1
|
Conter M. Recent advancements in meat traceability, authenticity verification, and voluntary certification systems. Ital J Food Saf 2024; 14:12971. [PMID: 39895478 PMCID: PMC11788888 DOI: 10.4081/ijfs.2024.12971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 09/09/2024] [Indexed: 02/04/2025] Open
Abstract
The growing demand for transparency in the food industry has led to significant advancements in meat traceability. Ensuring the authenticity and origin of meat products is critical for consumer trust, public health, and compliance with regulations. This paper reviews recent innovations in meat traceability, with a focus on blockchain technology as a novel approach to ensuring traceability. Additionally, advanced methods for verifying meat authenticity and origin, such as isotope fingerprinting, DNA analysis, and spectroscopic methods, are discussed. The role of voluntary certification schemes in enhancing traceability and authenticity verification in the meat industry is also explored. The findings highlight the importance of integrating cutting-edge technologies and certification schemes to build a robust and transparent meat supply chain.
Collapse
Affiliation(s)
- Mauro Conter
- Department of Veterinary Science, University of Parma.
| |
Collapse
|
2
|
Hoffman LC, Schreuder J, Cozzolino D. Food authenticity and the interactions with human health and climate change. Crit Rev Food Sci Nutr 2024:1-14. [PMID: 39101830 DOI: 10.1080/10408398.2024.2387329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Food authenticity and fraud, as well as the interest in food traceability have become a topic of increasing interest not only for consumers but also for the research community and the food manufacturing industry. Food authenticity and fraud are becoming prevalent in both the food supply and value chains since ancient times where different issues (e.g., food spoilage during shipment and storage, mixing decay foods with fresh products) has resulted in foods that influence consumers health. The effect of climate change on the quality of food ingredients and products could also have the potential to influence food authenticity. However, this issue has not been considered. This article focused on the interactions between consumer health and the potential effects of climate change on food authenticity and fraud. The role of technology and development of risk management tools to mitigate these issues are also discussed. Where applicable papers that underline the links between the interactions of climate change, human health and food fraud were referenced.
Collapse
Affiliation(s)
- Louwrens C Hoffman
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD, Australia
| | - Jana Schreuder
- Food Science Department, Stellenbosch University, Stellenbosch, South Africa
| | - Daniel Cozzolino
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
3
|
Jia Z, Zhang J, Ji Z, Yang X, Shi C, Sun X, Guo Y. Preparation of waterborne anti-counterfeiting ink based on dual luminescent nanohybrids of bacterial cellulose nanocrystals and lanthanide‑nitrogen co-modified GQDs. Int J Biol Macromol 2024; 271:132341. [PMID: 38821792 DOI: 10.1016/j.ijbiomac.2024.132341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/07/2024] [Accepted: 05/11/2024] [Indexed: 06/02/2024]
Abstract
To address the growing challenge of counterfeit prevention, this study developed a novel anti-counterfeiting ink system based on bacterial cellulose nanocrystals (BCNC) and lanthanide (Er, Yb)‑nitrogen (N) co-dropped graphene quantum dots (GQDs), which exhibited both photoluminescence (PL) and upconversion photoluminescence (UCPL) fluorescent properties as well as excellent rheological characteristics. The Er/Yb/N-GQDs with positive charges were synthesized by a one-step hydrothermal method and subsequently assembled with negatively charged BCNC through electrostatic self-assembly to fabricate a novel nanohybrid, Er/Yb/N-GQDs-BCNC. Raman spectroscopy results indicated an enhancement in the graphitization of GQDs due to lanthanide modification. The TEM results demonstrated a homogeneous distribution of Er/Yb/N-GQDs on BCNC, while XRD, FTIR, and XPS analyses confirmed their physical binding, thus validating the successful synthesis of novel nanohybrids. Then, Er/Yb/N-GQDs-BCNC was introduced into PVA waterborne ink and exhibited dual anti-counterfeiting properties by emitting blue fluorescence at Em 440 nm under Ex 370 nm and green fluorescence at Em 550 nm under Ex 980 nm. Furthermore, the incorporation of BCNC significantly enhanced the thixotropic behavior and yield stress of the PVA waterborne ink. This enhancement made the dual anti-counterfeiting fluorescent ink more suitable for diversified applications on different devices and various substrates, thus providing a novel approach for convenient and rapid information encryption and high security anti-counterfeiting.
Collapse
Affiliation(s)
- Zhixin Jia
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Shandong, Zibo 255049, China; Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; National Engineering Research Center for Information Technology in Agriculture, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | | | - Zengtao Ji
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; National Engineering Research Center for Information Technology in Agriculture, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Xinting Yang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Shandong, Zibo 255049, China; Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; National Engineering Research Center for Information Technology in Agriculture, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs, Beijing 100097, China.
| | - Ce Shi
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; National Engineering Research Center for Information Technology in Agriculture, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs, Beijing 100097, China.
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Shandong, Zibo 255049, China
| | - Yemin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Shandong, Zibo 255049, China
| |
Collapse
|
4
|
Maritano V, Barge P, Biglia A, Comba L, Ricauda Aimonino D, Tortia C, Gay P. Anticounterfeiting and Fraud Mitigation Solutions for High-value Food Products. J Food Prot 2024; 87:100251. [PMID: 38403269 DOI: 10.1016/j.jfp.2024.100251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
Globalization and the increasing complexity of supply chains have allowed food fraud to expand to a great extent. Some of the most serious effects of these deceitful activities are damage to a brand's reputation and trust, economic losses, and public health risks. The usual victims of food fraud are dairy, meat, fish, and seafood products, as well as fats/oils and alcoholic drinks. The purpose of this review paper is to present an updated analysis of the currently available anticounterfeit technologies and their application to the four most fraud-affected food supply chains. An assessment that was conducted to determine when the adoption of a combination of technologies could enhance food safety and brand protection is also provided. The obtained results indicate that electronic and data-driven technologies (RFID devices and digital traceability systems) are still in their infancy in the food sectors that are subjected the most to fraudulent activities. Research is necessary to develop innovative digital and physical technologies to "outsmart" such fraudsters and to prevent their illicit actions in the food sector.
Collapse
Affiliation(s)
- V Maritano
- Department of Agricultural, Forest and Food Sciences (DiSAFA) - Università degli Studi di Torino, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy.
| | - P Barge
- Department of Agricultural, Forest and Food Sciences (DiSAFA) - Università degli Studi di Torino, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy
| | - A Biglia
- Department of Agricultural, Forest and Food Sciences (DiSAFA) - Università degli Studi di Torino, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy
| | - L Comba
- Department of Agricultural, Forest and Food Sciences (DiSAFA) - Università degli Studi di Torino, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy
| | - D Ricauda Aimonino
- Department of Agricultural, Forest and Food Sciences (DiSAFA) - Università degli Studi di Torino, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy
| | - C Tortia
- Department of Agricultural, Forest and Food Sciences (DiSAFA) - Università degli Studi di Torino, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy.
| | - P Gay
- Department of Agricultural, Forest and Food Sciences (DiSAFA) - Università degli Studi di Torino, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy
| |
Collapse
|