1
|
Veličković M, Kadam L, Kim J, Zemaitis KJ, Veličković D, Gao Y, Wu R, Fillmore TL, Orton D, Williams SM, Monroe ME, Moore RJ, Piehowski PD, Bramer LM, Myatt L, Burnum-Johnson KE. Advanced multi-modal mass spectrometry imaging reveals functional differences of placental villous compartments at microscale resolution. Nat Commun 2025; 16:2061. [PMID: 40021619 PMCID: PMC11871073 DOI: 10.1038/s41467-025-57107-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 02/12/2025] [Indexed: 03/03/2025] Open
Abstract
The placenta is a complex and heterogeneous organ that links the mother and fetus, playing a crucial role in nourishing and protecting the fetus throughout pregnancy. Integrative spatial multi-omics approaches can provide a systems-level understanding of molecular changes underlying the mechanisms leading to the histological variations of the placenta during healthy pregnancy and pregnancy complications. Herein, we advance our metabolome-informed proteome imaging (MIPI) workflow to include lipidomic imaging, while also expanding the molecular coverage of metabolomic imaging by incorporating on-tissue chemical derivatization (OTCD). The improved MIPI workflow advances biomedical investigations by leveraging state-of-the-art molecular imaging technologies. Lipidome imaging identifies molecular differences between two morphologically distinct compartments of a placental villous functional unit, syncytiotrophoblast (STB) and villous core. Next, our advanced metabolome imaging maps villous functional units with enriched metabolomic activities related to steroid and lipid metabolism, outlining distinct molecular distributions across morphologically different villous compartments. Complementary proteome imaging on these villous functional units reveals a plethora of fatty acid- and steroid-related enzymes uniquely distributed in STB and villous core compartments. Integration across our advanced MIPI imaging modalities enables the reconstruction of active biological pathways of molecular synthesis and maternal-fetal signaling across morphologically distinct placental villous compartments with micrometer-scale resolution.
Collapse
Affiliation(s)
- Marija Veličković
- The Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Leena Kadam
- Department of Obstetrics & Gynecology, Oregon Health & Science University, Portland, OR, USA
| | - Joonhoon Kim
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Kevin J Zemaitis
- The Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Dušan Veličković
- The Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Yuqian Gao
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ruonan Wu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Thomas L Fillmore
- The Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Daniel Orton
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Sarah M Williams
- The Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Matthew E Monroe
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ronald J Moore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Paul D Piehowski
- The Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Lisa M Bramer
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Leslie Myatt
- Department of Obstetrics & Gynecology, Oregon Health & Science University, Portland, OR, USA.
| | - Kristin E Burnum-Johnson
- The Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA.
| |
Collapse
|
2
|
Zhou Z, Yang X. An update review of the application of single-cell RNA sequencing in pregnancy-related diseases. Front Endocrinol (Lausanne) 2024; 15:1415173. [PMID: 39717096 PMCID: PMC11663665 DOI: 10.3389/fendo.2024.1415173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 11/22/2024] [Indexed: 12/25/2024] Open
Abstract
Reproductive success hinges on the presence of a robust and functional placenta. Examining the placenta provides insight about the progression of pregnancy and valuable information about the normal developmental trajectory of the fetus. The current limitations of using bulk RNA-sequencing (RNA-seq) analysis stem from the diverse composition of the placenta, hindering a comprehensive description of how distinct trophoblast cell expression patterns contribute to the establishment and sustenance of a successful pregnancy. At present, the transcriptional landscape of intricate tissues increasingly relies on single-cell RNA sequencing (scRNA-seq). A few investigations have utilized scRNA-seq technology to examine the codes governing transcriptome regulation in cells at the maternal-fetal interface. In this review, we explore the fundamental principles of scRNA-seq technology, offering the latest overview of human placental studies utilizing this method across various gestational weeks in both normal pregnancies and pregnancy-related diseases, including recurrent pregnancy loss (RPL), preeclampsia (PE), preterm birth, and gestational diabetes mellitus (GDM). Furthermore, we discuss the limitations and future perspectives of scRNA-seq technology within the realm of reproduction. It seems that scRNA-seq stands out as one of the crucial tools for studying the etiology of pregnancy complications. The future direction of scRNA-seq applications may involve devolving into functional biology, with a primary focus on understanding variations in transcriptional activity among highly specific cell populations. Our goal is to provide obstetricians with an updated understanding of scRNA-seq technology related to pregnancy complications, providing comprehensive understandings to aid in the diagnosis and treatment of these conditions, ultimately improving maternal and fetal prognosis.
Collapse
Affiliation(s)
| | - Xiuhua Yang
- Department of Obstetrics, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
3
|
Chen K, Yu Q, Sha Q, Wang J, Fang J, Li X, Shen X, Fu B, Guo C. Single-cell transcriptomic analysis of immune cell dynamics in the healthy human endometrium. Biochem Biophys Rep 2024; 39:101802. [PMID: 39161579 PMCID: PMC11332207 DOI: 10.1016/j.bbrep.2024.101802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/25/2024] [Accepted: 07/23/2024] [Indexed: 08/21/2024] Open
Abstract
The microenvironment of the endometrial immune system is crucial to the success of placental implantation and healthy pregnancy. However, the functionalities of immune cells across various stages of the reproductive cycle have yet to be fully comprehended. To address this, we conducted advanced bioinformatic analysis on 230,049 high-quality single-cell transcriptomes from healthy endometrial samples obtained during the proliferative, secretory, early pregnancy, and late pregnancy stages. Our investigation has unveiled that proliferative natural killer (NK) cells, a potential source of endometrial NK cells, exhibit the most robust proliferative and differentiation potential during non-pregnant stages. We have also identified similar differentiation trajectories of NK cells originating from proliferative NK cells across four stages. Notably, during early pregnancy, NK cells demonstrate the highest oxidative phosphorylation metabolism activity, and, in conjunction with macrophages and T cells, exhibit the strongest type II interferon response. With spatial transcriptome data, we have discerned that the most robust immune-non-immune interactions are associated with the promotion and inhibition of cell proliferation, differentiation and migration during four stages. Furthermore, we have compiled lists of stage-specific risk genes implicated in reproductive diseases, which hold promise as potential disease biomarkers. Our study provides insights into the dynamics of the endometrial immune microenvironment during different reproductive cycle stages, thus serving as a reference for detecting pathological changes during pregnancy.
Collapse
Affiliation(s)
- Kaixing Chen
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230021, China
- CAS Center for Excellence in Molecular Cell Sciences, The CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, 230027, Hefei, Anhui, China
| | - Qiaoni Yu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230021, China
| | - Qing Sha
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230021, China
| | - Junyu Wang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230021, China
| | - Jingwen Fang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230021, China
- HanGene Biotech, Xiaoshan Innovation Polis, Hangzhou, Zhejiang, 311200, China
| | - Xin Li
- Department of Rheumatology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China
| | - Xiaokun Shen
- Department of Immunology, School of Basic Medical Science, Jinzhou Medical University, Jinzhou, 121001, China
| | - Binqing Fu
- CAS Center for Excellence in Molecular Cell Sciences, The CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, 230027, Hefei, Anhui, China
| | - Chuang Guo
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230021, China
- CAS Center for Excellence in Molecular Cell Sciences, The CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, 230027, Hefei, Anhui, China
| |
Collapse
|
4
|
Derisoud E, Jiang H, Zhao A, Chavatte-Palmer P, Deng Q. Revealing the molecular landscape of human placenta: a systematic review and meta-analysis of single-cell RNA sequencing studies. Hum Reprod Update 2024; 30:410-441. [PMID: 38478759 PMCID: PMC11215163 DOI: 10.1093/humupd/dmae006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 02/12/2024] [Indexed: 07/02/2024] Open
Abstract
BACKGROUND With increasing significance of developmental programming effects associated with placental dysfunction, more investigations are devoted to improving the characterization and understanding of placental signatures in health and disease. The placenta is a transitory but dynamic organ adapting to the shifting demands of fetal development and available resources of the maternal supply throughout pregnancy. Trophoblasts (cytotrophoblasts, syncytiotrophoblasts, and extravillous trophoblasts) are placental-specific cell types responsible for the main placental exchanges and adaptations. Transcriptomic studies with single-cell resolution have led to advances in understanding the placenta's role in health and disease. These studies, however, often show discrepancies in characterization of the different placental cell types. OBJECTIVE AND RATIONALE We aim to review the knowledge regarding placental structure and function gained from the use of single-cell RNA sequencing (scRNAseq), followed by comparing cell-type-specific genes, highlighting their similarities and differences. Moreover, we intend to identify consensus marker genes for the various trophoblast cell types across studies. Finally, we will discuss the contributions and potential applications of scRNAseq in studying pregnancy-related diseases. SEARCH METHODS We conducted a comprehensive systematic literature review to identify different cell types and their functions at the human maternal-fetal interface, focusing on all original scRNAseq studies on placentas published before March 2023 and published reviews (total of 28 studies identified) using PubMed search. Our approach involved curating cell types and subtypes that had previously been defined using scRNAseq and comparing the genes used as markers or identified as potential new markers. Next, we reanalyzed expression matrices from the six available scRNAseq raw datasets with cell annotations (four from first trimester and two at term), using Wilcoxon rank-sum tests to compare gene expression among studies and annotate trophoblast cell markers in both first trimester and term placentas. Furthermore, we integrated scRNAseq raw data available from 18 healthy first trimester and nine term placentas, and performed clustering and differential gene expression analysis. We further compared markers obtained with the analysis of annotated and raw datasets with the literature to obtain a common signature gene list for major placental cell types. OUTCOMES Variations in the sampling site, gestational age, fetal sex, and subsequent sequencing and analysis methods were observed between the studies. Although their proportions varied, the three trophoblast types were consistently identified across all scRNAseq studies, unlike other non-trophoblast cell types. Notably, no marker genes were shared by all studies for any of the investigated cell types. Moreover, most of the newly defined markers in one study were not observed in other studies. These discrepancies were confirmed by our analysis on trophoblast cell types, where hundreds of potential marker genes were identified in each study but with little overlap across studies. From 35 461 and 23 378 cells of high quality in the first trimester and term placentas, respectively, we obtained major placental cell types, including perivascular cells that previously had not been identified in the first trimester. Importantly, our meta-analysis provides marker genes for major placental cell types based on our extensive curation. WIDER IMPLICATIONS This review and meta-analysis emphasizes the need for establishing a consensus for annotating placental cell types from scRNAseq data. The marker genes identified here can be deployed for defining human placental cell types, thereby facilitating and improving the reproducibility of trophoblast cell annotation.
Collapse
Affiliation(s)
- Emilie Derisoud
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Stockholm, Sweden
| | - Hong Jiang
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Stockholm, Sweden
| | - Allan Zhao
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Stockholm, Sweden
| | - Pascale Chavatte-Palmer
- INRAE, BREED, Université Paris-Saclay, UVSQ, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, Maisons-Alfort, France
| | - Qiaolin Deng
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital, Solna, Stockholm, Sweden
| |
Collapse
|
5
|
Czamara D, Dieckmann L, Lahti-Pulkkinen M, Cruceanu C, Henrich W, Plagemann A, Räikkönen K, Braun T, Binder EB, Lahti J, Entringer S. Sex differences in DNA methylation across gestation: a large scale, cross-cohort, multi-tissue analysis. Cell Mol Life Sci 2024; 81:177. [PMID: 38600394 PMCID: PMC11006734 DOI: 10.1007/s00018-024-05208-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 04/12/2024]
Abstract
Biological sex is a key variable influencing many physiological systems. Disease prevalence as well as treatment success can be modified by sex. Differences emerge already early in life and include pregnancy complications and adverse birth outcomes. The placenta is a critical organ for fetal development and shows sex-based differences in the expression of hormones and cytokines. Epigenetic regulation, such as DNA methylation (DNAm), may underlie the previously reported placental sexual dimorphism. We associated placental DNAm with fetal sex in three cohorts. Individual cohort results were meta-analyzed with random-effects modelling. CpG-sites differentially methylated with sex were further investigated regarding pathway enrichment, overlap with methylation quantitative trait loci (meQTLs), and hits from phenome-wide association studies (PheWAS). We evaluated the consistency of findings across tissues (CVS, i.e. chorionic villus sampling from early placenta, and cord blood) as well as with gene expression. We identified 10,320 epigenome-wide significant sex-differentially methylated probes (DMPs) spread throughout the epigenome of the placenta at birth. Most DMPs presented with lower DNAm levels in females. DMPs mapped to genes upregulated in brain, were enriched for neurodevelopmental pathways and significantly overlapped with meQTLs and PheWAS hits. Effect sizes were moderately correlated between CVS and placenta at birth, but only weakly correlated between birth placenta and cord blood. Sex differential gene expression in birth placenta was less pronounced and implicated genetic regions only marginally overlapped with those associated with differential DNAm. Our study provides an integrative perspective on sex-differential DNAm in perinatal tissues underscoring the possible link between placenta and brain.
Collapse
Affiliation(s)
- Darina Czamara
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany.
| | - Linda Dieckmann
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry, Munich, Germany
| | - Marius Lahti-Pulkkinen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Finnish Institute for Health and Welfare, Helsinki, Finland
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Cristiana Cruceanu
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Wolfgang Henrich
- Department of Obstetrics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Andreas Plagemann
- Department of Obstetrics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin, Germany
- Department of Experimental Obstetrics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Katri Räikkönen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Obstetrics and Gynecology, HUS Helsinki University Hospital, Helsinki, Finland
| | - Thorsten Braun
- Department of Obstetrics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin, Germany
- Department of Experimental Obstetrics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Elisabeth B Binder
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Emory University, Atlanta, GA, USA
| | - Jari Lahti
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sonja Entringer
- Institute of Medical Psychology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin, Germany.
- Department of Pediatrics, Health and Disease Research Program, School of Medicine, University of California, Irvine, CA, USA.
| |
Collapse
|
6
|
Afshar Y, Yin O, Jeong A, Martinez G, Kim J, Ma F, Jang C, Tabatabaei S, You S, Tseng HR, Zhu Y, Krakow D. Placenta accreta spectrum disorder at single-cell resolution: a loss of boundary limits in the decidua and endothelium. Am J Obstet Gynecol 2024; 230:443.e1-443.e18. [PMID: 38296740 DOI: 10.1016/j.ajog.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/25/2023] [Accepted: 10/01/2023] [Indexed: 02/02/2024]
Abstract
BACKGROUND Placenta accreta spectrum disorders are associated with severe maternal morbidity and mortality. Placenta accreta spectrum disorders involve excessive adherence of the placenta preventing separation at birth. Traditionally, this condition has been attributed to excessive trophoblast invasion; however, an alternative view is a fundamental defect in decidual biology. OBJECTIVE This study aimed to gain insights into the understanding of placenta accreta spectrum disorder by using single-cell and spatially resolved transcriptomics to characterize cellular heterogeneity at the maternal-fetal interface in placenta accreta spectrum disorders. STUDY DESIGN To assess cellular heterogeneity and the function of cell types, single-cell RNA sequencing and spatially resolved transcriptomics were used. A total of 12 placentas were included, 6 placentas with placenta accreta spectrum disorder and 6 controls. For each placenta with placenta accreta spectrum disorder, multiple biopsies were taken at the following sites: placenta accreta spectrum adherent and nonadherent sites in the same placenta. Of note, 2 platforms were used to generate libraries: the 10× Chromium and NanoString GeoMX Digital Spatial Profiler for single-cell and spatially resolved transcriptomes, respectively. Differential gene expression analysis was performed using a suite of bioinformatic tools (Seurat and GeoMxTools R packages). Correction for multiple testing was performed using Clipper. In situ hybridization was performed with RNAscope, and immunohistochemistry was used to assess protein expression. RESULTS In creating a placenta accreta cell atlas, there were dramatic difference in the transcriptional profile by site of biopsy between placenta accreta spectrum and controls. Most of the differences were noted at the site of adherence; however, differences existed within the placenta between the adherent and nonadherent site of the same placenta in placenta accreta. Among all cell types, the endothelial-stromal populations exhibited the greatest difference in gene expression, driven by changes in collagen genes, namely collagen type III alpha 1 chain (COL3A1), growth factors, epidermal growth factor-like protein 6 (EGFL6), and hepatocyte growth factor (HGF), and angiogenesis-related genes, namely delta-like noncanonical Notch ligand 1 (DLK1) and platelet endothelial cell adhesion molecule-1 (PECAM1). Intraplacental tropism (adherent versus non-adherent sites in the same placenta) was driven by differences in endothelial-stromal cells with notable differences in bone morphogenic protein 5 (BMP5) and osteopontin (SPP1) in the adherent vs nonadherent site of placenta accreta spectrum. CONCLUSION Placenta accreta spectrum disorders were characterized at single-cell resolution to gain insight into the pathophysiology of the disease. An atlas of the placenta at single cell resolution in accreta allows for understanding in the biology of the intimate maternal and fetal interaction. The contributions of stromal and endothelial cells were demonstrated through alterations in the extracellular matrix, growth factors, and angiogenesis. Transcriptional and protein changes in the stroma of placenta accreta spectrum shift the etiologic explanation away from "invasive trophoblast" to "loss of boundary limits" in the decidua. Gene targets identified in this study may be used to refine diagnostic assays in early pregnancy, track disease progression over time, and inform therapeutic discoveries.
Collapse
Affiliation(s)
- Yalda Afshar
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA.
| | - Ophelia Yin
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA; Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, San Francisco, CA
| | - Anhyo Jeong
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Guadalupe Martinez
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Jina Kim
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Feiyang Ma
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA
| | - Christine Jang
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Sarah Tabatabaei
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Sungyong You
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA; Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Hsian-Rong Tseng
- Department of Molecular and Medical Pharmacology, California NanoSystems Institute, Crump Institute for Molecular Imaging, Los Angeles, CA
| | - Yazhen Zhu
- Department of Molecular and Medical Pharmacology, California NanoSystems Institute, Crump Institute for Molecular Imaging, Los Angeles, CA; Department of Pathology, University of California, Los Angeles, Los Angeles, CA
| | - Deborah Krakow
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA; Departments of Orthopedic Surgery and Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
7
|
Bulka CM, Rajkotwala HM, Eaves LA, Gardner AJ, Parsons PJ, Galusha AL, O'Shea TM, Fry RC. Placental cellular composition and umbilical cord tissue metal(loid) concentrations: A descriptive molecular epidemiology study leveraging DNA methylation. Placenta 2024; 147:28-30. [PMID: 38281400 DOI: 10.1016/j.placenta.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 01/30/2024]
Abstract
The placenta is a mixture of cell types, which may regulate maternal-fetal transfer of exogenous chemicals or become altered in response to exposures. We leveraged placental DNA methylation to characterize major constituent cell types and applied compositional data analysis to test associations with non-essential metal(loid)s measured in paired umbilical cord tissue (N = 158). Higher proportions of syncytiotrophoblasts were associated with lower arsenic, whereas higher proportions of Hofbauer cells were associated with higher cadmium concentrations in umbilical cords. These findings suggest that placental cellular composition influences amounts of metal(loid)s transferred to the fetus or that prenatal exposures alter the placental cellular makeup.
Collapse
Affiliation(s)
- Catherine M Bulka
- College of Public Health, University of South Florida, Tampa, FL, USA
| | | | - Lauren A Eaves
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Amaree J Gardner
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Patrick J Parsons
- Laboratory of Inorganic and Nuclear Chemistry, Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY, USA; Department of Environmental Health Sciences, School of Public Health, University at Albany, Rensselaer, NY, USA
| | - Aubrey L Galusha
- Laboratory of Inorganic and Nuclear Chemistry, Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY, USA; Department of Environmental Health Sciences, School of Public Health, University at Albany, Rensselaer, NY, USA
| | - T Michael O'Shea
- Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Rebecca C Fry
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA; Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
8
|
Barrozo ER, Seferovic MD, Hamilton MP, Moorshead DN, Jochum MD, Do T, O'Neil DS, Suter MA, Aagaard KM. Zika virus co-opts microRNA networks to persist in placental niches detected by spatial transcriptomics. Am J Obstet Gynecol 2024; 230:251.e1-251.e17. [PMID: 37598997 PMCID: PMC10840961 DOI: 10.1016/j.ajog.2023.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/10/2023] [Accepted: 08/12/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND Zika virus congenital infection evades double-stranded RNA detection and may persist in the placenta for the duration of pregnancy without accompanying overt histopathologic inflammation. Understanding how viruses can persist and replicate in the placenta without causing overt cellular or tissue damage is fundamental to deciphering mechanisms of maternal-fetal vertical transmission. OBJECTIVE Placenta-specific microRNAs are believed to be a tenet of viral resistance at the maternal-fetal interface. We aimed to test the hypothesis that the Zika virus functionally disrupts placental microRNAs, enabling viral persistence and fetal pathogenesis. STUDY DESIGN To test this hypothesis, we used orthogonal approaches in human and murine experimental models. In primary human trophoblast cultures (n=5 donor placentae), we performed Argonaute high-throughput sequencing ultraviolet-crosslinking and immunoprecipitation to identify any significant alterations in the functional loading of microRNAs and their targets onto the RNA-induced silencing complex. Trophoblasts from same-donors were split and infected with a contemporary first-passage Zika virus strain HN16 (multiplicity of infection=1 plaque forming unit per cell) or mock infected. To functionally cross-validate microRNA-messenger RNA interactions, we compared our Argonaute high-throughput sequencing ultraviolet-crosslinking and immunoprecipitation results with an independent analysis of published bulk RNA-sequencing data from human placental disk specimens (n=3 subjects; Zika virus positive in first, second, or third trimester, CD45- cells sorted by flow cytometry) and compared it with uninfected controls (n=2 subjects). To investigate the importance of these microRNA and RNA interference networks in Zika virus pathogenesis, we used a gnotobiotic mouse model uniquely susceptible to the Zika virus. We evaluated if small-molecule enhancement of microRNA and RNA interference pathways with enoxacin influenced Zika virus pathogenesis (n=20 dams total yielding 187 fetal specimens). Lastly, placentae (n=14 total) from this mouse model were analyzed with Visium spatial transcriptomics (9743 spatial transcriptomes) to identify potential Zika virus-associated alterations in immune microenvironments. RESULTS We found that Zika virus infection of primary human trophoblast cells led to an unexpected disruption of placental microRNA regulation networks. When compared with uninfected controls, Zika virus-infected placentae had significantly altered SLC12A8, SDK1, and VLDLR RNA-induced silencing complex loading and transcript levels (-22; adjusted P value <.05; Wald-test with false discovery rate correction q<0.05). In silico microRNA target analyses revealed that 26 of 119 transcripts (22%) in the transforming growth factor-β signaling pathway were targeted by microRNAs that were found to be dysregulated following Zika virus infection in trophoblasts. In gnotobiotic mice, relative to mock controls, Zika virus-associated fetal pathogenesis included fetal growth restriction (P=.036) and viral persistence in placental tissue (P=.011). Moreover, spatial transcriptomics of murine placentae revealed that Zika virus-specific placental niches were defined by significant up-regulation of complement cascade components and coordinated changes in transforming growth factor-β gene expression. Finally, treatment of Zika virus-infected mice with enoxacin abolished placental Zika virus persistence, rescued the associated fetal growth restriction, and the Zika virus-associated transcriptional changes in placental immune microenvironments were no longer observed. CONCLUSION These results collectively suggest that (1) Zika virus infection and persistence is associated with functionally perturbed microRNA and RNA interference pathways specifically related to immune regulation in placental microenvironments and (2) enhancement of placental microRNA and RNA interference pathways in mice rescued Zika virus-associated pathogenesis, specifically persistence of viral transcripts in placental microenvironments and fetal growth restriction.
Collapse
Affiliation(s)
- Enrico R Barrozo
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynecology, Baylor College of Medicine & Texas Children's Hospital, Houston, TX
| | - Maxim D Seferovic
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynecology, Baylor College of Medicine & Texas Children's Hospital, Houston, TX
| | - Mark P Hamilton
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynecology, Baylor College of Medicine & Texas Children's Hospital, Houston, TX; Hematology & Medical Oncology, Stanford School of Medicine, Stanford University, Palo Alto, CA
| | - David N Moorshead
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynecology, Baylor College of Medicine & Texas Children's Hospital, Houston, TX; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX; Immunology & Microbiology Graduate Program, Baylor College of Medicine, Houston, TX
| | - Michael D Jochum
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynecology, Baylor College of Medicine & Texas Children's Hospital, Houston, TX
| | - Trang Do
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynecology, Baylor College of Medicine & Texas Children's Hospital, Houston, TX
| | - Derek S O'Neil
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynecology, Baylor College of Medicine & Texas Children's Hospital, Houston, TX
| | - Melissa A Suter
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynecology, Baylor College of Medicine & Texas Children's Hospital, Houston, TX
| | - Kjersti M Aagaard
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynecology, Baylor College of Medicine & Texas Children's Hospital, Houston, TX.
| |
Collapse
|
9
|
Hunter R, Baird B, Garcia M, Begay J, Goitom S, Lucas S, Herbert G, Scieszka D, Padilla J, Brayer K, Ottens AK, Suter MA, Barrozo ER, Hines C, Bleske B, Campen MJ. Gestational ozone inhalation elicits maternal cardiac dysfunction and transcriptional changes to placental pericytes and endothelial cells. Toxicol Sci 2023; 196:238-249. [PMID: 37695302 PMCID: PMC10682975 DOI: 10.1093/toxsci/kfad092] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023] Open
Abstract
Ozone (O3) is a criteria air pollutant with the most frequent incidence of exceeding air quality standards. Inhalation of O3 is known to cause lung inflammation and consequent systemic health effects, including endothelial dysfunction. Epidemiologic data have shown that gestational exposure to air pollutants correlates with complications of pregnancy, including low birth weight, intrauterine growth deficiency, preeclampsia, and premature birth. Mechanisms underlying how air pollution may facilitate or exacerbate gestational complications remain poorly defined. The current study sought to uncover how gestational O3 exposure impacted maternal cardiovascular function, as well as the development of the placenta. Pregnant mice were exposed to 1PPM O3 or a sham filtered air (FA) exposure for 4 h on gestational day (GD) 10.5, and evaluated for cardiac function via echocardiography on GD18.5. Echocardiography revealed a significant reduction in maternal stroke volume and ejection fraction in maternally exposed dams. To examine the impact of maternal O3 exposure on the maternal-fetal interface, placentae were analyzed by single-cell RNA sequencing analysis. Mid-gestational O3 exposure led to significant differential expression of 4021 transcripts compared with controls, and pericytes displayed the greatest transcriptional modulation. Pathway analysis identified extracellular matrix organization to be significantly altered after the exposure, with the greatest modifications in trophoblasts, pericytes, and endothelial cells. This study provides insights into potential molecular processes during pregnancy that may be altered due to the inhalation of environmental toxicants.
Collapse
Affiliation(s)
- Russell Hunter
- Department of Pharmaceutical Sciences, College of Pharmacy University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Brenna Baird
- Department of Pharmaceutical Sciences, College of Pharmacy University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Marcus Garcia
- Department of Pharmaceutical Sciences, College of Pharmacy University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Jessica Begay
- Department of Pharmaceutical Sciences, College of Pharmacy University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Siem Goitom
- Department of Pharmaceutical Sciences, College of Pharmacy University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Selita Lucas
- Department of Pharmaceutical Sciences, College of Pharmacy University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Guy Herbert
- Department of Pharmaceutical Sciences, College of Pharmacy University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - David Scieszka
- Department of Pharmaceutical Sciences, College of Pharmacy University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Jamie Padilla
- Department of Molecular Medicine, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
- Department of Internal Medicine, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Kathryn Brayer
- Department of Molecular Medicine, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
- Department of Internal Medicine, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Andrew K Ottens
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Melissa A Suter
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas, USA
| | - Enrico R Barrozo
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas, USA
| | - Curt Hines
- Department of Biochemistry & Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Barry Bleske
- Department of Pharmacy Practice and Administrative Sciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Matthew J Campen
- Department of Pharmaceutical Sciences, College of Pharmacy University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| |
Collapse
|
10
|
Barrozo ER, Seferovic MD, Castro ECC, Major AM, Moorshead DN, Jochum MD, Rojas RF, Shope CD, Aagaard KM. SARS-CoV-2 niches in human placenta revealed by spatial transcriptomics. MED 2023; 4:612-634.e4. [PMID: 37423216 PMCID: PMC10527005 DOI: 10.1016/j.medj.2023.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/21/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND Functional placental niches are presumed to spatially separate maternal-fetal antigens and restrict the vertical transmission of pathogens. We hypothesized a high-resolution map of placental transcription could provide direct evidence for niche microenvironments with unique functions and transcription profiles. METHODS We utilized Visium Spatial Transcriptomics paired with H&E staining to generate 17,927 spatial transcriptomes. By integrating these spatial transcriptomes with 273,944 placental single-cell and single-nuclei transcriptomes, we generated an atlas composed of at least 22 subpopulations in the maternal decidua, fetal chorionic villi, and chorioamniotic membranes. FINDINGS Comparisons of placentae from uninfected healthy controls (n = 4) with COVID-19 asymptomatic (n = 4) and symptomatic (n = 5) infected participants demonstrated that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection in syncytiotrophoblasts occurred in both the presence and the absence of maternal clinical disease. With spatial transcriptomics, we found that the limit of detection for SARS-CoV-2 was 1/7,000 cells, and placental niches without detectable viral transcripts were unperturbed. In contrast, niches with high SARS-CoV-2 transcript levels were associated with significant upregulation in pro-inflammatory cytokines and interferon-stimulated genes, altered metallopeptidase signaling (TIMP1), with coordinated shifts in macrophage polarization, histiocytic intervillositis, and perivillous fibrin deposition. Fetal sex differences in gene expression responses to SARS-CoV-2 were limited, with confirmed mapping limited to the maternal decidua in males. CONCLUSIONS High-resolution placental transcriptomics with spatial resolution revealed dynamic responses to SARS-CoV-2 in coordinate microenvironments in the absence and presence of clinically evident disease. FUNDING This work was supported by the NIH (R01HD091731 and T32-HD098069), NSF (2208903), the Burroughs Welcome Fund and the March of Dimes Preterm Birth Research Initiatives, and a Career Development Award from the American Society of Gene and Cell Therapy.
Collapse
Affiliation(s)
- Enrico R Barrozo
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Maxim D Seferovic
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Eumenia C C Castro
- Department of Pathology and Immunology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Angela M Major
- Department of Pathology and Immunology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - David N Moorshead
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA; Immunology and Microbiology Graduate Program, Baylor College of Medicine, Houston, TX, USA
| | - Michael D Jochum
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Ricardo Ferral Rojas
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Cynthia D Shope
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Kjersti M Aagaard
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
11
|
Choe K, Pak U, Pang Y, Hao W, Yang X. Advances and Challenges in Spatial Transcriptomics for Developmental Biology. Biomolecules 2023; 13:biom13010156. [PMID: 36671541 PMCID: PMC9855858 DOI: 10.3390/biom13010156] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/15/2022] [Accepted: 12/17/2022] [Indexed: 01/15/2023] Open
Abstract
Development from single cells to multicellular tissues and organs involves more than just the exact replication of cells, which is known as differentiation. The primary focus of research into the mechanism of differentiation has been differences in gene expression profiles between individual cells. However, it has predominantly been conducted at low throughput and bulk levels, challenging the efforts to understand molecular mechanisms of differentiation during the developmental process in animals and humans. During the last decades, rapid methodological advancements in genomics facilitated the ability to study developmental processes at a genome-wide level and finer resolution. Particularly, sequencing transcriptomes at single-cell resolution, enabled by single-cell RNA-sequencing (scRNA-seq), was a breath-taking innovation, allowing scientists to gain a better understanding of differentiation and cell lineage during the developmental process. However, single-cell isolation during scRNA-seq results in the loss of the spatial information of individual cells and consequently limits our understanding of the specific functions of the cells performed by different spatial regions of tissues or organs. This greatly encourages the emergence of the spatial transcriptomic discipline and tools. Here, we summarize the recent application of scRNA-seq and spatial transcriptomic tools for developmental biology. We also discuss the limitations of current spatial transcriptomic tools and approaches, as well as possible solutions and future prospects.
Collapse
Affiliation(s)
- Kyongho Choe
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Unil Pak
- College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China
| | - Yu Pang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Wanjun Hao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Xiuqin Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
- Correspondence: ; Tel.: +86-451-55191738
| |
Collapse
|
12
|
Lapolla A, Traldi P. Proteomic Approaches in the Study of Placenta of Pregnancy Complicated by Gestational Diabetes Mellitus. Biomedicines 2022; 10:biomedicines10092272. [PMID: 36140373 PMCID: PMC9496584 DOI: 10.3390/biomedicines10092272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 12/04/2022] Open
Abstract
Gestational diabetes mellitus (GDM), a glucose intolerance developing or first recognized during pregnancy, leads to a series of short- and long-term maternal and fetal complications, somehow related to placenta structural and functional changes. The focus and the objective of the present review are to discuss the results which can be obtained by different mass spectrometric approaches in the study of placenta protein profile. Thus, matrix-assisted laser desorption/ionization mass spectrometry (MALDI) has been applied on placenta omogenates before and after one-dimensional electrophoretic separation, followed by tryptic digestion. MALDI imaging was used for direct investigation on the placenta tissue (both maternal and fetal sides). The results showed that some differences among the absolute abundances of some proteins are present for placenta samples from GDM patients. The majority of investigations were carried out by two-dimensional electrophoresis (2DE) followed by LC-MS/MS or, directly by the label-free LC-MSE approach. It should be emphasized that all these techniques were showed differences in the protein expression between the placenta samples from healthy or GDM subjects. 2DE was also employed to separate and compare placental protein levels from GDM and the control groups: differentially expressed proteins between the two groups were identified by MALDI-TOF/TOF mass spectrometry and were further confirmed by Western blotting. The physiopathological significance of the obtained results are reported and discussed in this narrative review. The experimental data obtained until now show that the newest, mass spectrometric approaches can be considered a valid tool to investigate the possible changes of placenta in the presence of GDM.
Collapse
Affiliation(s)
- Annunziata Lapolla
- Department of Medicine, University of Padova, 35122 Padova, Italy
- Correspondence:
| | - Pietro Traldi
- Istituto di Ricerca Pediatrica, Città della Speranza, 35127 Padova, Italy
| |
Collapse
|
13
|
Gauster M, Moser G, Wernitznig S, Kupper N, Huppertz B. Early human trophoblast development: from morphology to function. Cell Mol Life Sci 2022; 79:345. [PMID: 35661923 PMCID: PMC9167809 DOI: 10.1007/s00018-022-04377-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/13/2022] [Accepted: 05/13/2022] [Indexed: 12/18/2022]
Abstract
Human pregnancy depends on the proper development of the embryo prior to implantation and the implantation of the embryo into the uterine wall. During the pre-implantation phase, formation of the morula is followed by internalization of blastomeres that differentiate into the pluripotent inner cell mass lineage, while the cells on the surface undergo polarization and differentiate into the trophectoderm of the blastocyst. The trophectoderm mediates apposition and adhesion of the blastocyst to the uterine epithelium. These processes lead to a stable contact between embryonic and maternal tissues, resulting in the formation of a new organ, the placenta. During implantation, the trophectoderm cells start to differentiate and form the basis for multiple specialized trophoblast subpopulations, all of which fulfilling specific key functions in placentation. They either differentiate into polar cells serving typical epithelial functions, or into apolar invasive cells that adapt the uterine wall to progressing pregnancy. The composition of these trophoblast subpopulations is crucial for human placenta development and alterations are suggested to result in placenta-associated pregnancy pathologies. This review article focuses on what is known about very early processes in human reproduction and emphasizes on morphological and functional aspects of early trophoblast differentiation and subpopulations.
Collapse
Affiliation(s)
- Martin Gauster
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Gerit Moser
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Stefan Wernitznig
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Nadja Kupper
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Berthold Huppertz
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria.
| |
Collapse
|