1
|
Romo-Valera C, Pérez-Garrastachu M, Hernáez-Moya R, Rodriguez-Astigarraga M, Romano-Ruiz P, Etxebarria J, Arluzea J, Andollo N. Characterisation of corneas following different time and storage methods for their use as a source of stem-like limbal epithelial cells. Exp Eye Res 2021; 211:108720. [PMID: 34389315 DOI: 10.1016/j.exer.2021.108720] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 07/21/2021] [Accepted: 08/05/2021] [Indexed: 12/13/2022]
Abstract
The transplantation of expansions of limbal epithelial stem cells (LESC) remains one of the most efficient therapies for the treatment of limbal stem cell deficiency (LSCD) to date. However, the available donor corneas are scarce, and the corneas conserved for long time, under hypothermic conditions (after 7 days) or in culture (more than 28 days), are usually discarded due to poor viability of the endothelial cells. To establish an objective criterion for the utilisation or discarding of corneas as a source of LESC, we characterized, by immunohistochemistry analysis, donor corneas conserved in different conditions and for different periods of time. We also studied the potency of LESCs isolated from these corneas and maintained in culture up to 3 cell passages. We hoped that the study of markers of LESCs present in both the corneoscleral histological sections and the cell cultures would show the adequacy of the methods used for cell isolation and how fit the LESC enrichment of the obtained cell populations to be expanded was. Thus, the expressions of markers of the cells residing in the human limbal and corneal epithelium (cytokeratin CK15 and CK12, vimentin, Collagen VII, p63α, ABCG2, Ki67, Integrin β4, ZO1, and melan A) were analysed in sections of corneoscleral tissues conserved in hypothermic conditions for 2-9 days with post-mortem time (pmt) < 8 h or for 1 day with pmt > 16 h, and in sclerocorneal rims maintained in an organ culture medium for 29 days. Cell populations isolated from donor corneoscleral tissues were also assessed based on these markers to verify the adequacy of isolation methods and the potential of expanding LESCs from these tissues. Positivity for several putative stem cell markers such as CK15 and p63α was detected in all corneoscleral tissues, although a decrease was recorded in the ones conserved for longer times. The barrier function and the ability to adhere to the extracellular matrix were maintained in all the analysed tissues. In limbal epithelial cell cultures, a simultaneous decrease in the melan A melanocyte marker and the putative stem cell markers was detected, suggesting a close relationship between the melanocytes and the limbal stem cells of the niche. Holoclones stained with putative stem cell markers were obtained from long-term, hypothermic, stored sclerocorneal rims. The results showed that the remaining sclerocorneal rims after corneal transplantation, which were conserved under hypothermic conditions for up to 7 days and would have been discarded at a first glance, still maintained their potential as a source of LESC cultures.
Collapse
Affiliation(s)
- Cristina Romo-Valera
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country, Sarriena, S/N, 48940, Leioa, Spain
| | - Miguel Pérez-Garrastachu
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country, Sarriena, S/N, 48940, Leioa, Spain
| | - Raquel Hernáez-Moya
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country, Sarriena, S/N, 48940, Leioa, Spain
| | - Maddalen Rodriguez-Astigarraga
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country, Sarriena, S/N, 48940, Leioa, Spain
| | - Paula Romano-Ruiz
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country, Sarriena, S/N, 48940, Leioa, Spain
| | - Jaime Etxebarria
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country, Sarriena, S/N, 48940, Leioa, Spain; Department of Ophthalmology, University Hospital of Cruces, Cruces Plaza S/N, 48903, Barakaldo, Spain; BioCruces Bizkaia Health Research Institute, Begiker, Cruces Plaza S/N, 48903, Barakaldo, Spain
| | - Jon Arluzea
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country, Sarriena, S/N, 48940, Leioa, Spain
| | - Noelia Andollo
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country, Sarriena, S/N, 48940, Leioa, Spain; BioCruces Bizkaia Health Research Institute, Begiker, Cruces Plaza S/N, 48903, Barakaldo, Spain.
| |
Collapse
|
2
|
Xiao YT, Qu JY, Xie HT, Zhang MC, Zhao XY. A Comparison of Methods for Isolation of Limbal Niche Cells: Maintenance of Limbal Epithelial Stem/Progenitor Cells. Invest Ophthalmol Vis Sci 2021; 61:16. [PMID: 33320169 PMCID: PMC7745628 DOI: 10.1167/iovs.61.14.16] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose Limbal niche cells (LNCs) play a vital role in the maintenance of limbal epithelial stem/progenitor cells (LESCs). Four methods have been reported to isolate and expand LNCs: digestion by collagenase alone (C-LNC), collagenase following dispase removal of the limbal epithelium (DC-LNC), dissection of dispase-isolated limbal epithelial sheets (D-LNC), and explant cultures of limbal stromal tissues (Ex-LNC). This study aimed to isolate LNCs using those four methods and to compare their capacity to maintain LESCs. Methods LNCs were isolated from the rat corneal limbus by the following methods: C-LNC, DC-LNC, D-LNC, and Ex-LNC. Quantitative real-time PCR and immunofluorescence staining were used to analyze the expression of embryonic stem cell (ESC) markers. The ability to maintain LESCs was assessed on the basis of colony-forming capacity and the expression of progenitor, proliferation, and differentiation markers in three-dimensional (3D) Matrigel and Transwell systems. Notch signaling of LESCs supported by different LNCs in Transwell inserts was analyzed by quantitative real-time PCR. Results DC-LNCs exhibited lower expression of CK12 during isolation and expansion. Among P4-expanded LNCs, DC-LNCs expressed significantly higher levels of Sox2, Oct4, Nanog, and N-cadherin than C-LNCs, D-LNCs, and Ex-LNCs. Compared with other LNCs, DC-LNCs were more effective in maintaining LESCs with higher holoclone-forming efficiency, greater expression of ΔNp63α and Ki67, and lower expression of CK12. DC-LNCs were also more capable of downregulating Notch signaling of LESCs. Conclusions DC-LNCs were more effective in expressing ESC markers and maintaining LESCs compared to other LNCs. This study identifies an optimal method for the isolation of LNCs in tissue engineering and ocular surface reconstruction.
Collapse
Affiliation(s)
- Yu-Ting Xiao
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People's Republic of China
| | - Jing-Yu Qu
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People's Republic of China
| | - Hua-Tao Xie
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People's Republic of China
| | - Ming-Chang Zhang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People's Republic of China
| | - Xin-Yue Zhao
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People's Republic of China
| |
Collapse
|
3
|
Goldstein NB, Steel A, Barbulescu CC, Koster MI, Wright MJ, Jones KL, Gao B, Ward B, Woessner B, Trottier Z, Pakieser J, Hu J, Lambert KA, Shellman YG, Fujita M, Robinson WA, Roop DR, Norris DA, Birlea SA. Melanocyte Precursors in the Hair Follicle Bulge of Repigmented Vitiligo Skin Are Controlled by RHO-GTPase, KCTD10, and CTNNB1 Signaling. J Invest Dermatol 2020; 141:638-647.e13. [PMID: 32800877 DOI: 10.1016/j.jid.2020.07.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 06/18/2020] [Accepted: 07/06/2020] [Indexed: 01/09/2023]
Abstract
In repigmentation of human vitiligo, the melanocyte (MC) precursors in the hair follicle bulge proliferate, migrate, and differentiate to repopulate the depigmented epidermis. Here, we present a comprehensive characterization of pathways and signals in the bulge that control the repigmentation process. Using biopsies from patients with vitiligo, we have selectively harvested, by laser capture microdissection, MC and keratinocyte precursors from the hair follicle bulge of untreated vitiligo skin and vitiligo skin treated with narrow-band UVB. The captured material was subjected to whole transcriptome RNA-sequencing. With this strategy, we found that repigmentation in the bulge MC precursors is driven by KCTD10, a signal with unknown roles in the skin, and CTNNB1 (encoding β-catenin) and RHO guanosine triphosphatase [RHO GTPase, RHO], two signaling pathways previously shown to be involved in pigmentation biology. Knockdown studies in cultured human MCs of RHOJ, the upmost differentially expressed RHO family component, corroborated with our findings in patients with vitiligo, identified RHOJ involvement in UV response and melanization, and confirmed previously identified roles in melanocytic cell migration and apoptosis. A better understanding of mechanisms that govern repigmentation in MC precursors will enable the discovery of molecules that induce robust repigmentation phenotypes in vitiligo.
Collapse
Affiliation(s)
| | - Andrea Steel
- Department of Dermatology, University of Colorado, Aurora, Colorado, USA
| | | | - Maranke I Koster
- Department of Dermatology, University of Colorado, Aurora, Colorado, USA; Gates Center for Regenerative Medicine, University of Colorado, Aurora, Colorado, USA
| | - Michael J Wright
- Department of Dermatology, University of Colorado, Aurora, Colorado, USA; Gates Center for Regenerative Medicine, University of Colorado, Aurora, Colorado, USA
| | - Kenneth L Jones
- Department of Hematology, University of Colorado, Aurora, Colorado, USA; Department of Pediatrics, University of Colorado, Aurora, Colorado, USA
| | - Bifeng Gao
- Sequencing and Microarray Core, University of Colorado, Aurora, Colorado, USA
| | - Brian Ward
- Department of Dermatology, University of Colorado, Aurora, Colorado, USA; Gates Center for Regenerative Medicine, University of Colorado, Aurora, Colorado, USA
| | - Brian Woessner
- Sequencing and Microarray Core, University of Colorado, Aurora, Colorado, USA
| | - Zachary Trottier
- Department of Dermatology, University of Colorado, Aurora, Colorado, USA; Gates Center for Regenerative Medicine, University of Colorado, Aurora, Colorado, USA
| | - Jen Pakieser
- Department of Dermatology, University of Colorado, Aurora, Colorado, USA; Gates Center for Regenerative Medicine, University of Colorado, Aurora, Colorado, USA
| | - Junxiao Hu
- Department of Pediatrics, University of Colorado, Aurora, Colorado, USA; Cancer Center Biostatistics Core, University of Colorado, Aurora, Colorado, USA
| | - Karoline A Lambert
- Department of Dermatology, University of Colorado, Aurora, Colorado, USA
| | - Yiqun G Shellman
- Department of Dermatology, University of Colorado, Aurora, Colorado, USA
| | - Mayumi Fujita
- Department of Dermatology, University of Colorado, Aurora, Colorado, USA; Gates Center for Regenerative Medicine, University of Colorado, Aurora, Colorado, USA; Denver Department of Veterans Affairs Medical Center, Denver, Colorado, USA
| | | | - Dennis R Roop
- Department of Dermatology, University of Colorado, Aurora, Colorado, USA; Gates Center for Regenerative Medicine, University of Colorado, Aurora, Colorado, USA
| | - David A Norris
- Department of Dermatology, University of Colorado, Aurora, Colorado, USA; Gates Center for Regenerative Medicine, University of Colorado, Aurora, Colorado, USA; Denver Department of Veterans Affairs Medical Center, Denver, Colorado, USA
| | - Stanca A Birlea
- Department of Dermatology, University of Colorado, Aurora, Colorado, USA; Gates Center for Regenerative Medicine, University of Colorado, Aurora, Colorado, USA; Human Medical Genetics and Genomics Program, Aurora, Colorado, USA.
| |
Collapse
|
4
|
Kero D, Kalibovic Govorko D, Vukojevic K, Cubela M, Soljic V, Saraga-Babic M. Expression of cytokeratin 8, vimentin, syndecan-1 and Ki-67 during human tooth development. J Mol Histol 2014; 45:627-40. [PMID: 25120060 DOI: 10.1007/s10735-014-9592-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 08/06/2014] [Indexed: 12/22/2022]
Abstract
Spatio-temporal immunolocalizations of cytokeratin 8 (CK8), vimentin, syndecan-1 and Ki-67 were analyzed in ten human incisors and canine tooth germs between the 7th and 20th developmental weeks. CK8 expression was mild to moderate in the epithelial tooth parts, while it shifted from absent or mild in its mesenchymal parts, but few cells, sparsely distributed throughout the tooth germ, strongly expressed CK8. As development progressed, CK8 expression increased to strong in preameloblasts, while expression of vimentin increased to moderate in the epithelial and mesenchymal tooth parts, particularly in the dental papilla and sac. Co-expression of CK8 and vimentin was observed in some parts of the tooth germ, and was increasing in the differentiating preameloblasts and preodontoblasts. Syndecan-1 showed characteristic shift of expression from epithelial to mesenchymal tooth parts, being particularly strong in dental papilla, sac and cervical loops, while co-expression of Ki-67/syndecan-1 was strong in the dental papilla. Our study demonstrated spatio-temporal expression and restricted co-expression of the investigated markers, indicating participation of CK8 and vimentin in cell proliferation and migration, and differentiation of preodontoblasts and preameloblasts. Our data also suggest involvement of syndecan-1 in morphogenesis of the developing tooth crown and cervical loops, and together with CK8 and vimentin in differentiation of preameloblasts and preodontoblasts.
Collapse
Affiliation(s)
- D Kero
- School of Dental Medicine, University of Split, Soltanska 2, 21000, Split, Croatia
| | | | | | | | | | | |
Collapse
|
5
|
Braeuer RR, Watson IR, Wu CJ, Mobley AK, Kamiya T, Shoshan E, Bar-Eli M. Why is melanoma so metastatic? Pigment Cell Melanoma Res 2014; 27:19-36. [PMID: 24106873 DOI: 10.1111/pcmr.12172] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 09/19/2013] [Indexed: 02/03/2023]
Abstract
Malignant melanoma is one of the most aggressive cancers and can disseminate from a relatively small primary tumor and metastasize to multiple sites, including the lung, liver, brain, bone, and lymph nodes. Elucidating the molecular and genetic changes that take place during the metastatic process has led to a better understanding of why melanoma is so metastatic. Herein, we describe the unique features that distinguish melanoma from other solid tumors and contribute to the malignant phenotype of melanoma cells. For example, although melanoma cells are highly antigenic, they are extremely efficient at evading host immune response. Melanoma cells share numerous cell surface molecules with vascular cells, are highly angiogenic, are mesenchymal in nature, and possess a higher degree of 'stemness' than do other solid tumors. Finally, analysis of melanoma mutations has revealed that the gene expression profile of malignant melanoma is different from that of other cancers. Elucidating these molecular and genetic processes in highly metastatic melanoma can lead to the development of improved treatment and individualized therapy options.
Collapse
Affiliation(s)
- Russell R Braeuer
- Department of Cancer Biology, The University of Texas at MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Yan C, Grimm WA, Garner WL, Qin L, Travis T, Tan N, Han YP. Epithelial to mesenchymal transition in human skin wound healing is induced by tumor necrosis factor-alpha through bone morphogenic protein-2. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:2247-58. [PMID: 20304956 DOI: 10.2353/ajpath.2010.090048] [Citation(s) in RCA: 211] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Epithelial-mesenchymal transition (EMT), characterized by loss of epithelial adhesion and gain of mesenchymal features, is an important mechanism to empower epithelial cells into the motility that occurs during embryonic development and recurs in cancer and fibrosis. Whether and how EMT occurs in wound healing and fibrosis in human skin remains unknown. In this study we found that migrating epithelial cells in wound margins and deep epithelial ridges had gained mesenchymal features such as vimentin and FSP1 expression. In hypertrophic scars, EMT-related genes were elevated along with inflammatory cytokines, indicating a causal relationship. To reconstitute EMT in vitro, normal human skin and primary keratinocytes were exposed to cytokines such as tumor necrosis factor-alpha (TNF-alpha), resulting in expression of vimentin, FSP1, and matrix metalloproteinases. Moreover, TNF-alpha-induced EMT was impaired by antagonists against bone morphogen proteins (BMP) 2/4, suggesting that BMP mediates the TNF-alpha-induced EMT in human skin. Indeed, TNF-alpha could induce BMP-2 and its receptor (BMPR1A) in human skin and primary keratinocytes, and BMP2 could induce EMT features in skin explants and primary keratinocytes. In summary, we uncovered EMT features in both acute and fibrotic cutaneous wound healing of human skin. Moreover, we propose that the mesenchymal induction in wound healing is motivated by TNF-alpha, in part, through induction of BMP.
Collapse
Affiliation(s)
- Chunli Yan
- Department of Surgery, the Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Roberts DW, Newton RA, Leonard JH, Sturm RA. Melanocytes expressing MC1R polymorphisms associated with red hair color have altered MSH-ligand activated pigmentary responses in coculture with keratinocytes. J Cell Physiol 2008; 215:344-55. [PMID: 17960564 DOI: 10.1002/jcp.21318] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The occurrence of red hair and pale skin in individuals, which is associated with UV-radiation sensitivity and increased skin cancer risk, is mainly due to polymorphisms in the melanocortin-1 receptor (MC1R) expressed in melanocytes. We have established a serum free human melanocyte-keratinocyte coculture system to study the behavior and functional abilities of melanocytes expressing MC1R red hair color (RHC) variants in order to identify differences from their wild type (WT) counterparts. This model revealed the importance of elevated calcium levels in promoting strong melanocyte interaction with the surrounding keratinocytes and resulted in a dendritic melanocyte morphology similar to that in skin. However, the dendricity response following agonist activation of the MC1R receptor by NDP-MSH peptide, was markedly enhanced in WT melanocytes in comparison to RHC strains. Analysis of mRNA expression and protein levels of the major pigmentation markers following NDP-MSH treatment distinguished the enzyme dopachrome tautomerase as preferentially upregulated in cocultures of WT strains, with negligible or a much reduced response in melanocytes with RHC variant alleles. These results highlight the use of the coculture system in determining fundamental differences in the physiology of melanocytes expressing RHC MC1R receptors and those of WT genotype, which are likely to contribute to the increased skin cancer risk for individuals that carry these variants.
Collapse
Affiliation(s)
- Donald W Roberts
- Melanogenix Group, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | | | | | | |
Collapse
|
8
|
Abstract
Stem cell factor is a growth factor for normal human melanocytes, that acts through the tyrosine kinase receptor c-kit. We have previously demonstrated that stem cell factor increases melanocyte adhesion and migration on fibronectin, and regulates integrin protein expression. In this report, we have characterized the effect of stem cell factor on the organization of the actin cytoskeleton in human melanocytes attached to fibronectin, and have examined the effect of stem cell factor on the phosphorylation of the focal contact protein paxillin and on the expression of the focal contact proteins talin, paxillin, vinculin, and alpha-actinin. Paxillin is a vinculin-binding protein that is a substrate of focal adhesion kinase, a nonreceptor tyrosine kinase, and in its phosphorylated form is believed to stabilize focal contacts. We show that stem cell factor induces a rapid increase in actin stress fiber formation in melanocytes, which can be abrogated by genistein, a tyrosine kinase inhibitor, and that stem cell factor induces phosphorylation of paxillin on tyrosine residues. In contrast, stem cell factor did not regulate expression of any of the four focal contact proteins tested. These findings have implications for the models describing the mechanisms of action of stem cell factor on melanocyte adhesion and migration, and suggest that reorganization of the cytoskeleton is a primary effect of stem cell factor on human melanocytes.
Collapse
Affiliation(s)
- G Scott
- Department of Dermatology, University of Rochester School of Medicine and Dentistry, NY 14642, USA
| | | | | |
Collapse
|