1
|
Lu M, Lu P, Liu S, Peng Y, Yang Z, Chu Z, Hong Z, Yang Z, Hu Y. Chitosan/acrylic rosin-based superhydrophobic coatings inspired by Pickering emulsion template and lotus leaf surface structure for paper-based food packaging. Int J Biol Macromol 2025; 308:142375. [PMID: 40120890 DOI: 10.1016/j.ijbiomac.2025.142375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/05/2025] [Accepted: 03/19/2025] [Indexed: 03/25/2025]
Abstract
The superhydrophobic coated papers have attracted much attention as the promising alternatives for disposable plastic packaging materials in food packaging fields. Despite recent visible progress in constructing superhydrophobic coated papers, it is still a challenge to realize superhydrophobicity, high oil-resistant behavior, biodegradability and recyclability at the same time in a coated paper. Herein, we have effectively constructed the superhydrophobic coated (PE&SP-CP) paper with the imitated lotus leaf surface structures by firstly dip-coating cellulose nanocrystals stabilized Pickering emulsion containing chitosan in water phase and acrylic rosin (AAR) in oil phase, and then spraying ethanol suspension of hydrophobic nano-silica (hSiO2) and polydimethylsiloxane (PDMS). In this aspect, the micro-nano hierarchical surface of chitosan-based coating film consists of AAR microcapsules and hSiO2 nanoparticles, as well as covered a hydrophobic PDMS polymer layer. And the prepared PE&SP-CP paper with surface superhydrophobicity demonstrates the highly water barrier performance with the water contact angle of 155.8° and water vapor permeability rate of 1.42 × 10-10 gm-1s-1Pa-1, the favorable oil repellency with the kit rating of 9/12, the clearly improved tensile strengths of 21.67 MPa. Interestingly, the PE&SP-CP paper also shows superior antifouling performance, self-cleaning ability, biodegradability of soil burial and recyclability. This work provides a universal approach for the effective construction of oil-resistant, self-cleaning, antifouling, recyclable, biodegradable superhydrophobic coated paper with the imitated lotus leaf surface structure, which has great potential application in the food packaging industry.
Collapse
Affiliation(s)
- Manzhi Lu
- Key Laboratory for Bio-based Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Pan Lu
- Key Laboratory for Bio-based Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Song Liu
- Key Laboratory for Bio-based Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Yingying Peng
- Key Laboratory for Bio-based Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Ziming Yang
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture & Rural Affairs, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China.
| | - Zhuangzhuang Chu
- Key Laboratory for Bio-based Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Ziyin Hong
- Key Laboratory for Bio-based Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Zhuohong Yang
- Key Laboratory for Bio-based Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| | - Yang Hu
- Key Laboratory for Bio-based Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
2
|
Xie B, Liu Y, Li X, Yang P, He W. Solubilization techniques used for poorly water-soluble drugs. Acta Pharm Sin B 2024; 14:4683-4716. [PMID: 39664427 PMCID: PMC11628819 DOI: 10.1016/j.apsb.2024.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/28/2024] [Accepted: 08/14/2024] [Indexed: 12/13/2024] Open
Abstract
About 40% of approved drugs and nearly 90% of drug candidates are poorly water-soluble drugs. Low solubility reduces the drugability. Effectively improving the solubility and bioavailability of poorly water-soluble drugs is a critical issue that needs to be urgently addressed in drug development and application. This review briefly introduces the conventional solubilization techniques such as solubilizers, hydrotropes, cosolvents, prodrugs, salt modification, micronization, cyclodextrin inclusion, solid dispersions, and details the crystallization strategies, ionic liquids, and polymer-based, lipid-based, and inorganic-based carriers in improving solubility and bioavailability. Some of the most commonly used approved carrier materials for solubilization techniques are presented. Several approved poorly water-soluble drugs using solubilization techniques are summarized. Furthermore, this review summarizes the solubilization mechanism of each solubilization technique, reviews the latest research advances and challenges, and evaluates the potential for clinical translation. This review could guide the selection of a solubilization approach, dosage form, and administration route for poorly water-soluble drugs. Moreover, we discuss several promising solubilization techniques attracting increasing attention worldwide.
Collapse
Affiliation(s)
- Bing Xie
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Yaping Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Xiaotong Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Pei Yang
- School of Science, China Pharmaceutical University, Nanjing 2111198, China
| | - Wei He
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| |
Collapse
|
3
|
Zhang J, Dong F, Liu C, Nie J, Feng S, Yi T. Progress of Drug Nanocrystal Self-Stabilized Pickering Emulsions: Construction, Characteristics In Vitro, and Fate In Vivo. Pharmaceutics 2024; 16:293. [PMID: 38399347 PMCID: PMC10891687 DOI: 10.3390/pharmaceutics16020293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
A drug nanocrystal self-stabilized Pickering emulsion (DNSPE) is a novel Pickering emulsion with drug nanocrystals as the stabilizer. As a promising drug delivery system, DNSPEs have attracted increasing attention in recent years due to their high drug loading capacity and ability to reduce potential safety hazards posed by surfactants or specific solid particles. This paper comprehensively reviews the progress of research on DNSPEs, with an emphasis on the main factors influencing their construction, characteristics and measurement methods in vitro, and fate in vivo, and puts forward issues that need to be studied further. The review contributes to the advancement of DNSPE research and the promotion of their application in the field of drug delivery.
Collapse
Affiliation(s)
- Jifen Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China; (J.Z.); (S.F.)
| | - Fangming Dong
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China; (J.Z.); (S.F.)
| | - Chuan Liu
- Chengdu Institute of Food Inspection, Chengdu 611130, China;
| | - Jinyu Nie
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China; (J.Z.); (S.F.)
| | - Shan Feng
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China; (J.Z.); (S.F.)
| | - Tao Yi
- Faculty of Health Sciences and Sports, Macao Polytechnic University, Macau 999078, China
| |
Collapse
|
4
|
Liu Y, Zhao J, Chen J, Miao X. Nanocrystals in cosmetics and cosmeceuticals by topical delivery. Colloids Surf B Biointerfaces 2023; 227:113385. [PMID: 37270904 DOI: 10.1016/j.colsurfb.2023.113385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/10/2023] [Accepted: 05/28/2023] [Indexed: 06/06/2023]
Abstract
The main issues with local delivery of cosmetics are their high sensitivity and limited drug loading of active pharmaceutical ingredient. Nanocrystal technology offers consumers cutting-edge and effective products and exhibits enormous development potential in the beauty business as a new delivery method to address the issue of low solubility and low permeability of sensitive chemicals. In this review, we described the processes for making NCs, along with the impacts of loading and the uses of different carriers. Among them, nanocrystalline loaded gel and emulsion are widely used and may further improve the stability of the system. Then, we introduced the beauty efficacy of drug NCs from five aspects: anti-inflammation and acne, anti-bacterial, lightening and freckle removal, anti-aging as well as UV protection. Following that, we presented the current scenario about stability and safety. Finally, the challenges and vacancy were discussed along with the potential uses of NCs in the cosmetics industry. This review serves as a resource for the advancement of nanocrystal technology in the cosmetics sector.
Collapse
Affiliation(s)
- Yi Liu
- Marine College, Shandong University, Weihai 264209, China; SDU-ANU Joint Science College, Shandong University, Weihai 264209, China
| | - Jingru Zhao
- Marine College, Shandong University, Weihai 264209, China
| | - Jing Chen
- Marine College, Shandong University, Weihai 264209, China
| | - Xiaoqing Miao
- Marine College, Shandong University, Weihai 264209, China.
| |
Collapse
|
5
|
Lu S, Li X, Wei X, Huang C, Zheng J, Ou S, Yang T, Liu F. Preparation and Characterization of a Novel Natural Quercetin Self-Stabilizing Pickering Emulsion. Foods 2023; 12:foods12071415. [PMID: 37048236 PMCID: PMC10094174 DOI: 10.3390/foods12071415] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/12/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
In contrast to their well-known physiological properties, phytochemicals, such as flavonoids, have been less frequently examined for their physiochemical properties (e.g., surface activity). A natural quercetin self-stabilizing Pickering emulsion was fabricated and characterized in the present study. The antisolvent precipitation method was used to modify quercetin (in dihydrate form), and the obtained particles were characterized by light microscope, atom force microscope, XRD, and contact angle. The antisolvent treatment was found to reduce the particle size, crystallinity, and surface hydrophobicity of quercetin. We then examined the effects of the antisolvent ratio, particle concentration, and oil fraction on the properties of the quercetin particle-stabilized emulsions. In addition, increasing the antisolvent ratio (1:1~1:10) effectively improved the emulsification performance of the quercetin particles. The emulsion showed good storage stability, and the particle size of the emulsion decreased with the rising particle concentration and increased with the rising oil phase ratio. The findings indicate that natural quercetin treated with antisolvent method has a good ability to stabilize Pickering emulsion, and this emulsion may have good prospective application potential for the development of novel and functional emulsion foods.
Collapse
Affiliation(s)
- Shenglan Lu
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Xueying Li
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Xunran Wei
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Caihuan Huang
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Jie Zheng
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Shiyi Ou
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Tao Yang
- School of Pharmacy, Hainan Medical University, Haikou 571199, China
| | - Fu Liu
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
- Correspondence: ; Tel.: +86-020-85226630
| |
Collapse
|