1
|
Alasalvar C, Huang G, Bolling BW, Jantip PA, Pegg RB, Wong XK, Chang SK, Pelvan E, de Camargo AC, Mandalari G, Hossain A, Shahidi F. Upcycling commercial nut byproducts for food, nutraceutical, and pharmaceutical applications: A comprehensive review. Food Chem 2025; 467:142222. [PMID: 39626555 DOI: 10.1016/j.foodchem.2024.142222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/07/2024] [Accepted: 11/21/2024] [Indexed: 01/15/2025]
Abstract
This article presents a comprehensive overview of upcycling commercial nut byproducts (such as Brazil nut, cashew, hazelnut, macadamia, peanut (also known as a legume), pecan, pine nut, pistachio, and walnut) for food, nutraceutical, and pharmaceutical applications. Upcycling nut byproducts, namely husk/hull, hard shell, brown skin, defatted flour/meal/cake, pine cone, cashew nut shell liquid, cashew apple, walnut septum, and dreg/okara, has great potential, not only to reduce/minimise waste, but also to fit within the circular economy concept. Each byproduct has its own unique functional properties, which can bring significant value. These byproducts can be used as value-added ingredients to promote better health and well-being, due to their rich sources of diverse bioactive components/phytochemicals, polysaccharides, fibre, lignin, prebiotics, oils, proteins, bioactive peptides, minerals, and vitamins, among other components. This comprehensive review provides a basis for future research and development of product applications for nut byproducts. More studies are needed on novel product development to valorise nut byproducts.
Collapse
Affiliation(s)
| | | | - Bradley W Bolling
- Department of Food Science, University of Wisconsin-Madison, Madison, WI, USA
| | - Pornpat Aom Jantip
- Department of Food Science, University of Wisconsin-Madison, Madison, WI, USA
| | - Ronald B Pegg
- Department of Food Science & Technology, University of Georgia, Athens, GA, USA
| | - Xi Khai Wong
- School of Science, Monash University (Malaysia Campus), Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| | - Sui Kiat Chang
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia; Centre for Biomedical and Nutrition Research, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia
| | - Ebru Pelvan
- Life Sciences, TÜBİTAK Marmara Research Center, Gebze-Kocaeli, Türkiye
| | | | - Giuseppina Mandalari
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Abul Hossain
- Department of Biochemistry, Memorial University of Newfoundland, St. John 's, NL, Canada
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John 's, NL, Canada
| |
Collapse
|
2
|
Roudbari M, Barzegar M, Sahari MA, Gavlighi HA. Formulation of functional gummy candies containing natural antioxidants and stevia. Heliyon 2024; 10:e31581. [PMID: 38841479 PMCID: PMC11152653 DOI: 10.1016/j.heliyon.2024.e31581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/11/2024] [Accepted: 05/16/2024] [Indexed: 06/07/2024] Open
Abstract
The research aimed to enhance the nutritional value of gummy candies by incorporating pistachio green hull extract (PGHE), stevia, and starch into the formulations. The gummy candies formulations were optimized using PGHE (1-5 %), stevia (0.013-0.040 %) and gelatin-to-starch ratio (9:1, 2:8, and 3:7) by response surface methodology (RSM), central composite design (CCD), with six center points. The physicochemical and textural properties of the gummy candies were assessed. Three optimal formulations were determined, which were preferred by the majority of panelists. One of them was selected for testing total phenolic content (680.31 ± 0.6 mg GAE/100g gummy candy), antioxidant activity (IC50 = 277 μg/mL), FTIR analysis, morphology examination, and storage stability. This study resulted in the development of gummy candies that not only offer a reduced-sugar product (50 %; equal to 12 % of sucrose) with high antioxidant activity but also eliminate the need for artificial flavors and synthetic colorants in the formulation.
Collapse
Affiliation(s)
- Mozhgan Roudbari
- Department of Food Science and Technology, Faculty of Agriculture, Tarbiat Modares University, P.O. Box, 4155-336, Tehran, Iran
| | - Mohsen Barzegar
- Department of Food Science and Technology, Faculty of Agriculture, Tarbiat Modares University, P.O. Box, 4155-336, Tehran, Iran
| | - Mohammad Ali Sahari
- Department of Food Science and Technology, Faculty of Agriculture, Tarbiat Modares University, P.O. Box, 4155-336, Tehran, Iran
| | - Hassan Ahmadi Gavlighi
- Department of Food Science and Technology, Faculty of Agriculture, Tarbiat Modares University, P.O. Box, 4155-336, Tehran, Iran
| |
Collapse
|
3
|
Wen C, Lin X, Tang J, Fan M, Liu G, Zhang J, Xu X. New perspective on protein-based microcapsules as delivery vehicles for sensitive substances: A review. Int J Biol Macromol 2024; 270:132449. [PMID: 38777020 DOI: 10.1016/j.ijbiomac.2024.132449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
Sensitive substances have attracted wide attention due to their rich functional activities, such as antibiosis activities, antioxidant activities and prevent disease, etc. However, the low stability of sensitive substances limits their bioavailability and functional activities. Protein-based microcapsules can encapsulate sensitive substances to improve their adverse properties due to their good stability, strong emulsifying ability and wide source. Therefore, it is necessary to fully elaborate and summarize protein-based microcapsules to maximize their potential benefits in nutritional interventions. The focus of this review is to highlight the classification of protein-based microcapsules. In addition, the principles, advantages and disadvantages of preparation methods for protein-based microcapsules are summarized. Some novel preparation methods for protein-based microcapsules are also emphasized. Moreover, the mechanism of protein-based microcapsules that release sensitive substances in vitro is elucidated and summarized. Furthermore, the applications of protein-based microcapsules are outlined. Protein-based microcapsules can effectively encapsulate sensitive substances, which improve their bioavailability, and provide protective effects during storage and gastrointestinal digestion. In addition, microcapsules can improve the sensory quality of food and enhance its stability. The performance of protein-based microcapsules for delivering sensitive substances is influenced by factors such as protein type, the ratio between protein ratio and the other wall material, the preparation process, etc. Future research should focus on the new composite protein-based microcapsule delivery system, which can be applied to in vivo research and have synergistic effects and precise nutritional functions. In summary, protein-based microcapsules have broader research prospects in the functional foods and nutrition field.
Collapse
Affiliation(s)
- Chaoting Wen
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Xinying Lin
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Jialuo Tang
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Meidi Fan
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Guoyan Liu
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Jixian Zhang
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China.
| | - Xin Xu
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China.
| |
Collapse
|
4
|
Wang Z, Zhou D, Liu D, Zhu B. Food-grade encapsulated polyphenols: recent advances as novel additives in foodstuffs. Crit Rev Food Sci Nutr 2023; 63:11545-11560. [PMID: 35776082 DOI: 10.1080/10408398.2022.2094338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
A growing inclination among consumers toward the consumption of natural products has propelled the usage of natural compounds as novel additives. Polyphenols are among the most popular candidates of natural food additives with multiple functionalities and bioactivities but are limited by instability. In this regard, a series of food-grade encapsulated polyphenols has been tailored for incorporating into food formulations as novel additives, which could better satisfy the complicated industry processing. This review seeks to present the most recent discussions regarding their application status in diverse foodstuffs as novel additives, involving functionalities, action mechanisms, and relevant encapsulation technologies. The scientific findings confirm that such novel additives show positive effects on physicochemical, sensory, and nutritional properties as well as the shelf life of diverse food matrices. However, poor heat resistance is still the major defect that restricts their application in thermal processes. Future research should focus on the evaluation of the compatibility and applicability of encapsulated polyphenols in real food processes as well as track and deepen their molecular action mechanisms in the context of complex foodstuffs. Innovation of existing encapsulation technologies should also be concerned in the future to bridge the gap between lab and scale-up production.
Collapse
Affiliation(s)
- Zonghan Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Hangzhou, Zhejiang, China
- National Engineering Research Center of Seafood, Dalian, China
| | - Dayong Zhou
- National Engineering Research Center of Seafood, Dalian, China
- College of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Hangzhou, Zhejiang, China
- Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang University, Hangzhou, China
| | - Beiwei Zhu
- National Engineering Research Center of Seafood, Dalian, China
- College of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
5
|
Çam G, Akın N, Konak Göktepe Ç, Demirci T. Pea (Pisum sativum L.) pod powder as a potential enhancer of probiotic Enterococcus faecium M74 in ice cream and its physicochemical, structural, and sensory effects. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3184-3193. [PMID: 36240011 DOI: 10.1002/jsfa.12276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/28/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND In this study, pea (Pisum sativum L.) pod powder (PPP) was incorporated (1% and 3% w/w) into a probiotic ice cream formulation containing Enterococcus faecium M74 to investigate the potential effect of PPP on the probiotic survivability in the ice cream throughout 60 days of frozen storage. Moreover, the produced symbiotic ice creams were evaluated for their physiochemical properties, stability, and sensory acceptability. RESULTS Incorporation of PPP into ice cream caused significantly (P < 0.05) increased protein and ash content and lower pH values. Besides that, the addition of PPP resulted in ice creams with higher hardness and lower overrun. A significant diminishing was observed in the melting rates of the ice creams as the percentage of PPP increased and storage time progressed. Ice cream with PPP presented lower lightness and higher greenness and yellowness compared with control. All ice creams had viable counts of E. faecium M74 of ≥6 log cfu g-1 during storage and provided the number of viable cells that the probiotic product should contain. On day 60, the viability of E. faecium M74 in ice cream containing 1% PPP (7.64 ± 0.02) was higher than the control (7.28 ± 0.00). Sensory analyses revealed that there was no statistical difference in ice cream with 1% PPP and the control without PPP in terms of general acceptability. CONCLUSION These results suggest that pea pods, which is a waste product of the pea industry and obtained at zero cost, could be used as a potential prebiotic and an agent to improve technological properties of dairy products. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Gizem Çam
- Department of Food Engineering, Faculty of Agriculture, Selcuk University, Konya, Turkey
| | - Nihat Akın
- Department of Food Engineering, Faculty of Agriculture, Selcuk University, Konya, Turkey
| | - Çiğdem Konak Göktepe
- Department of Food Engineering, Faculty of Agriculture, Selcuk University, Konya, Turkey
| | - Talha Demirci
- Department of Food Engineering, Faculty of Agriculture, Selcuk University, Konya, Turkey
| |
Collapse
|
6
|
ARSLAN A, SAGDIC O, KARASU S, TEKIN-CAKMAK ZH. The effect of the use of salep powder obtained from different wild orchid species in Turkey on the rheological, thermal, and sensory properties of ice cream. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.103822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Aysen ARSLAN
- Istinye University, Turkey; Yıldız Technical University, Turkey
| | | | | | | |
Collapse
|
7
|
Mohammed NK, Badrul Khair MF, Ahmad NH, Meor Hussin AS. Ice cream as functional food: A review of health‐promoting ingredients in the frozen dairy products. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | - Nurul Hawa Ahmad
- Faculty of Food Science and Technology Universiti Putra Malaysia Serdang Selangor Malaysia
- Halal Products Research Institute Universiti Putra Malaysia Serdang Malaysia
| | - Anis Shobirin Meor Hussin
- Faculty of Food Science and Technology Universiti Putra Malaysia Serdang Selangor Malaysia
- Halal Products Research Institute Universiti Putra Malaysia Serdang Malaysia
| |
Collapse
|
8
|
Bodbodak S, Nejatian M, Ghandehari Yazdi AP, Kamali Rousta L, Rafiee Z, Jalali-Jivan M, Kharazmi MS, Jafari SM. Improving the thermal stability of natural bioactive ingredients via encapsulation technology. Crit Rev Food Sci Nutr 2022; 64:2824-2846. [PMID: 36178297 DOI: 10.1080/10408398.2022.2127145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Bioactive compounds (bioactives) such as phenolic acids, coumarins, flavonoids, lignans and carotenoids have a marked improvement effect on human health by acting on body tissues or cells. Nowadays, with increasing levels of knowledge, consumers prefer foods that can provide bioactives beside the necessary nutrients (e.g., vitamins, essential fatty acids and minerals). However, an important barrier for incorporating bioactives into foods is their low thermal stability. Nevertheless, thermal processing is widely used by the food industries to achieve food safety and desired texture. The aim of this work is to give an overview of encapsulation technology to improve thermal stability of bioactives incorporated into different food products. Almost all thermal analysis and non-thermal methods in the literature suggest that incorporation of bioactives into different walls can effectively improve the thermal stability of bioactives. The level of such thermal enhancement depends on the strength of the bioactive interaction and wall molecules. Furthermore, contradictory results have been reported in relation to the effect of encapsulation technique using the same wall on thermal stability of bioactives. To date, the potential to increase the thermal resistance of various bioactives by gums, carbohydrates, and proteins have been extensively studied. However, further studies on the comparison of walls and encapsulation methods to form thermally stable carriers seem to be needed. In this regard, the same nature of bioactives and the specific protocol in the report of study results should be considered to compare the data and select the optimum conditions of encapsulation to achieve maximum thermal stability.
Collapse
Affiliation(s)
- Samad Bodbodak
- Department of Food Science and Technology, Ahar Faculty of Agriculture and Natural Resources, University of Tabriz, Tabriz, Iran
| | - Mohammad Nejatian
- Department of Nutrition Science and Food Hygiene, Faculty of Health, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Leila Kamali Rousta
- Department of Food Research and Development, Zar Research and Industrial Development Group, Alborz, Iran
| | - Zahra Rafiee
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
| | - Mehdi Jalali-Jivan
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | | | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Ourense, Spain
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
9
|
McDowell TK, Lowe J, McSweeney MB. Acceptability of thickened and protein enhanced ice cream for use in long term care facilities. J Texture Stud 2022; 53:647-653. [DOI: 10.1111/jtxs.12712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Taylor K. McDowell
- School of Nutrition and Dietetics Acadia University Wolfville Nova Scotia Canada
| | - Judith Lowe
- School of Nutrition and Dietetics Acadia University Wolfville Nova Scotia Canada
| | - Matthew B. McSweeney
- School of Nutrition and Dietetics Acadia University Wolfville Nova Scotia Canada
| |
Collapse
|
10
|
Adinepour F, Pouramin S, Rashidinejad A, Jafari SM. Fortification/enrichment of milk and dairy products by encapsulated bioactive ingredients. Food Res Int 2022; 157:111212. [DOI: 10.1016/j.foodres.2022.111212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 12/20/2022]
|
11
|
Sabaghi M, Tavasoli S, Jamali SN, Katouzian I, Faridi Esfanjani A. The Pros and Cons of Incorporating Bioactive Compounds Within Food Networks and Food Contact Materials: a Review. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02837-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
12
|
CARVALHO CCD, BODINI RB, SOBRAL PJDA, OLIVEIRA ALD. Ice creams made from cow’s and goat’s milks with different fat concentrations: physical-chemical and sensory properties. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.79721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
CAMELO-SILVA C, BARROS ELDS, VERRUCK S, MARAN BM, CANELLA MHM, ESMERINO EA, SILVA R, PRUDENCIO ES. How ice cream manufactured with concentrated milk serves as a protective probiotic carrier? An in vitro gastrointestinal assay. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.28621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | | | | | | | | | - Erick Almeida ESMERINO
- Instituto Federal do Rio de Janeiro, Brasil; Universidade Federal Rural do Rio de Janeiro, Brasil
| | - Ramon SILVA
- Universidade Federal Rural do Rio de Janeiro, Brasil
| | | |
Collapse
|
14
|
BARROS ELDS, SILVA CC, CANELLA MHM, VERRUCK S, PRESTES AA, VARGAS MO, MARAN BM, ESMERINO EA, SILVA R, BALTHAZAR CF, CALADO VMDA, PRUDENCIO ES. Effect of replacement of milk by block freeze concentrated whey in physicochemical and rheological properties of ice cream. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.12521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
| | | | | | | | | | | | | | | | - Ramon SILVA
- Universidade Federal Rural de Rio do Janeiro, Brasil
| | | | | | | |
Collapse
|
15
|
HASAN GM, SAADI AM, JASSIM MA. Study the effect of replacing the skim milk used in making ice cream with some dried fruit. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.29620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Makouie S, Alizadeh M, Khosrowshahi A, Maleki O. Physicochemical, textural, and sensory characteristics of ice cream incorporated with
Nigella sativa
seed oil microcapsules. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Sina Makouie
- Department of Food Science and Technology Faculty of Agriculture University of Urmia Urmia Iran
| | - Mohammad Alizadeh
- Department of Food Science and Technology Faculty of Agriculture University of Urmia Urmia Iran
| | - Asghar Khosrowshahi
- Department of Food Science and Technology Faculty of Agriculture University of Urmia Urmia Iran
| | - Omid Maleki
- Department of Food Science and Technology Faculty of Agriculture University of Urmia Urmia Iran
| |
Collapse
|
17
|
Guler‐Akin MB, Avkan F, Akin MS. A novel functional reduced fat ice cream produced with pea protein isolate instead of milk powder. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15901] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mutlu B. Guler‐Akin
- Department of Food Engineering Harran University Engineering Faculty Şanlıurfa Turkey
| | - Firdevs Avkan
- Department of Food Engineering Gaziantep University Engineering Faculty Şanlıurfa Turkey
| | - Musa S. Akin
- Department of Food Engineering Harran University Engineering Faculty Şanlıurfa Turkey
| |
Collapse
|
18
|
İncegül Y, Çam M. Recovery of water-soluble materials after distillation of sage (Salvia officinalis L.) and the use of materials in the production of cake and ice cream. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00851-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
19
|
Gençdağ E, Görgüç A, Aylan F, Arı G, Bilgin Ö, Yılmaz FM. Techno‐functional effect of stevia extract substitution on dry fig–fortified ice cream. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15578] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Esra Gençdağ
- Food Engineering Department Aydın Adnan Menderes University Efeler Turkey
| | - Ahmet Görgüç
- Food Engineering Department Aydın Adnan Menderes University Efeler Turkey
| | - Funda Aylan
- Food Engineering Department Aydın Adnan Menderes University Efeler Turkey
| | - Gülşah Arı
- Food Engineering Department Aydın Adnan Menderes University Efeler Turkey
| | - Özlem Bilgin
- Food Engineering Department Aydın Adnan Menderes University Efeler Turkey
| | | |
Collapse
|
20
|
Kamali Rousta L, Ghandehari Yazdi AP, Amini M. Optimization of athletic pasta formulation by D-optimal mixture design. Food Sci Nutr 2020; 8:4546-4554. [PMID: 32884734 PMCID: PMC7455935 DOI: 10.1002/fsn3.1764] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 11/28/2022] Open
Abstract
The aim of this study was to produce an athletic pasta by the addition of various sources of protein. For this purpose, D-optimal mixture design used for optimization of formulation of athletic pasta and protein with considering the hardness as main parameter. Various properties of the optimized formulation were evaluated. The optimal formulation contained 45.41% of semolina, 24% of pea protein isolate (PPI), 18% of oat flour (OF), 5% of soy protein isolate (SPI), 5% whey protein isolate (WPI), and 2% of gluten (G). In optimized formulation, the protein content increased by more than 2.9 times compared to control with the hardness in the range (569 g). Hardness, optimal cooking time, and cooking loss of products increased as the level of protein increased. The optimal formulation had a higher sensory acceptance than the control, which is probably related to color changes. Due to the amount and biological value of the proteins used and the high acceptance obtained, this formulation can be suggested for athletes. The obtained results indicated that production of athletic pasta with high biological value by using mixture of SPI, PPI, WPI, OF, and G is possible.
Collapse
Affiliation(s)
- Leila Kamali Rousta
- Department of Food Research and DevelopmentZar Research and Industrial Development GroupAlborzIran
| | | | - Mahdi Amini
- Department of Food Research and DevelopmentZar Research and Industrial Development GroupAlborzIran
| |
Collapse
|