1
|
Vargová M, Zigo F, Výrostková J, Farkašová Z, Rehan IF. Biofilm-Producing Ability of Staphylococcus aureus Obtained from Surfaces and Milk of Mastitic Cows. Vet Sci 2023; 10:386. [PMID: 37368772 DOI: 10.3390/vetsci10060386] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
This study was conducted to evaluate the incidence of mastitis in 153 dairy cows and to evaluate the kinetics of adhesion of isolates obtained from surfaces and milk in comparison with the reference strain (RS), CCM 4223. The surfaces of the floor, teat cup, and cow restraints were aseptically swabbed in three replicates (n = 27). Of the total number of infected cows (n = 43), 11 samples were found to be positive for Staphylococcus aureus, 12 samples tested positive for non-aureus staphylococci, 6 samples tested positive for Streptococcus spp., and 11 samples tested positive for other bacteria (Escherichia coli, Pseudomonas spp.) or a mixed infection. The most represented pathogen in milk (11/43) and on surfaces (14/27) was S. aureus. The kinetics of adhesion of the reference strain and isolates of S. aureus on stainless steel surfaces were determined after 3, 6, 9, 12, 24, and 48 h, and 3, 6, 9, 12, and 15 days of incubation. All strains reached counts higher than 5 Log10 CFU/cm2 needed for biofilm formation, except RS (4.40 Log10 CFU/cm2). The isolates of S. aureus revealed a higher capability to form biofilm in comparison with RS during the first 3 h (p < 0.001). Thus, there is a significant difference between the occurrence of S. aureus on monitored surfaces-floor, teat cup, and cow restraints-and the frequency with which mastitis is caused by S. aureus (p < 0.05). This finding raises the possibility that if various surfaces are contaminated by S. aureus, it can result in the formation of biofilm, which is a significant virulence factor.
Collapse
Affiliation(s)
- Mária Vargová
- Department of the Environment, Veterinary Legislation and Economy, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181 Košice, Slovakia
| | - František Zigo
- Department of Animal Nutrition and Husbandry, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181 Košice, Slovakia
| | - Jana Výrostková
- Department of Food Hygiene, Technology, and Safety, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181 Košice, Slovakia
| | - Zuzana Farkašová
- Department of Animal Nutrition and Husbandry, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181 Košice, Slovakia
| | - Ibrahim F Rehan
- Department of Husbandry and Development of Animal Wealth, Faculty of Veterinary Medicine, Menoufia University, Shebin Alkom 32511, Egypt
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Yagotoyama 150, Tempaku-Ku, Nagoya-Shi 468-8503, Japan
| |
Collapse
|
2
|
Cheruvanachari P, Pattnaik S, Mishra M, Pragyandipta P, Pattnaik A, Naik PK. Deciphering the antibiofilm potential of 2-Phenylethyl methyl ether (PEME), a bioactive compound of Kewda essential oil against Staphylococcus aureus. Microb Pathog 2023; 179:106093. [PMID: 37004966 DOI: 10.1016/j.micpath.2023.106093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Opportunistic pathogenic bacteria and their pathogenicity linked with biofilm infections become a severe issue as they resist the actions of multiple antimicrobial drugs. Naturally derived drugs having antibiofilm properties are more effective than chemically synthesized drugs. The plant derived essential oils are a rich source of phytoconstituents with widespread pharmacological values. In the present investigation, a major phytoconstituent, 2-Phenyl Ethyl Methyl Ether (PEME) of Kewda essential oil extracted from the flowers of Pandanus odorifer was explored for its prospective antimicrobial and anti-biofilm properties against ESKAPE pathogenic bacterial strain, Staphylococcus aureus and MTCC 740. The minimum inhibitory concentration (MIC) of PEME was found to be 50 mM against the tested bacterial strains. A gradual decrease in biofilm production was observed when PEME was treated with the sub-MIC concentration. The reduction in biofilm formation was noticeable from qualitative assay i.e., Congo Red Agar Assay (CRA) and further quantified by crystal violet staining assay. The decline in exopolysaccharides production was quantified, with the highest inhibition against MTCC 740 with a decrease of 71.76 ± 4.56% compared to untreated control. From the microscopic analysis (light and microscopic fluorescence method), PEME exhibited inhibitory effect on biofilm formation on the polystyrene surface. The In silico studies stated that PEME could invariably bind to biofilm associated target proteins. Further, transcriptomic data analysis suggested the role of PEME in the down-regulation of specific genes, agrA, sarA, norA and mepR, which are critically associated with bacterial virulence, biofilm dynamics and drug resistance patterns in S. aureus. Further, qRT-PCR analysis validated the role of PEME on biofilm inhibition by relative downregulation of agrA, sarA, norA and mepR genes. Further, advanced in silico methodologies could be employed in future investigations to validate its candidature as promising anti-biofilm agent.
Collapse
|
3
|
To D, Kakar A, Kali G, Wibel R, Knoll P, Marx F, Bernkop-Schnürch A. Iminated aminoglycosides in self-emulsifying drug delivery systems: Dual approach to break down the microbial defense. J Colloid Interface Sci 2023; 630:164-178. [PMID: 36327720 DOI: 10.1016/j.jcis.2022.10.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/21/2022] [Accepted: 10/16/2022] [Indexed: 11/07/2022]
Abstract
HYPOTHESIS Aminoglycosides are well known, cationic antimicrobial drugs. However, biofilm-based antibiotic resistance significantly limits their efficacy. Masking the polycationic character of these drugs, followed by incorporation into self-emulsifying drug delivery systems (SEDDS) can improve biofilm eradication. EXPERIMENTS Imine derivatives were synthesized via coupling with trans-cinnamaldehyde and characterized regarding degree of substitution, logP, cytotoxicity and antimicrobial efficacy on the opportunistic human pathogens Escherichia coli, Staphylococcus aureus and Candida albicans. Imines were loaded into newly developed SEDDS formulations and the antimicrobial efficacy was assessed on these pathogens in planktonic state and after biofilm formation. FINDINGS Successful synthesis of imine derivatives with almost entirely masked amine groups was confirmed by NMR, FT-IR, TLC and MS. Imines exhibited a marked elevation in logP value of 8 units for kanamycin and 7.7 units for tobramycin. They showed low toxicity profiles while fully preserving antimicrobial efficacy on all tested pathogens. Incorporation into SEDDS resulted in nanoemulsions, which exhibited equal antimicrobial efficacy on the model germs compared to the corresponding aminoglycosides. Moreover, the biofilm eradication assay revealed superior anti-biofilm properties of the nanoemulsions. Native aminoglycosides were largely prone to reduced microbial susceptibility due to biofilm formation, while the combination of SEDDS with iminated aminoglycosides provided overall enhanced biofilm eradication.
Collapse
Affiliation(s)
- Dennis To
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Anant Kakar
- Biocenter, Institute of Molecular Biology, Medical University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Gergely Kali
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Richard Wibel
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Patrick Knoll
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Florentine Marx
- Biocenter, Institute of Molecular Biology, Medical University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
4
|
GOMES NR, PARREIRAS PM, MENEZES CC, FALCO TS, VIEIRA MC, PASSOS MC, CUNHA LR. Impact of ultrasound treatment on viability of Staphylococcus aureus and the human milk antioxidant activity. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.40220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
5
|
Kim G, Xu YJ, Farha AK, Sui ZQ, Corke H. Bactericidal and antibiofilm properties of Rumex japonicus Houtt. on multidrug-resistant Staphylococcus aureus isolated from milk. J Dairy Sci 2021; 105:2011-2024. [PMID: 34955261 DOI: 10.3168/jds.2021-21221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/12/2021] [Indexed: 01/15/2023]
Abstract
Multidrug-resistant (MDR) Staphylococcus aureus and its biofilm formation have been challenging to control in milk and dairy industries. Biofilms formed by Staph. aureus may result in the failure of antibacterial agents and disinfectants to penetrate the biofilm in an attempt to control contamination. Novel natural antibacterial agents are required to combat MDR bacteria and biofilms. In this study, we evaluated the bactericidal, antibiofilm, and antimotility effects of Rumex japonicus Houtt. (RJH) extract on MDR Staph. aureus isolated from milk. The RJH extract exhibited good antibacterial activity against MDR strains with minimum inhibitory concentrations (MIC) ranging from 0.78 to 6.25 mg/mL and minimum bactericidal concentrations ranging from 3.125 to 12.5 mg/mL. The extract showed strong inhibition of biofilm formation (81.9%) at sub-MIC value and eradication of biofilm at higher concentrations. The motility of Staph. aureus was effectively blocked by the extract. Major compounds emodin, chrysophanol, and physcion were identified in RJH extract using HPLC-linear trap quadrupole (LTQ)/Orbitrap-mass spectrometry. The extract was nontoxic to human epithelial cell lines such as Caco-2 and HT-29 cell lines at concentrations ranging from 0.1 to 0.5 mg/mL, and from 0.1 to 0.75 mg/mL, respectively. These findings suggest that RJH extract could be an alternative to synthetic preservatives in milk and dairy products.
Collapse
Affiliation(s)
- G Kim
- Department of Food Science and Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Y J Xu
- Department of Food Science and Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - A K Farha
- Department of Food Science and Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Z Q Sui
- Department of Food Science and Technology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - H Corke
- Biotechnology and Food Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China; Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
6
|
Schulz P, Rizvi SS. Hydrolysis of Lactose in Milk: Current Status and Future Products. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1983590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Patrick Schulz
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Syed S.H. Rizvi
- Department of Food Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
7
|
Balaban M, Koc C, Sar T, Akbas MY. Antibiofilm effects of pomegranate peel extracts against
B. cereus
,
B. subtilis
, and
E. faecalis. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Merve Balaban
- Department of Molecular Biology and Genetics Gebze Technical University Gebze‐Kocaeli 41400 Turkey
- Science and Technology Application and Research Center Siirt University Siirt 56100 Turkey
| | - Cansel Koc
- Department of Molecular Biology and Genetics Gebze Technical University Gebze‐Kocaeli 41400 Turkey
| | - Taner Sar
- Swedish Centre for Resource Recovery University of Borås Borås 501 90 Sweden
| | - Meltem Yesilcimen Akbas
- Department of Molecular Biology and Genetics Gebze Technical University Gebze‐Kocaeli 41400 Turkey
| |
Collapse
|
8
|
Guo N, Bai X, Shen Y, Zhang T. Target-based screening for natural products against Staphylococcus aureus biofilms. Crit Rev Food Sci Nutr 2021; 63:2216-2230. [PMID: 34491124 DOI: 10.1080/10408398.2021.1972280] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
As a notorious food-borne pathogen, Staphylococcus aureus can readily cause diseases in humans via contaminated food. Biofilm formation on various surfaces can increase the capacity of viable S. aureus cells for self-protection due to the stubborn structure of the biofilm matrix. Increased disease risk and economic losses caused by biofilm contamination in the food industry necessitate the urgent development of effective strategies for the inhibition and removal of S. aureus biofilms. Natural products have been extensively used as important sources of "eco-friendly" antibiofilm agents to avoid the side effects of conventional strategies on human health and the environment. This review discusses biofilm formation of S. aureus in food industries and focuses on providing an overview of potential promising target-oriented natural products and their mechanisms of S. aureus biofilm inhibition or removal. Hoping to provide valuable information of attractive research targets or potential undeveloped targets to screen potent natural anti-biofilm agents in food industries.
Collapse
Affiliation(s)
- Na Guo
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Xue Bai
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Yong Shen
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun, China
| |
Collapse
|
9
|
Silva JR, Mello GS, Moraes TP, Moreira LM, Gonçalves TG, Timm CD. Phenotypic characterization of
Staphylococcus aureus
isolated from foods of animal origin and other related sources. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Julia Rosin Silva
- Laboratório de Inspeção de Produtos de Origem Animal Departamento de Veterinária Preventiva Universidade Federal de Pelotas (UFPel) Pelotas Rio Grande do Sul Brasil
| | - Greyce Silveira Mello
- Laboratório de Inspeção de Produtos de Origem Animal Departamento de Veterinária Preventiva Universidade Federal de Pelotas (UFPel) Pelotas Rio Grande do Sul Brasil
| | - Thamíris Pereira Moraes
- Laboratório de Inspeção de Produtos de Origem Animal Departamento de Veterinária Preventiva Universidade Federal de Pelotas (UFPel) Pelotas Rio Grande do Sul Brasil
| | - Lauren Machado Moreira
- Laboratório de Inspeção de Produtos de Origem Animal Departamento de Veterinária Preventiva Universidade Federal de Pelotas (UFPel) Pelotas Rio Grande do Sul Brasil
| | - Thaís Gonçalves Gonçalves
- Laboratório de Inspeção de Produtos de Origem Animal Departamento de Veterinária Preventiva Universidade Federal de Pelotas (UFPel) Pelotas Rio Grande do Sul Brasil
| | - Cláudio Dias Timm
- Laboratório de Inspeção de Produtos de Origem Animal Departamento de Veterinária Preventiva Universidade Federal de Pelotas (UFPel) Pelotas Rio Grande do Sul Brasil
| |
Collapse
|
10
|
Verma P, Anand S. Antimicrobial activity as a potential factor influencing the predominance of Bacillus subtilis within the constitutive microflora of a whey reverse osmosis membrane biofilm. J Dairy Sci 2020; 103:9992-10000. [PMID: 32921470 DOI: 10.3168/jds.2020-18576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 06/30/2020] [Indexed: 11/19/2022]
Abstract
Current cleaning and sanitation protocols may not be adequately effective in cleaning separation membranes and can result in the formation of resilient multispecies biofilms. The matured biofilms may result in a bacterial predominance with resilient strains on membranes with a prolonged use. In our previous study, we isolated organisms such as Bacillus subtilis, Bacillus licheniformis, Exiguobacterium aurantiacum, and Acinetobacter radioresistens from an 18-mo-old reverse osmosis membrane. The competitive exclusion studies revealed the predominance of B. subtilis within the membrane biofilm microflora. This study investigated the antimicrobial activity of the B. subtilis isolate as a potential cause of its predominance. The culture isolate was propagated in tryptic soy broth at 37°C, and microfiltered to prepare cell-free extracts (CFE) at 8-, 10-, 12-, 14-, 16-, and 18-h intervals. The CFE were freeze-dried and suspended in minimum quantities of HPLC-grade water to prepare concentrated solutions. The antimicrobial activities of CFE were tested using the agar-well assay against the biofilm constitutive microflora. The experiments were conducted in triplicates and means were compared for significant differences using a general linear mixed model procedure. The results indicated the highest antimicrobial activity of 12-h CFE of B. subtilis against other constitutive microflora such as Exiguobacterium sp., E. auranticum, and A. radioresistens, with average inhibition zone sizes of 16.5 ± 0.00, 16.25 ± 0.66, and 20.6 ± 0.00 mm, respectively. Upon treatment with proteinase K, the CFE completely lost its antimicrobial activity, establishing it to be a proteinaceous compound. The AA profiling revealed the total crude protein in CFE to be 51% (wt/wt), with its major constituent as glutamic acid (11.30% wt/wt). The freeze-dried CFE was thermally stable on exposure to the common temperature used for sanitizer applications (23.8°C for 5 and 10 min) and over a pH range of 3.0 to 6.3. The study helped us understand the role of the antimicrobial compound produced by B. subtilis as a potential cause of its predominance within the biofilm constitutive microflora.
Collapse
Affiliation(s)
- Pratishtha Verma
- Midwest Dairy Foods Research Center, Dairy and Food Science Department, South Dakota State University, Brookings 57007
| | - Sanjeev Anand
- Midwest Dairy Foods Research Center, Dairy and Food Science Department, South Dakota State University, Brookings 57007.
| |
Collapse
|
11
|
Terpinen-4-ol as an Antibacterial and Antibiofilm Agent against Staphylococcus aureus. Int J Mol Sci 2020; 21:ijms21124531. [PMID: 32630600 PMCID: PMC7350221 DOI: 10.3390/ijms21124531] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 11/16/2022] Open
Abstract
Staphylococcus aureus is able to rapidly develop mechanisms of resistance to various drugs and to form strong biofilms, which makes it necessary to develop new antibacterial drugs. The essential oil of Melaleuca alternifolia is used as an antibacterial, a property believed to be mainly due to the presence of terpinen-4-ol. Based on this, the objective of this study was to evaluate the antibacterial and antibiofilm potential of terpinen-4-ol against S. aureus. The Minimal Inhibitory and Minimal Bactericidal Concentrations (MIC and MBC) of terpinen-4-ol were determined, and the effect of its combination with antibacterial drugs as well as its activity against S. aureus biofilms were evaluated. In addition, an in silico analysis of its pharmacokinetic parameters and a molecular docking analysis were performed. Terpinen-4-ol presented a MIC of 0.25% (v/v) and an MBC of 0.5% (v/v) (bactericidal action); its association with antibacterials was also effective. Terpinen-4-ol has good antibiofilm activity, and the in silico results indicated adequate absorption and distribution of the molecule in vivo. Molecular docking indicated that penicillin-binding protein 2a is a possible target of terpinen-4-ol in S. aureus. This work highlights the good potential of terpinen-4-ol as an antibacterial product and provides support for future pharmacological studies of this molecule, aiming at its therapeutic application.
Collapse
|
12
|
Antibacterial activity and mechanism of lactobionic acid against Pseudomonas fluorescens and Methicillin-resistant Staphylococcus aureus and its application on whole milk. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106876] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
|
14
|
Latorre AA, Pachá PA, González-Rocha G, San Martín I, Quezada-Aguiluz M, Aguayo-Reyes A, Bello-Toledo H, Oliva R, Estay A, Pugin J, Muñoz MA. On-Farm Surfaces in Contact with Milk: The Role of Staphylococcus aureus-Containing Biofilms for Udder Health and Milk Quality. Foodborne Pathog Dis 2019; 17:44-51. [PMID: 31532261 DOI: 10.1089/fpd.2019.2704] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Staphylococcus aureus is a Gram-positive bacterium that causes intramammary infections and bulk tank milk (BTM) contamination in dairy operations around the world in spite of on-farm application of preventive measures. The study was conducted on a 30-cow dairy farm in the Ñuble Region of Chile. For BTM culture and somatic cell count (SCC) analysis, three consecutive BTM samples were collected. Samples for bacterial culture (n = 16) were collected from macroscopic adherence on previously washed, sanitized, and dry milking equipment surfaces in direct contact with milk during milking or cooling. A total of 48 S. aureus isolates from BTM, milking equipment, and cows' quarters with intramammary infections were analyzed by pulsed-field gel electrophoresis (PFGE). Selected milking equipment pieces were removed for biofilm visualization using scanning electron microscopy (SEM). S. aureus was isolated from all three BTM samples; the average SCC for the three BTM samples was 1,429,333 cells/mL. Fourteen of the 16 samples of milking equipment (87.5%) were culture positive for S. aureus. Biofilms were visualized by SEM in all four removed milking equipment pieces. Microorganisms observed by SEM in those biofilms were mainly coccus-shaped bacteria, and microbiological culture of these biofilms yielded viable S. aureus isolates in all samples. All pulsotypes observed among S. aureus isolates from BTM were indistinguishable from those in milking equipment surfaces. All PFGE pulsotypes observed among S. aureus isolates from biofilms on rubber liners were indistinguishable from isolates from intramammary infections in cows. Our findings suggest that milking equipment films may act as source of S. aureus contamination for BTM and cows during milking, thus compromising the microbiological quality of milk used for manufacturing dairy products.
Collapse
Affiliation(s)
| | | | - Gerardo González-Rocha
- Laboratorio de Investigación en Agentes Antibacterianos, Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.,Millennium Nucleus on Interdisciplinary Approach to Antimicrobial Resistance, MICROB-R, Chile
| | - Iván San Martín
- Laboratorio de Investigación en Agentes Antibacterianos, Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Mario Quezada-Aguiluz
- Laboratorio de Investigación en Agentes Antibacterianos, Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.,Departmento de Medicina Interna, Facultad de Medicina, Universidad de Concepción, Concepción, Chile
| | - Alejandro Aguayo-Reyes
- Departmento de Medicina Interna, Facultad de Medicina, Universidad de Concepción, Concepción, Chile
| | - Helia Bello-Toledo
- Laboratorio de Investigación en Agentes Antibacterianos, Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Ricardo Oliva
- Centro de Espectroscopía y Microscopía Electrónica, Universidad de Concepción, Concepción, Chile
| | - Alexis Estay
- Centro de Espectroscopía y Microscopía Electrónica, Universidad de Concepción, Concepción, Chile
| | - Julio Pugin
- Centro de Espectroscopía y Microscopía Electrónica, Universidad de Concepción, Concepción, Chile
| | | |
Collapse
|