1
|
Cheng C, Liu F, Wu Y, Li P, Chen W, Wu C, Sun J. Positive Linkage in Bacterial Microbiota at the Plant-Insect Interface Benefits an Invasive Bark Beetle. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40091613 DOI: 10.1111/pce.15470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/19/2025]
Abstract
Symbiotic microbes facilitate rapid adaptation of invasive insects on novel plants via multifaceted function provisions, but little was known on the importance of cross linkages in symbiotic microbiota to insect invasiveness. Novel host pine Pinus tabuliformis is inherently unsuitable for invasive red turpentine beetle (RTB) in China; however, Novosphingobium and Erwinia/Serratia in gallery microbiota (at the interface between RTB larvae and pine phloem) have been discovered to help beetles via biodegrading pine detrimental compounds naringenin and pinitol, respectively. Here, we further revealed significant positive linkage of the two functions, with higher activity level conferring more growth benefit to RTB larvae. Abundance of Erwinia/Serratia was remarkably increased in response to pinitol, while naringenin-biodegrading Novosphingobium was unable to utilize this main phloem carbohydrate directly. High-activity bacterial microbiota produced nutritive metabolites (sucrose and hexadecanoic acid) from pinitol consumption that facilitated growth of both Novosphingobium and beetle larvae. Functional proteins of several bacterial taxa were enriched in high-activity microbiota that appeared to form a metabolic network collectively to regulate the nutrient production. Our results indicate that positive interaction between Erwinia/Serratia and Novosphingobium is critical for RTB invasion success, while Bacilli bacteria might restrict this linkage, providing new insights into symbiotic microbial interactions for insect herbivores.
Collapse
Affiliation(s)
- Chihang Cheng
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, School of Life Sciences, Huzhou University, Huzhou, China
- Department of Biology, Lund University, Lund, Sweden
| | - Fanghua Liu
- Hebei Basic Science Center for Biotic Interactions, College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Yi Wu
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, School of Life Sciences, Huzhou University, Huzhou, China
| | - Peng Li
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, School of Life Sciences, Huzhou University, Huzhou, China
| | - Wei Chen
- Hebei Basic Science Center for Biotic Interactions, College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Chenhao Wu
- Hebei Basic Science Center for Biotic Interactions, College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Jianghua Sun
- Hebei Basic Science Center for Biotic Interactions, College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Yang Y, Zhang G, Pan J, Zhang Z, Mao N, Wang S, Sun Y. Characterization of fluoranthene degradation by the novel isolated Pseudomonas xizangensis S4 and its application potential immobilized in potassium humate-modified biochar. BIORESOURCE TECHNOLOGY 2025; 419:132066. [PMID: 39809384 DOI: 10.1016/j.biortech.2025.132066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/12/2024] [Accepted: 01/11/2025] [Indexed: 01/16/2025]
Abstract
Enhanced microbial remediation represents a promising technique for the removal of polycyclic aromatic hydrocarbons (PAHs). However, high-efficiency remediation agents remain limited, including microbial resources and remediation materials. In this study, a novel strain of Pseudomonas xizangensis S4 was isolated from plateau lake sediment, exhibiting a fluoranthene degradation rate of 41.90 % at 50 ppm within 7 d. The key degradation genes identified through genomic and transcriptomic analyses included ndmC, dmpK, dmpB, and dmpH. The metabolites detected via GC-MS analysis were biphenyls, parabens, and phthalate esters. Based on the above results, the degradation mechanisms of fluoranthene were deduced. Furthermore, an efficient remediation agent was developed, utilizing potassium humate-modified biochar to immobilize bacterial cells. The developed remediation agent enhanced the removal efficiency by 16.71 % compared to the single strain. Thus, the application of potassium humate-modified biochar for the immobilization of P. xizangensis S4 represents a promising method for the remediation of PAH-contaminated soil.
Collapse
Affiliation(s)
- Yong Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Guangming Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Jie Pan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Zhen Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Ning Mao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Shiwei Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi 710069, China.
| | - Yanmei Sun
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi 710069, China.
| |
Collapse
|
3
|
Hao Q, Lyu X, Qin D, Du N, Wu S, Bai S, Chen Z, Wang P, Zhao X. Synergistic mechanisms of denitrification in FeS 2-based constructed wetlands: Effects of organic carbon availability under day-night alterations. BIORESOURCE TECHNOLOGY 2024; 406:131066. [PMID: 38969240 DOI: 10.1016/j.biortech.2024.131066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/29/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
In constructed wetlands (CWs), carbon source availability profoundly affected microbial metabolic activities engaged in both iron cycle and nitrogen metabolism. However, research gaps existed in understanding the biotransformation of nitrogen and iron in response to fluctuations in organic carbon content under day-night alterations. Results demonstrated increased removal efficiency of NO3--N (95.7 %) and NH4+-N (75.70 %) under light conditions, attributed to increased total organic carbon (TOC). This enhancement promoted the relative abundance of bacteria involved in nitrogen and iron processes, establishing a more stable microbial network. Elevated TOC content also upregulated genes for iron metabolism and glycolysis, facilitating denitrification. Spearman correlation analysis supported the synergistic mechanisms between FeS2-based autotrophic denitrification and TOC-mediated heterotrophic denitrification under light conditions. The significant impact of carbon sources on microbial activities underscores the critical role of organic carbon availability in enhancing nitrogen removal efficiency, providing valuable insights for optimizing FeS2-based CWs design and operation strategies.
Collapse
Affiliation(s)
- Qirui Hao
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xiaonan Lyu
- Beijing Aquatic Technology Extension Station, Beijing 100021, China
| | - Dongli Qin
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Ningning Du
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Song Wu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Shuyan Bai
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Zhongxiang Chen
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Peng Wang
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China.
| | - Xinyue Zhao
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
4
|
Walton JL, Buchan A. Evidence for novel polycyclic aromatic hydrocarbon degradation pathways in culturable marine isolates. Microbiol Spectr 2024; 12:e0340923. [PMID: 38084970 PMCID: PMC10783047 DOI: 10.1128/spectrum.03409-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/10/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE Polycyclic aromatic hydrocarbon (PAH) pollution is widespread throughout marine environments and significantly affects native flora and fauna. Investigating microbes responsible for degrading PAHs in these environments provides a greater understanding of natural attenuation in these systems. In addition, the use of culture-based approaches to inform bioinformatic and omics-based approaches is useful in identifying novel mechanisms of PAH degradation that elude genetic biomarker-based investigations. Furthermore, culture-based approaches allow for the study of PAH co-metabolism, which increasingly appears to be a prominent mechanism for PAH degradation in marine microbes.
Collapse
Affiliation(s)
- Jillian L. Walton
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Alison Buchan
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
5
|
Yi S, Zhu Z, Li F, Zhu L, Wu C, Ge F, Ji X, Tian J. Metagenomic and proteomic insights into the self-adaptive cell surface hydrophobicity of Sphingomonas sp. strain PAH02 reducing the migration of cadmium-phenanthrene co-pollutant in rice. Environ Microbiol 2024; 26:e16577. [PMID: 38183371 DOI: 10.1111/1462-2920.16577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/21/2023] [Indexed: 01/08/2024]
Abstract
Cell surface hydrophobicity (CSH) dominates the interactions between rhizobacteria and pollutants at the soil-water interface, which is critical for understanding the dissipation of pollutants in the rhizosphere microzone of rice. Herein, we explored the effects of self-adaptive CSH of Sphingomonas sp. strain PAH02 on the translocation and biotransformation behaviour of cadmium-phenanthrene (Cd-Phe) co-pollutant in rice and rhizosphere microbiome. We evidenced that strain PAH02 reduced the adsorption of Cd-Phe co-pollutant on the rice root surface while enhancing the degradation of Phe and adsorption of Cd via its self-adaptive CSH in the hydroponic experiment. The significant upregulation of key protein expression levels such as MerR, ARHDs and enoyl-CoA hydratase/isomerase, ensures self-adaptive CSH to cope with the stress of Cd-Phe co-pollutant. Consistently, the bioaugmentation of strain PAH02 promoted the formation of core microbiota in the rhizosphere soil of rice (Oryza sativa L.), such as Bradyrhizobium and Streptomyces and induced gene enrichment of CusA and PobA that are strongly associated with pollutant transformation. Consequently, the contents of Cd and Phe in rice grains at maturity decreased by 17.2% ± 0.2% and 65.7% ± 0.3%, respectively, after the bioaugmentation of strain PAH02. These findings present new opportunities for the implementation of rhizosphere bioremediation strategies of co-contaminants in paddy fields.
Collapse
Affiliation(s)
- Shengwei Yi
- College of Environment and Resources, Xiangtan University, Xiangtan, China
- Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan, China
- Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan, China
| | - Zhongnan Zhu
- College of Environment and Resources, Xiangtan University, Xiangtan, China
- Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan, China
- Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan, China
| | - Feng Li
- College of Environment and Resources, Xiangtan University, Xiangtan, China
- Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan, China
- Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan, China
| | - Lizhong Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Chen Wu
- College of Environment and Resources, Xiangtan University, Xiangtan, China
- Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan, China
- Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan, China
| | - Fei Ge
- College of Environment and Resources, Xiangtan University, Xiangtan, China
- Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan, China
- Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan, China
| | - Xionghui Ji
- Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Jiang Tian
- College of Environment and Resources, Xiangtan University, Xiangtan, China
- Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan, China
- Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan, China
| |
Collapse
|
6
|
Meng Q, Xu Q, Xu Y, Ren H, Ge X, Yu J, Cao X, Yin J, Yu Z. A FadR-Type Regulator Activates the Biodegradation of Polycyclic Aromatic Hydrocarbons by Mediating Quorum Sensing in Croceicoccus naphthovorans Strain PQ-2. Appl Environ Microbiol 2023; 89:e0043323. [PMID: 37098893 PMCID: PMC10231186 DOI: 10.1128/aem.00433-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/04/2023] [Indexed: 04/27/2023] Open
Abstract
Bacteria employ multiple transcriptional regulators to orchestrate cellular responses to adapt to constantly varying environments. The bacterial biodegradation of polycyclic aromatic hydrocarbons (PAHs) has been extensively described, and yet, the PAH-related transcriptional regulators remain elusive. In this report, we identified an FadR-type transcriptional regulator that controls phenanthrene biodegradation in Croceicoccus naphthovorans strain PQ-2. The expression of fadR in C. naphthovorans PQ-2 was induced by phenanthrene, and its deletion significantly impaired both the biodegradation of phenanthrene and the synthesis of acyl-homoserine lactones (AHLs). In the fadR deletion strain, the biodegradation of phenanthrene could be recovered by supplying either AHLs or fatty acids. Notably, FadR simultaneously activated the fatty acid biosynthesis pathway and repressed the fatty acid degradation pathway. As intracellular AHLs are synthesized with fatty acids as substrates, boosting the fatty acid supply could enhance AHL synthesis. Collectively, these findings demonstrate that FadR in C. naphthovorans PQ-2 positively regulates PAH biodegradation by controlling the formation of AHLs, which is mediated by the metabolism of fatty acids. IMPORTANCE Master transcriptional regulation of carbon catabolites is extremely important for the survival of bacteria that face changes in carbon sources. Polycyclic aromatic hydrocarbons (PAHs) can be utilized as carbon sources by some bacteria. FadR is a well-known transcriptional regulator involved in fatty acid metabolism; however, the connection between FadR regulation and PAH utilization in bacteria remains unknown. This study revealed that a FadR-type regulator in Croceicoccus naphthovorans PQ-2 stimulated PAH biodegradation by controlling the biosynthesis of the acyl-homoserine lactone quorum-sensing signals that belong to fatty acid-derived compounds. These results provide a unique perspective for understanding bacterial adaptation to PAH-containing environments.
Collapse
Affiliation(s)
- Qiu Meng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang Province, China
| | - Qimiao Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang Province, China
| | - Yinming Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang Province, China
| | - Huiping Ren
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang Province, China
| | - Xuzhe Ge
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang Province, China
| | - Jianming Yu
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang Province, China
| | - Xueqiang Cao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang Province, China
| | - Jianhua Yin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang Province, China
| | - Zhiliang Yu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang Province, China
| |
Collapse
|
7
|
Hossain MS, DeLaune PB, Gentry TJ. Microbiome analysis revealed distinct microbial communities occupying different sized nodules in field-grown peanut. Front Microbiol 2023; 14:1075575. [PMID: 36937276 PMCID: PMC10017544 DOI: 10.3389/fmicb.2023.1075575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/08/2023] [Indexed: 03/06/2023] Open
Abstract
Legume nodulation is the powerhouse of biological nitrogen fixation (BNF) where host-specific rhizobia dominate the nodule microbiome. However, other rhizobial or non-rhizobial inhabitants can also colonize legume nodules, and it is unclear how these bacteria interact, compete, or combinedly function in the nodule microbiome. Under such context, to test this hypothesis, we conducted 16S-rRNA based nodule microbiome sequencing to characterize microbial communities in two distinct sized nodules from field-grown peanuts inoculated with a commercial inoculum. We found that microbial communities diverged drastically in the two types of peanut nodules (big and small). Core microbial analysis revealed that the big nodules were inhabited by Bradyrhizobium, which dominated composition (>99%) throughout the plant life cycle. Surprisingly, we observed that in addition to Bradyrhizobium, the small nodules harbored a diverse set of bacteria (~31%) that were not present in big nodules. Notably, these initially less dominant bacteria gradually dominated in small nodules during the later plant growth phases, which suggested that native microbial communities competed with the commercial inoculum in the small nodules only. Conversely, negligible or no competition was observed in the big nodules. Based on the prediction of KEGG pathway analysis for N and P cycling genes and the presence of diverse genera in the small nodules, we foresee great potential of future studies of these microbial communities which may be crucial for peanut growth and development and/or protecting host plants from various biotic and abiotic stresses.
Collapse
Affiliation(s)
- Md Shakhawat Hossain
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
- Texas A&M AgriLife Research, College Station, TX, United States
| | | | - Terry J Gentry
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
- Texas A&M AgriLife Research, College Station, TX, United States
| |
Collapse
|
8
|
Srivastava A, Verma D. Ganga River sediments of India predominate with aerobic and chemo-heterotrophic bacteria majorly engaged in the degradation of xenobiotic compounds. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:752-772. [PMID: 35904740 DOI: 10.1007/s11356-022-22198-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Sediment provides a stagnant habitat to microbes that accumulate organic matter and other industrial pollutants from the upper layer of the water. The sediment of the Ganga River of India is overlooked for exploring the bacterial diversity despite their taxon richness over the water counterpart. To enrich the limited information on the bacterial diversity of the Ganga River sediment, the present study was planned that relies on amplicon-based bacterial diversity of the Ganga River sediment by using bacterial-specific 16S hypervariable region (V3-V4). The Illumina MiSeq2500 platform generated 1,769,226 raw reads from the metagenomes of various samples obtained from ten sites in five major cities of Uttar Pradesh and Uttarakhand regions traversing the Ganga River. Taxonomy level analysis assigned 58 phyla, 366 order, and 715 genera of bacterial type. The high values of various diversity indices (Chao1, Shannon, and Simpson) in Kanpur sediment indicate the high bacterial richness compared to the Rishikesh sediment. However, several other ecological parameters (Shannon index, Simpson index, enspie _vector, and Faith_pd) were comparatively higher in Rishikesh sediment which is a comparatively less disturbed region by human activities over the other sediments samples studied here. Ganga River sediment dominates with Gram-negative, chemo-heterotrophic, and aerobic bacteria that chiefly belong to Proteobacteria, Acidobacteria, Chloroflexi, and Bacteroidota. The abundance of Nitrospira, Hydrogenophaga, Thauera, Vicinamibacteraceae, and Latescibacterota in the Ganga River sediment could be considered as the ecological indicators that find a significant role in the degradation of xenobiotic compounds. The PICRUSt-based analysis showed that ~ 35% of genes were involved in benzoate and aminobenzoate degradation where a significant portion of genes belong to nitrotoluene degradation (14%). Thus, the study uncovers a new perspective in the lineage of bacterial communities and their functional characterization of the Ganga River sediment.
Collapse
Affiliation(s)
- Ankita Srivastava
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow, India, 226025
| | - Digvijay Verma
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow, India, 226025.
| |
Collapse
|
9
|
Tetrahydroisoquinoline N-methyltransferase from Methylotenera Is an Essential Enzyme for the Biodegradation of Berberine in Soil Water. Molecules 2022; 27:molecules27175442. [PMID: 36080208 PMCID: PMC9457531 DOI: 10.3390/molecules27175442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Berberine (BBR), a Chinese herbal medicine used in intestinal infection, has been applied as a botanical pesticide in the prevention of fungal disease in recent years. However, its degradation in the environment remains poorly understood. Here, we investigated BBR’s degradation in soil water from different sources accompanied by its effect on bacterial diversity. Our results indicated that BBR was only degraded in soil water, while it was stable in tap water, river water and aquaculture water. Bacterial amplicon results of these samples suggested that the degradation of BBR was closely related to the enrichment of Methylotenera. To reveal this special relationship, we used bioinformatics tools to make alignments between the whole genome of Methylotenera and the pathway of BBR’s degradation. An ortholog of Tetrahydroisoquinoline N-methyltransferase from plant was discovered only in Methylotenera that catalyzed a crucial step in BBR’s degradation pathway. In summary, our work indicated that Methylotenera was an essential bacterial genus in the degradation of BBR in the environment because of its Tetrahydroisoquinoline N-methyltransferase. This study provided new insights into BBR’s degradation in the environment, laying foundations for its application as a botanical pesticide.
Collapse
|
10
|
Chen WT, Chien CC, Ho WS, Ou JH, Chen SC, Kao CM. Effects of treatment processes on AOC removal and changes of bacterial diversity in a water treatment plant. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 311:114853. [PMID: 35276566 DOI: 10.1016/j.jenvman.2022.114853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 02/27/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
The effectiveness of different treatment processes on assimilable organic carbon (AOC) removal and bacterial diversity variations was evaluated in a water treatment plant. The van der Kooij technique was applied for AOC analysis and responses of bacterial communities were characterized by the metagenomics assay. Results show that the AOC concentrations were about 93, 148, 43, 51, 37, and 38 μg acetate-C/L in effluents of raw water basin, preozonation, rapid sand filtration (RSF), ozonation, biofiltration [biological activated carbon (BAC) filtration], and chlorination (clear water), respectively. Increased AOC concentrations were observed after preozonation, ozonation, and chlorination units due to the production of biodegradable organic matters after the oxidation processes. Results indicate that the oxidation processes were the main causes of AOC formation, which resulted in significant increases in AOC concentrations (18-59% increment). The AOC removal efficiencies were 47, 28, and 60% in the RSF, biofiltration, and the whole system, respectively. RSF and biofiltration were responsible for the AOC treatment and both processes played key roles in AOC removal. Thus, both RSF and biofiltration processes would contribute to AOC treatment after oxidation. Sediments from the raw water basin and filter samples from RSF and BAC units were collected and analyzed for bacterial communities. Results from scanning electron microscope analysis indicate that bacterial colonization was observed in filter materials. This indicates that the surfaces of the filter materials were beneficial to bacterial growth and AOC removal via the adsorption and biodegradation mechanisms. Next generation sequencing analyses demonstrate that water treatment processes resulted in the changes of bacterial diversity and community profiles in filters of RSF and BAC. According to the findings of bacterial composition and interactions, the dominant bacterial phyla were Proteobacteria (41% in RSF and 56% in BAC) followed by Planctomycetes and Acidobacteria in RSF and BAC systems, which might affect the AOC biodegradation efficiency. Results would be useful in developing AOC treatment and management processes in water treatment plants.
Collapse
Affiliation(s)
- W T Chen
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - C C Chien
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Chung-Li City, Taoyuan, Taiwan
| | - W S Ho
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - J H Ou
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - S C Chen
- Department of Life Sciences, National Central University, Taoyuan, Taiwan.
| | - C M Kao
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| |
Collapse
|
11
|
Rojo F. A new global regulator that facilitates the co-metabolization of polyaromatic hydrocarbons and other nutrients in Novosphingobium. Environ Microbiol 2021; 23:2875-2877. [PMID: 33887792 DOI: 10.1111/1462-2920.15527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 04/12/2021] [Indexed: 11/26/2022]
Abstract
In an article in this issue of Environmental Microbiology, Segura et al. report the identification of an unusual global regulator in Novosphingobium sp. HR1a, a metabolically versatile bacterial strain isolated from the rhizosphere able to assimilate a wide range of polyaromatic hydrocarbons (PAHs). Physiological and transcriptomic assays suggest that this regulator, named PahT, activates the expression of genes involved in the assimilation of PAHs, and of compounds such as sugars and acetate, facilitating their co-metabolism. This effect is the opposite to the carbon catabolite repression strategy that allows metabolically versatile bacteria to favour the use of some compounds over others. PahT was found to stimulate sugar uptake and metabolization in the presence and absence of PAHs and to facilitate microaerobic respiration if PAHs were present. A survey of the genomes of several Sphingomonadaceae members showed that PahT is not present in all strains of this family, but that it is strongly associated with PAH degradation genes. Since not all PAH-degrading strains contain pahT, it seems that PahT is not essential for PAH degradation but likely provides a selective advantage to PAH-degrading strains in environments such as the rhizosphere where other potential carbon sources are available.
Collapse
Affiliation(s)
- Fernando Rojo
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Campus UAM, Cantoblanco, Madrid, 28049, Spain
| |
Collapse
|