1
|
Mobasserfar R, Shiri A, Mofid V, Shahidi Noghabi M, Gharibzahedi SMT. Grape pomace high-methoxyl pectin: A new prebiotic stabilizer for low-fat synbiotic yogurt gels - Optimization and characterization. Int J Biol Macromol 2024; 282:137139. [PMID: 39488312 DOI: 10.1016/j.ijbiomac.2024.137139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/27/2024] [Accepted: 10/30/2024] [Indexed: 11/04/2024]
Abstract
High-methoxyl pectin (HMP, 72.5 % esterification degree and galacturonic acid content of 67.9 %) was extracted from grape pomace using a sequential ultrasound-microwave extraction. The extracted HMP was used to develop low-fat synbiotic set yogurts containing probiotic cells. Higher grape pomace pectin (GPP) concentrations (0.5-2 %) increased the probiotic bacterial population of Lactobacillus acidophilus LA-5 and Bifidobacterium bifidum BB-12. Higher cell viability was observed for L. acidophilus LA-5 compared to B. bifidum BB-12. A response surface optimization showed that the presence of 8.08 Log CFU mL-1L. acidophilus LA-5 and 1.88 % HMP experimentally resulted in the best probiotic viability (10.83 ± 0.11 Log CFU mL-1), overall acceptability (8.03 ± 0.06), and pH (4.25 ± 0.05) values. Compared to pectin-free probiotic yogurts, the optimal yogurt gels presented higher probiotic survivability, lower syneresis, and superior storage-dependent sensory attributes during 21 days of storage. However, a 14-day storage period was generally deemed suitable. The GPP-containing yogurt compared to the pectin-free sample exhibited higher colloidal stability with a larger particle size (433.8 nm vs. 272.5 nm) and lower zeta potential (-20.4 mV vs. -10.6 mV). Field emission-scanning electron (FE-SEM) and fluorescent (FLM) microscopy images confirmed a denser microstructure for GPP-enriched yogurts. The chemical interactions in the yogurt were not affected by enriching with GPP as investigated by FTIR, whereas the steady and dynamic rheological properties were significantly improved. GPP-enriched yogurt had a firmer gel structure with a larger linear region and lower G' compared to the control, indicating a semi-solid state. The GPP as a multi-functional prebiotic ingredient would be promising in designing healthier food products.
Collapse
Affiliation(s)
- Reza Mobasserfar
- Department of Grape Processing and Preservation, Research Institute of Grapes and Raisin, Malayer University, Malayer, Iran
| | - Azam Shiri
- Department of Grape Processing and Preservation, Research Institute of Grapes and Raisin, Malayer University, Malayer, Iran.
| | - Vahid Mofid
- Department of Food Science and Technology, Faculty of Nutrition Science & Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mostafa Shahidi Noghabi
- Department of Food Chemistry, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | | |
Collapse
|
2
|
Zahidah I, Bölek S, Terzioğlu ÖT, Adıgüzel S. Determination of the effects of novel paraprobiotic supplement of Lactobacillus plantarum on soy dairy-free beverage by physicochemical, antioxidant, sensory analyses, and Raman spectroscopy technique. J Food Sci 2024; 89:7189-7202. [PMID: 39349981 DOI: 10.1111/1750-3841.17365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/07/2024] [Accepted: 08/20/2024] [Indexed: 11/13/2024]
Abstract
Paraprobiotics are inactivated microbial cells that improve the health status of consumers when taken in adequate doses. They can be used instead of probiotics to eliminate disadvantages such as instability in production and storage difficulties. They can also be an alternative nutritional supplement for individuals sensitive to fermented products. In this study, a paraprobiotic supplement obtained from Lactobacillus plantarum was added to a soy dairy-free beverage at two concentrations of 108 and 109 CFU/mL. Then, total soluble solids, pH, color, titratable acidity, antioxidant activity, and total phenolic content of the beverage were measured, and sensory analysis was also performed. The results indicate that paraprobiotic addition significantly increased (p < 0.05) the antioxidant activity (75.44 ± 0.23 µmol TE/g sample), total phenolic content (834.32 ± 6.69 mg GAE/g), protein (3.28 ± 0.18%), fat (2.35 ± 0.06), and ash content (0.57 ± 0.08). These results were also validated using the Raman spectroscopy technique. The paraprobiotic-supplemented soy dairy-free beverage had the highest taste and overall impression values. Since the parabiotic addition did not affect the physicochemical properties of the beverage, manufacturers can develop commercial products containing paraprobiotics without altering the production process. PRACTICAL APPLICATION: Paraprobiotics provide an alternative for individuals sensitive to fermented products but still desire the health benefits of probiotics. They additionally provide practical and technological advantages, including a longer shelf life without a need for a cold chain to preserve the viability and stability of microorganisms. The results of this study can be a reference for the industry to develop food products containing paraprobiotics with increased antioxidative and nutritional properties.
Collapse
Affiliation(s)
- Inas Zahidah
- Department of Food Technology, Experimental Medicine Research and Application Center, University of Health Sciences, Istanbul, Turkey
| | - Sibel Bölek
- Department of Food Technology, Experimental Medicine Research and Application Center, University of Health Sciences, Istanbul, Turkey
| | - Özlem Türksoy Terzioğlu
- Department of Molecular Biology and Genetics, Experimental Medicine Research and Application Center, University of Health Sciences, Istanbul, Turkey
| | - Seyfure Adıgüzel
- Department of Molecular Biology and Genetics, Experimental Medicine Research and Application Center, University of Health Sciences, Istanbul, Turkey
| |
Collapse
|
3
|
Abdul Kalam Saleena L, Chang SK, Simarani K, Arunachalam KD, Thammakulkrajang R, How YH, Pui LP. A comprehensive review of Bifidobacterium spp: as a probiotic, application in the food and therapeutic, and forthcoming trends. Crit Rev Microbiol 2024; 50:581-597. [PMID: 37551693 DOI: 10.1080/1040841x.2023.2243617] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/03/2023] [Accepted: 07/26/2023] [Indexed: 08/09/2023]
Abstract
Recently, more consumers are interested in purchasing probiotic food and beverage products that may improve their immune health. The market for functional foods and beverages that include Bifidobacterium is expanding because of their potential uses in both food and therapeutic applications. However, maintaining Bifidobacterium's viability during food processing and storage remains a challenge. Microencapsulation technique has been explored to improve the viability of Bifidobacterium. Despite the technical, microbiological, and economic challenges, the market potential for immune-supporting functional foods and beverages is significant. Additionally, there is a shift toward postbiotics as a solution for product innovation, a promising postbiotic product that can be incorporated into various food and beverage formats is also introduced in this review. As consumers become more health-conscious, future developments in the functional food and beverage market discussed in this review could serve as a reference for researchers and industrialist.
Collapse
Affiliation(s)
| | - Sui Kiat Chang
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman Kampar, Perak, Malaysia
| | - Khanom Simarani
- Faculty of Science, Institute Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Kantha Deivi Arunachalam
- Directorate of Research, Center For Environmental Nuclear Research, SRM Institute of Science and Technology, SRM Nagar, Chennai, India
- Faculty of Sciences, Marwadi University, Rajkot, India
| | | | - Yu Hsuan How
- Department of Food Science and Nutrition, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Liew Phing Pui
- Department of Food Science and Nutrition, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Qiao Y, Yin B, Zhou W, Wang M, Chang Z, Zhou J, Yue M, Chen J, Liu F, Feng Z. Nutrient consumption patterns of Lactobacillus acidophilus. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5982-5990. [PMID: 38427028 DOI: 10.1002/jsfa.13424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/17/2024] [Accepted: 03/01/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND One of the greatest challenges in using Lactobacillus acidophilus as a probiotic is acid stress. The current research aimed to identify substances that help L. acidophilus resist acid stress; this was achieved through assessing its nutrient consumption patterns under various pH conditions. RESULTS The consumption rates of alanine, uracil, adenine, guanine, niacin, and manganese were consistently higher than 60% for L. acidophilus LA-5 cultured at pH 5.8, 4.9, and 4.4. The consumption rates of glutamic acid + glutamine and thiamine increased with decreasing pH and were higher than 60% at pH 4.9 and 4.4. The viable counts of L. acidophilus LA-5 were significantly increased under the corresponding acidic stress conditions (pH 4.9 and 4.4) through the appropriate addition of either alanine (3.37 and 2.81 mmol L-1), glutamic acid + glutamine (4.77 mmol L-1), guanine (0.13 and 0.17 mmol L-1), niacin (0.02 mmol L-1), thiamine (0.009 mmol L-1), or manganese (0.73 and 0.64 mmol L-1) (P < 0.05). The viable counts of L. acidophilus LA-5 cultured in a medium supplemented with combined nutritional factors was 1.02-1.03-fold of the counts observed in control medium under all acid conditions (P < 0.05). CONCLUSION Alanine, glutamic acid + glutamine, guanine, niacin, thiamine, and manganese can improve the growth of L. acidophilus LA-5 in an acidic environment in the present study. The results will contribute to optimizing strategies to enhance the acid resistance of L. acidophilus and expand its application in the fermentation industry. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yali Qiao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Boxing Yin
- Yangzhou Yangda Kangyuan Dairy Co., Ltd, Yangzhou, China
| | - Wei Zhou
- Yangzhou Yangda Kangyuan Dairy Co., Ltd, Yangzhou, China
| | - Mengrui Wang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Ziqing Chang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Junping Zhou
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Mingzhe Yue
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Junxia Chen
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Fei Liu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Zhen Feng
- Yangzhou Yangda Kangyuan Dairy Co., Ltd, Yangzhou, China
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, China
| |
Collapse
|
5
|
Kango N, Nath S. Prebiotics, Probiotics and Postbiotics: The Changing Paradigm of Functional Foods. J Diet Suppl 2024; 21:709-735. [PMID: 38881201 DOI: 10.1080/19390211.2024.2363199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
The rampant use of antibiotics has led to the emergence of multidrug resistance and is often coupled with gut dysbiosis. To circumvent the harmful impact of antibiotics, probiotics have emerged as an effective intervention. However, while the new probiotics are being added to the list, more recently, the nature and role of their counterparts, viz. prebiotics, postbiotics and parabiotics have also drawn considerable attention. As such, intricate relationships among these gut-biotics vis-à-vis their role in imparting health benefits is to be delineated in a holistic manner. Prebiotic dietary fibers are selectively fermented by probiotics and promote their colonization in the gut. The proliferation of probiotics leads to production of fermentation by-products (postbiotics) which affect the growth of enteropathogens by lowering the pH and producing inhibitory bacteriocins. After completing life-cycle, their dead remnants (parabiotics e.g. exopolysaccharides and cell wall glycoproteins) also inhibit adhesion and biofilm formation of pathogens on the gut epithelium. These beneficial effects are not just endemic to gut but a systemic response is witnessed at different gut-organ axes. Thus, to decipher the role of probiotics, it is imperative to unravel the interdependence between these components. This review elaborates on the recent advancements on various aspects of these gut-biotics and the mechanism of potential attributes like anti-oxidant, anti-inflammatory, anti-neoplastic, anti-lipidemic and anti-hyperglycemic benefits.
Collapse
Affiliation(s)
- Naveen Kango
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, India
| | - Suresh Nath
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, India
| |
Collapse
|
6
|
Abdi-Moghadam Z, Darroudi M, Mahmoudzadeh M, Mohtashami M, Jamal AM, Shamloo E, Rezaei Z. Functional yogurt, enriched and probiotic: A focus on human health. Clin Nutr ESPEN 2023; 57:575-586. [PMID: 37739708 DOI: 10.1016/j.clnesp.2023.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 07/15/2023] [Accepted: 08/03/2023] [Indexed: 09/24/2023]
Abstract
The food industry has always sought to produce products enriched with vitamins, probiotics, polyphenols, and other bioactive compounds to improve physiological function, enhance nutritional value, and provide health. These compounds are essential for human health, and their deficiency can lead to adverse effects. Therefore, food enrichment is an important strategy to improve the nutritional value and, in some cases, improve the quality of food. Recently, functional foods have been very popular around the world. Among food products, dairy products constitute a major part of people's diet, and due to the high consumption of dairy products, including yogurt, the enrichment of this product effectively reduces or prevents diseases associated with nutritional deficiencies. Most consumers generally accept yogurt due to its high nutritional value and low price. So, it can be considered a good candidate for enrichment with micronutrients and probiotics. In recent years, using functional foods to prevent various diseases has become a popular topic for research. In this study, the effect of fortified yogurt in preventing diseases and improving deficiencies has been investigated, and it has been proven that super healthy yogurt has a positive effect on human health.
Collapse
Affiliation(s)
- Zohreh Abdi-Moghadam
- Department of Food Science, Nutrition and Clinical Biochemistry, Faculty of Medicine, Determinants of Health Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Majid Darroudi
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Mahmoudzadeh
- Faculty of Nutrition and Food Science, Tabriz University of Medical Science, Tabriz, Iran
| | - Mahnaz Mohtashami
- Department of Biology, School of Basic Science, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Amir Mohammad Jamal
- Students Research Committee, Department of Nutrition, Food Science & Clinical Biochemistry, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Ehsan Shamloo
- Department of Food Science and Technology, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| | - Zeinab Rezaei
- University of Applied Science and Technology, Center of Cheshme noshan khorasan (Alis).
| |
Collapse
|
7
|
Moll P, Salminen H, Stadtmüller L, Schmitt C, Weiss J. Solidification of concentrated pea protein-pectin mixtures as potential binder. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4195-4202. [PMID: 36637051 DOI: 10.1002/jsfa.12448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Binders in plant-based meat analogues allow different components, such as extrudate and fat particles, to stick together. Typically, binders then are solidified to transform the mass into a non-sticky, solid product. As an option for a clean-label binder possessing such properties, the solidification behavior of pea protein-pectin mixtures (250 g kg-1 , r = 2:1, pH 6) was investigated upon heating, and upon addition of calcium, transglutaminase, and laccase, or by combinations thereof. RESULTS Mixtures of (homogenized) pea protein and apple pectin had higher elastic moduli and consistency coefficients and lower frequency dependencies upon calcium addition. This indicated that calcium physically cross-linked pectin chains that formed the continuous phase in the biopolymer matrix. The highest degree of solidification was obtained with a mixture of pea protein and sugar beet pectin upon addition of laccase that covalently cross-linked both biopolymers involved. All solidified mixtures lost their stickiness. A mixture of soluble pea protein and apple pectin solidified only slightly through calcium and transglutaminase, probably due to differences in the microstructural arrangement of the biopolymers. CONCLUSION The chemical makeup of the biopolymers and their spatial distribution determines solidification behavior in concentrated biopolymer mixtures. In general, pea protein-pectin mixtures can solidify and therefore have the potential to act as binders in meat analogues. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Pascal Moll
- Department of Food Material Science, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Hanna Salminen
- Department of Food Material Science, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Lucie Stadtmüller
- Department of Food Material Science, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Christophe Schmitt
- Department of Chemistry, Nestlé Research, Nestlé Institute of Material Sciences, Lausanne, Switzerland
| | - Jochen Weiss
- Department of Food Material Science, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
8
|
Menezes MUFO, Bevilaqua GC, da Silva Nascimento ÍR, da Cruz Ximenes GN, Andrade SAC, dos Santos Cortez Barbosa NM. Antagonist action of Lactobacillus acidophilus against pathogenic strains in goat milk yogurt. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:353-360. [PMID: 36618057 PMCID: PMC9813279 DOI: 10.1007/s13197-022-05622-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/28/2022] [Accepted: 11/07/2022] [Indexed: 11/24/2022]
Abstract
Contamination by pathogenic bacteria is the major cause of foodborne diseases, which is an international public health issue. Probiotics added to fermented milk can fight against these pathogens. This research aimed to evaluate, by mathematical models, the behaviour of Lactobacillus acidophilus against pathogenic strains inoculated in goat milk yogurt. The Baranyi and Roberts' model was adjusted to data and statistically evaluated. A greater pathogens reduction occurred in the samples supplemented with probiotics, which exhibited antimicrobial activity against Pseudomonas aeruginosa. The reduction was less efficient against Escherichia coli. The primary models adjustment indicated that the Baranyi and Roberts fitted the reduction of P. aeruginosa, Salmonella typhimurium, E. coli and Staphylococcus aureus inactivation. The addition of L. acidophilus proved to be an effective alternative for the safer production of goat milk yogurt.
Collapse
Affiliation(s)
| | - Gabriel Cicalese Bevilaqua
- Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, Monteiro Lobato Street, 80, Cidade Universitária, Campinas, São Paulo 13083-862 Brazil
| | | | | | | | | |
Collapse
|
9
|
Song S, Jeong A, Lim J, Kim B, Park D, Oh S. Lactiplantibacillus plantarum
L67
probiotics vs paraprobiotics for reducing pro‐inflammatory responses in colitis mice. INT J DAIRY TECHNOL 2022. [DOI: 10.1111/1471-0307.12918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Sooyeon Song
- Department of Animal Science Jeonbuk National University 587 Baekje‐Daero, Deojin‐Gu Jeonju‐Si Jellabuk‐Do 54896 South Korea
- Agricultural Convergence Technology Jeonbuk National University 587 Baekje‐Daero, Deojin‐Gu Jeonju‐Si Jellabuk‐Do 54896 South Korea
| | - Anna Jeong
- Division of Animal Science Chonnam National University 77 Yongbong‐Ro, Buk‐Gu Gwang‐Ju 61186 South Korea
| | - Jina Lim
- Division of Animal Science Chonnam National University 77 Yongbong‐Ro, Buk‐Gu Gwang‐Ju 61186 South Korea
- Department of Animal Biotechnology and Environment Animal Genomics and Bioinformatics National Institute of Animal Science 1500 Kongjwipatjwi‐ro Jellabuk‐do 55365 South Korea
| | - Bum‐Keun Kim
- Korea Food Research Institute 245, Nongsaengmyeong‐ro Jeollabuk‐do 55365 South Korea
| | - Dong‐June Park
- Korea Food Research Institute 245, Nongsaengmyeong‐ro Jeollabuk‐do 55365 South Korea
| | - Sejong Oh
- Division of Animal Science Chonnam National University 77 Yongbong‐Ro, Buk‐Gu Gwang‐Ju 61186 South Korea
| |
Collapse
|
10
|
Bulut M, Adal E, Aktar T. Plant protein enrichment effect on the physical, chemical, microbiological, and sensory characteristics of yogurt. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Menekse Bulut
- Research Center for Redox Applications in Foods (RCRAF) Igdir University Igdir Turkey
- Innovative Food Technologies Development, Application, and Research Center Igdir University Igdir Turkey
- Department of Food Engineering, Faculty of Engineering Igdir University Igdir Turkey
| | - Eda Adal
- Department of Gastronomy and Culinary Art, Faculty of Tourism Iskenderun Technical University İskenderun Turkey
| | - Tugba Aktar
- Department of Food Engineering, Faculty of Engineering Alanya Alaaddin Keykubat University Antalya Turkey
| |
Collapse
|
11
|
MENEZES MUFO, BEVILAQUA GC, XIMENES GNDC, ANDRADE SAC, KASNOWSKI MC, BARBOSA NMDSC. Viability of Lactobacillus acidophilus in whole goat milk yogurt during fermentation and storage stages: a predictive modeling study. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.50922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Comparative effect of probiotic and paraprobiotic addition on physicochemical, chemometric and microstructural properties of yogurt. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111177] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|