese fir hold distinct structure and abundance of bacteriomes, with potential specific functional enrichment of some bacterial clades. These findings assist us to further study the potential regulation mechanism of endophytic functional bacteria by the host tree, which will contribute to beneficial microbe application in forestry plantations and sustainable development.
Collapse
Affiliation(s)
- Kai Wang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Chinese Fir Engineering Research Center of National Forestry and Grassland Administration, Fuzhou, 350002, China
| | - Qingao Wang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Chinese Fir Engineering Research Center of National Forestry and Grassland Administration, Fuzhou, 350002, China
| | - Liang Hong
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Chinese Fir Engineering Research Center of National Forestry and Grassland Administration, Fuzhou, 350002, China
| | - Yuxin Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Chinese Fir Engineering Research Center of National Forestry and Grassland Administration, Fuzhou, 350002, China
| | - Jiyun Yang
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Fred O Asiegbu
- Department of Forest Sciences, University of Helsinki, PO Box 27, FIN-00014 Helsinki, Finland
| | - Pengfei Wu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Chinese Fir Engineering Research Center of National Forestry and Grassland Administration, Fuzhou, 350002, China
| | - Lin Huang
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiangqing Ma
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Chinese Fir Engineering Research Center of National Forestry and Grassland Administration, Fuzhou, 350002, China
| |
Collapse
|
6
|
Muthusamy Pandian T, Esakkimuthu R, Rangasamy A, Rengasamy K, Alagesan S, Devasahayam JSS. Exploring the Potential of Bacterial Endophytes in Plant Disease Management. Curr Microbiol 2024; 81:403. [PMID: 39394391 DOI: 10.1007/s00284-024-03918-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/22/2024] [Indexed: 10/13/2024]
Abstract
Endophytic bacteria live in the internal tissues of plants, forming symbiotic, mutualistic, commensalistic and trophobiotic relationships. Some are spread via seeds after sprouting from the rhizosphere or phyllosphere. These bacteria capable of promoting plant growth and impart biotic stress by synthesing plant growth hormones, ACC deaminase, organic acids and siderophore. Endophytes aid in phytoremediation by removing soil contaminants and boosting soil fertility via phosphate solubilization and nitrogen fixation. The endophytic microbes are becoming increasingly popular in biotechnological applications which supports sustainable growth of non-food crops for biomass and biofuel. They offer valuable natural materials which is used in medicine, agriculture and industry. Bacterial endophytes are endowed with the enormous potential in the biological treatment of plant pathogens and considered as the superior alternative to synthetic fungicides. The review emphasizes benefits of bacterial endophytes in promoting plant growth and prospects of agricultural applications viz., increasing crop yield under biotic stress condition and their mode of action towards plant diseases. It also summarises the diverse and vital role of endophytes in agroecosystems as well as insights for sustainable agriculture and crop resilience.
Collapse
Affiliation(s)
| | - Rajeswari Esakkimuthu
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India.
| | - Anandham Rangasamy
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India
| | - Kannan Rengasamy
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India
| | - Subramanian Alagesan
- Department of Cotton, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India
| | | |
Collapse
|
7
|
Sharma P, Pandey R, Chauhan NS. Unveiling wheat growth promotion potential of phosphate solubilizing Pantoea agglomerans PS1 and PS2 through genomic, physiological, and metagenomic characterizations. Front Microbiol 2024; 15:1467082. [PMID: 39318437 PMCID: PMC11420927 DOI: 10.3389/fmicb.2024.1467082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/19/2024] [Indexed: 09/26/2024] Open
Abstract
Introduction Phosphorus is an abundant element in the earth's crust and is generally found as complex insoluble conjugates. Plants cannot assimilate insoluble phosphorus and require external supplementation as chemical fertilizers to achieve a good yield. Continuous use of fertilizers has impacted soil ecology, and a sustainable solution is needed to meet plant elemental requirements. Phosphate solubilizing microbes could enhance phosphorus bioavailability for better crop production and can be employed to attain sustainable agriculture practices. Methods The current study unveils the biofertilizer potential of wheat rhizospheric bacteria through physiological, taxonomic, genomic, and microbiomics experimentations. Results and Discussion Culture-dependent exploration identified phosphate-solubilizing PS1 and PS2 strains from the wheat rhizosphere. These isolates were rod-shaped, gram-negative, facultative anaerobic bacteria, having optimum growth at 37°C and pH 7. Phylogenetic and phylogenomic characterization revealed their taxonomic affiliation as Pantoea agglomerans subspecies PS1 & PS2. Both isolates exhibited good tolerance against saline (>10% NaCl (w/v), >11.0% KCl (w/v), and >6.0% LiCl (w/v)), oxidizing (>5.9% H2O2 (v/v)) conditions. PS1 and PS2 genomes harbor gene clusters for biofertilization features, root colonization, and stress tolerance. PS1 and PS2 showed nitrate reduction, phosphate solubilization, auxin production, and carbohydrate utilization properties. Treatment of seeds with PS1 and PS2 significantly enhanced seed germination percentage (p = 0.028 and p = 0.008, respectively), number of tillers (p = 0.0018), number of leaves (p = 0.0001), number of spikes (p = 0.0001) and grain production (p = 0.0001). Wheat rhizosphere microbiota characterizations indicated stable colonization of PS1 and PS2 strains in treated seeds at different feek stages. Pretreatment of seeds with both strains engineered the wheat rhizosphere microbiota by recruiting plant growth-promoting microbial groups. In vitro, In vivo, and microbiota characterization studies indicated the biofertilizer potential of Pantoea sp. PS1 & PS2 to enhance wheat crop production. The employment of these strains could fulfill plant nutrient requirements and be a substitute for chemical fertilizers for sustainable agriculture.
Collapse
Affiliation(s)
- Pinki Sharma
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, India
| | - Rajesh Pandey
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Nar Singh Chauhan
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
8
|
Wdowiak-Wróbel S, Kalita M, Palusińska-Szysz M, Marek-Kozaczuk M, Sokołowski W, Coutinho TA. Pantoea trifolii sp. nov., a novel bacterium isolated from Trifolium rubens root nodules. Sci Rep 2024; 14:2698. [PMID: 38302681 PMCID: PMC10834434 DOI: 10.1038/s41598-024-53200-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 01/29/2024] [Indexed: 02/03/2024] Open
Abstract
A novel bacterium, designated strain MMK2T, was isolated from a surface-sterilised root nodule of a Trifolium rubens plant growing in south-eastern Poland. Cells were Gram negative, non-spore forming and rod shaped. The strain had the highest 16S rRNA gene sequence similarity with P. endophytica (99.4%), P. leporis (99.4%) P. rwandensis (98.8%) and P. rodasii (98.45%). Phylogenomic analysis clearly showed that strain MMK2T and an additional strain, MMK3, should reside in the genus Pantoea and that they were most closely related to P. endophytica and P. leporis. Genome comparisons showed that the novel strain shared 82.96-93.50% average nucleotide identity and 26.2-53. 2% digital DNA:DNA hybridization with closely related species. Both strains produced siderophores and were able to solubilise phosphates. The MMK2T strain was also able to produce indole-3-acetic acid. The tested strains differed in their antimicrobial activity, but both were able to inhibit the growth of Sclerotinia sclerotiorum 10Ss01. Based on the results of the phenotypic, phylogenomic, genomic and chemotaxonomic analyses, strains MMK2T and MMK3 belong to a novel species in the genus Pantoea for which the name Pantoea trifolii sp. nov. is proposed with the type strain MMK2T (= DSM 115063T = LMG 33049T).
Collapse
Affiliation(s)
- Sylwia Wdowiak-Wróbel
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Michał Kalita
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland.
| | - Marta Palusińska-Szysz
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Monika Marek-Kozaczuk
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Wojciech Sokołowski
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Teresa A Coutinho
- Department of Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomics/Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0002, South Africa
| |
Collapse
|
9
|
Liu Y, Xu Z, Chen L, Xun W, Shu X, Chen Y, Sun X, Wang Z, Ren Y, Shen Q, Zhang R. Root colonization by beneficial rhizobacteria. FEMS Microbiol Rev 2024; 48:fuad066. [PMID: 38093453 PMCID: PMC10786197 DOI: 10.1093/femsre/fuad066] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 01/13/2024] Open
Abstract
Rhizosphere microbes play critical roles for plant's growth and health. Among them, the beneficial rhizobacteria have the potential to be developed as the biofertilizer or bioinoculants for sustaining the agricultural development. The efficient rhizosphere colonization of these rhizobacteria is a prerequisite for exerting their plant beneficial functions, but the colonizing process and underlying mechanisms have not been thoroughly reviewed, especially for the nonsymbiotic beneficial rhizobacteria. This review systematically analyzed the root colonizing process of the nonsymbiotic rhizobacteria and compared it with that of the symbiotic and pathogenic bacteria. This review also highlighted the approaches to improve the root colonization efficiency and proposed to study the rhizobacterial colonization from a holistic perspective of the rhizosphere microbiome under more natural conditions.
Collapse
Affiliation(s)
- Yunpeng Liu
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P.R. China
| | - Zhihui Xu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, P.R. China
| | - Lin Chen
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, 1 Shuizha West Road, Beijing 102300, P.R. China
| | - Weibing Xun
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, P.R. China
| | - Xia Shu
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P.R. China
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, P.R. China
| | - Yu Chen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, P.R. China
| | - Xinli Sun
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, P.R. China
| | - Zhengqi Wang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, P.R. China
| | - Yi Ren
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, P.R. China
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, P.R. China
| | - Ruifu Zhang
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P.R. China
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, P.R. China
| |
Collapse
|
10
|
Zheng C, Liu D, Lu X, Wu H, Hua J, Zhang C, Liu K, Li C, He J, Du C. Trans-aconitic acid assimilation system as a widespread bacterial mechanism for environmental adaptation. THE ISME JOURNAL 2024; 18:wrae198. [PMID: 39375013 PMCID: PMC11495376 DOI: 10.1093/ismejo/wrae198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/18/2024] [Accepted: 10/03/2024] [Indexed: 10/09/2024]
Abstract
The ability of bacteria to use natural carbon sources greatly affects their growth and survival in the environment. Bacteria have evolved versatile abilities to use environmental carbon sources, but their diversity and assimilation pathways remain largely unexplored. Trans-aconitic acid (TAA), a geometric isomer of cis-aconitic acid involved in the tricarboxylic acid cycle, has long been considered a natural carbon source metabolizable by bacteria. However, its catabolism and ecological role in linking bacterial interactions with the environment remain unclear. Here, we identify a regulatory system in Bacillus velezensis FZB42 that is capable of sensing and catabolizing TAA. The system consists of a tar operon, an adjacent positive regulatory gene tarR, and a shared promoter. After receiving the TAA signal, the TarR protein interacts directly with the promoter, initiating the expression of the membrane transporter TarB and aconitate isomerase TarA encoded by the operon, which function in importing the TAA and isomerizing it into the central intermediate cis-aconitic acid. Subsequent soil colonization experiments reveal that TAA assimilating ability can give its coding bacteria a growth and competitive advantage. Bioinformatics analyses coupled with bacterial isolation experiments further show that the assimilation system of TAA is widely distributed in the bacterial domain, and its assimilating bacteria are also extensively distributed in nature, indicating an important role of TAA metabolism in bacterial carbon acquisition. This work emphasizes the importance of metabolic adaptation to environmental carbon sources for bacterial survival and may provide inspiration for engineering microbes with enhanced environmental competitiveness.
Collapse
Affiliation(s)
- Cao Zheng
- Hubei Province Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, College of Life Science and Technology, Hubei Engineering University, Xiaogan, Hubei 432000, China
| | - Dingqi Liu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xinyu Lu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Huijun Wu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jingyi Hua
- Hubei Province Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, College of Life Science and Technology, Hubei Engineering University, Xiaogan, Hubei 432000, China
| | - Chuang Zhang
- Hubei Province Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, College of Life Science and Technology, Hubei Engineering University, Xiaogan, Hubei 432000, China
| | - Kang Liu
- Hubei Province Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, College of Life Science and Technology, Hubei Engineering University, Xiaogan, Hubei 432000, China
| | - Changchun Li
- Hubei Province Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, College of Life Science and Technology, Hubei Engineering University, Xiaogan, Hubei 432000, China
| | - Jin He
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Cuiying Du
- Hubei Province Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, College of Life Science and Technology, Hubei Engineering University, Xiaogan, Hubei 432000, China
| |
Collapse
|
11
|
Xiao J, Sun S, Liu Z, Fan C, Zhu B, Zhang D. Analysis of key genes for the survival of Pantoea agglomerans under nutritional stress. Int J Biol Macromol 2023; 253:127059. [PMID: 37769756 DOI: 10.1016/j.ijbiomac.2023.127059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 10/03/2023]
Abstract
The absolute amount of nutrients on plant leaves is usually low, and the growth of epiphytic bacteria is typically limited by nutrient content. Thus, is of great significance to study the survival mechanism of epiphytes under nutritional stress for plant disease control. In this paper, Pantoea agglomerans CHTF15 isolated from walnut leaves was used to detect the key genes for the survival of the bacterium under simulated nutrient stress in artificial medium. Genome sequencing was combined with transposon insertion sequencing (Tn-seq) for the detection technique. A total of 105 essential genes were screened from the whole genome. The genes were mainly related to the nucleotide metabolism, protein metabolism, biological oxidation and the gene repair of bacteria analyzed by gene ontology (GO) enrichment analysis. Volcano map analysis demonstrated that the functions of the 15 genes with the most significant differences were generally related to the synthesis of amino acids or proteins, the nucleotide metabolism and homologous recombination and repair. Competitive index analysis revealed that the deletion of the genes dksA and epmA regulating protein synthesis, the gene ribB involved in the nucleotide metabolism and the gene xerD involved in recombination repair induced a significant reduction in the survival ability of the corresponding mutants in the 0.10 % YEP medium and the walnut leaf surface. The results act as a foundation for further in-depth research on the infection process and the mechanisms of pathogenic bacteria.
Collapse
Affiliation(s)
- Jiawen Xiao
- College of Life Science, Hebei Agricultural University, Baoding, China; Hebei Provincial Engineering Research Center for Resource Utilization of Agricultural Wastes, Baoding, China
| | - Shangyi Sun
- College of Life Science, Hebei Agricultural University, Baoding, China; Hebei Provincial Engineering Research Center for Resource Utilization of Agricultural Wastes, Baoding, China
| | - Zhaosha Liu
- College of Life Science, Hebei Agricultural University, Baoding, China; Hebei Provincial Engineering Research Center for Resource Utilization of Agricultural Wastes, Baoding, China
| | - Chenxi Fan
- College of Life Science, Hebei Agricultural University, Baoding, China; Hebei Provincial Engineering Research Center for Resource Utilization of Agricultural Wastes, Baoding, China
| | - Baocheng Zhu
- College of Life Science, Hebei Agricultural University, Baoding, China; Hebei Provincial Engineering Research Center for Resource Utilization of Agricultural Wastes, Baoding, China
| | - Dongdong Zhang
- College of Life Science, Hebei Agricultural University, Baoding, China; Hebei Provincial Engineering Research Center for Resource Utilization of Agricultural Wastes, Baoding, China.
| |
Collapse
|
12
|
Schultz CR, Johnson M, Wallace JG. Effects of Inbreeding on Microbial Community Diversity of Zea mays. Microorganisms 2023; 11:microorganisms11040879. [PMID: 37110300 PMCID: PMC10145435 DOI: 10.3390/microorganisms11040879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/14/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
Heterosis, also known as hybrid vigor, is the basis of modern maize production. The effect of heterosis on maize phenotypes has been studied for decades, but its effect on the maize-associated microbiome is much less characterized. To determine the effect of heterosis on the maize microbiome, we sequenced and compared the bacterial communities of inbred, open pollinated, and hybrid maize. Samples covered three tissue types (stalk, root, and rhizosphere) in two field experiments and one greenhouse experiment. Bacterial diversity was more affected by location and tissue type than genetic background for both within-sample (alpha) and between-sample (beta) diversity. PERMANOVA analysis similarly showed that tissue type and location had significant effects on the overall community structure, whereas the intraspecies genetic background and individual plant genotypes did not. Differential abundance analysis identified only 25 bacterial ASVs that significantly differed between inbred and hybrid maize. Predicted metagenome content was inferred with Picrust2, and it also showed a significantly larger effect of tissue and location than genetic background. Overall, these results indicate that the bacterial communities of inbred and hybrid maize are often more similar than they are different and that non-genetic effects are generally the largest influences on the maize microbiome.
Collapse
|
13
|
Xiao J, Liu Z, Sun S, Fan C, Wang D, Zhang D. Complete Genome Sequence of Pantoea agglomerans CHTF15, a Walnut Pathogen. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:134-137. [PMID: 36693088 DOI: 10.1094/mpmi-10-22-0216-a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The phytopathogen Pantoea agglomerans belongs to the Bacteria, Proteobacteria, Gammaproteobacteria, Enterobacterales, Erwiniaceae in species classification. It causes disease symptoms in many plants such as corn, banana, and walnut. This study aimed to report the complete genome of P. agglomerans CHTF15, which represents the first whole-genome sequence of an isolate from diseased walnut leaves. The total length of the assembled genome was 4,820,607 bp, with an average GC content of 55.3%, including a circular chromosome and three circular plasmids, two of which were previously unreported sequences and one was announced previously. The CHTF15 genome helps understand the pathogenic mechanism of this important plant pathogen and provides an important theoretical basis for disease epidemic and field control. [Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law, 2023.
Collapse
Affiliation(s)
- Jiawen Xiao
- College of Life Science, Hebei Agricultural University, Baoding, China
- Hebei Provincial Engineering Research Center for Resource Utilization of Agricultural Wastes, Baoding, China
| | - Zhaosha Liu
- College of Life Science, Hebei Agricultural University, Baoding, China
- Hebei Provincial Engineering Research Center for Resource Utilization of Agricultural Wastes, Baoding, China
| | - Shangyi Sun
- College of Life Science, Hebei Agricultural University, Baoding, China
- Hebei Provincial Engineering Research Center for Resource Utilization of Agricultural Wastes, Baoding, China
| | - Chenxi Fan
- College of Life Science, Hebei Agricultural University, Baoding, China
- Hebei Provincial Engineering Research Center for Resource Utilization of Agricultural Wastes, Baoding, China
| | - Dongmei Wang
- College of Life Science, Hebei Agricultural University, Baoding, China
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China
| | - Dongdong Zhang
- College of Life Science, Hebei Agricultural University, Baoding, China
- Hebei Provincial Engineering Research Center for Resource Utilization of Agricultural Wastes, Baoding, China
| |
Collapse
|
14
|
Bastías DA, Bustos LB, Jáuregui R, Barrera A, Acuña-Rodríguez IS, Molina-Montenegro MA, Gundel PE. Epichloë Fungal Endophytes Influence Seed-Associated Bacterial Communities. Front Microbiol 2022; 12:795354. [PMID: 35058911 PMCID: PMC8764391 DOI: 10.3389/fmicb.2021.795354] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/24/2021] [Indexed: 11/30/2022] Open
Abstract
Seeds commonly harbour diverse bacterial communities that can enhance the fitness of future plants. The bacterial microbiota associated with mother plant’s foliar tissues is one of the main sources of bacteria for seeds. Therefore, any ecological factor influencing the mother plant’s microbiota may also affect the diversity of the seed’s bacterial community. Grasses form associations with beneficial vertically transmitted fungal endophytes of genus Epichloë. The interaction of plants with Epichloë endophytes and insect herbivores can influence the plant foliar microbiota. However, it is unknown whether these interactions (alone or in concert) can affect the assembly of bacterial communities in the produced seed. We subjected Lolium multiflorum plants with and without its common endophyte Epichloë occultans (E+, E-, respectively) to an herbivory treatment with Rhopalosiphum padi aphids and assessed the diversity and composition of the bacterial communities in the produced seed. The presence of Epichloë endophytes influenced the seed bacterial microbiota by increasing the diversity and affecting the composition of the communities. The relative abundances of the bacterial taxa were more similarly distributed in communities associated with E+ than E- seeds with the latter being dominated by just a few bacterial groups. Contrary to our expectations, seed bacterial communities were not affected by the aphid herbivory experienced by mother plants. We speculate that the enhanced seed/seedling performance documented for Epichloë-host associations may be explained, at least in part, by the Epichloë-mediated increment in the seed-bacterial diversity, and that this phenomenon may be applicable to other plant-endophyte associations.
Collapse
Affiliation(s)
- Daniel A Bastías
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Ludmila Bubica Bustos
- IFEVA, CONICET, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ruy Jáuregui
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Andrea Barrera
- Laboratorio de Ecología Integrativa, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Ian S Acuña-Rodríguez
- Laboratorio de Ecología Integrativa, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Marco A Molina-Montenegro
- Laboratorio de Ecología Integrativa, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile.,Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Universidad Católica del Norte, Coquimbo, Chile.,Centro de Investigación de Estudios Avanzados del Maule, Universidad Católica del Maule, Talca, Chile
| | - Pedro E Gundel
- IFEVA, CONICET, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina.,Laboratorio de Ecología Integrativa, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| |
Collapse
|
15
|
Comparison of Auxin and Cytokinins Concentrations, and the Structure of Bacterial Community between Host Twigs and Lithosaphonecrus arcoverticus Galls. INSECTS 2021; 12:insects12110982. [PMID: 34821783 PMCID: PMC8618787 DOI: 10.3390/insects12110982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/24/2021] [Accepted: 10/27/2021] [Indexed: 12/11/2022]
Abstract
Simple Summary Insect galls are characterized by high concentrations of auxins and cytokinins. We calculated the correlation between the concentrations of indoleacetic acid (IAA), trans-zeatin riboside (tZR) and isopentenyladenine (iP) and the bacterial community structure of Lithosaphonecrus arcoverticus galls. Our results indicated the concentrations of IAA, tZR and iP were positively correlated with the bacterial community structure of L. arcoverticus galls. We suggest the high concentrations of IAA, tZR and iP may affect the bacterial community structure of L. arcoverticus galls. Abstract Insect galls are the abnormal growth of plant tissues induced by a wide variety of galling insects and characterized by high concentrations of auxins and cytokinins. It remains unclear whether the auxins and cytokinins affect the bacterial community structure of insect galls. We determined the concentrations of indoleacetic acid (IAA) as an example of auxin, trans-zeatin riboside (tZR) and isopentenyladenine (iP) as cytokinins in Lithosaphonecrus arcoverticus (Hymenoptera: Cynipidae) galls and the galled twigs of Lithocarpus glaber (Fagaceae) using liquid chromatography–tandem mass spectrometry. Moreover, for the first time, we compared the bacterial community structure of L. arcoverticus galls and galled twigs by high-throughput sequencing, and calculated the Spearman correlation and associated degree of significance between the IAA, tZR and iP concentrations and the bacterial community structure. Our results indicated the concentrations of IAA, tZR and iP were higher in L. arcoverticus galls than in galled twigs, and positively correlated with the bacterial community structure of L. arcoverticus galls. We suggest the high concentrations of IAA, tZR and iP may affect the bacterial community structure of L. arcoverticus galls.
Collapse
|