1
|
Van Mullem JJ, Zhang J, Dias DR, Schwan RF. Using wild yeasts to modulate the aroma profile of low-alcoholic meads. Braz J Microbiol 2022; 53:2173-2184. [PMID: 36269554 PMCID: PMC9679090 DOI: 10.1007/s42770-022-00840-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 10/02/2022] [Indexed: 01/13/2023] Open
Abstract
In recent years, ample research has focused on applying wild (especially non-Saccharomyces) yeasts in producing alcoholic beverages. Common characteristics of wild yeast strains include simultaneous high production of fruity and floral aroma compounds and low ethanol production. In this study, mead starter cultures were selected based on preliminary screening of wild yeast strains from a Brazilian culture collection (n = 63) for their ability to produce aroma-active compounds. The selected strains included one strain of Saccharomyces cerevisiae and three non-Saccharomyces strains (Pichia jadinii, Torulaspora delbrueckii, and Kluyveromyces lactis). These strains were used to ferment honey must prepared with Aroeira honey, adjusted to 24°Brix, which took 36 days to complete. Single culture fermentations and co-fermentations with S. cerevisiae and non-Saccharomyces strains were carried out. The quality of the produced beverages was evaluated by sugar consumption and production of alcohols and organic acids, analyzed with high-performance liquid chromatography. The volatile organic compound composition was analyzed with gas chromatography-mass spectrometry. Meads with various ethanol amounts (4.7-11.0% v/v) and residual sugar contents (70.81-160.25 g l-1) were produced. In addition, in both single-strain fermentation and co-fermentation with S. cerevisiae, meads produced with either Torulaspora delbrueckii or Kluyveromyces lactis had a roughly three-fold higher content of honey-aroma compound phenethyl acetate and a higher hedonic impression score than meads produced with only S. cerevisiae. These results demonstrated non-Saccharomyces yeasts' ability to increase aroma complexity and improve the sensory quality of low-alcoholic meads.
Collapse
Affiliation(s)
- Joshua Johannes Van Mullem
- Biology Department, Federal University of Lavras, Lavras, MG CEP 37200-000 Brazil
- Present Address: Nature Journey, Zhuhai, 519000 China
| | - Jing Zhang
- Biology Department, Federal University of Lavras, Lavras, MG CEP 37200-000 Brazil
- Present Address: Nature Journey, Zhuhai, 519000 China
| | - Disney Ribeiro Dias
- Food Science Department, Federal University of Lavras, Lavras, MG CEP 37200-000 Brazil
| | | |
Collapse
|
2
|
Tang J, Lin B, Jiang W, Li Q, Zhu L, Zhang G, Chen Q, Yang Q, Yang S, Chen S. Screening of β -damascenone-producing strains in light-flavor Baijiu and its production optimization via response surface methodology. Front Microbiol 2022; 13:1067671. [PMID: 36523831 PMCID: PMC9745179 DOI: 10.3389/fmicb.2022.1067671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/14/2022] [Indexed: 08/27/2024] Open
Abstract
As a C13-norisoprenoid aroma substance, β-damascenone is a highly important aromatic compound and an active constituent. The purpose of this study was to investigate the change law of β-damascenone during the light-flavor Baijiu brewing process, and screen the indigenous microbial strains that produce this compound and optimize fermentation parameters for improving β-damascenone production using a statistical approach. In this project, Wickerhamomyces anomalus YWB-1 exhibited the highest producing activity of β-damascenone. Fermentation conditions were optimized for β-damascenone production using a one-factor-at-a-time (OFAT) approach. A Plackett-Burman design was subsequently adopted to assess the effects of initial pH, incubation temperature, inoculum size, fermentation period, and original Brix degree. Analysis of variance (ANOVA) showed that the correlation coefficient (R 2) of the executive model was 0.9795, and this value was significant (p < 0.05). Three significant variables were optimized at three different coded levels using a Box-Behnken design (BBD) of response surface methodology (RSM). Here, 7.25 μg/L β-damascenone was obtained under the following optimum conditions: initial pH of 3.31, original Brix degree of 10.53%, and fermentation period of 52.13 h. The yield was increased 3.02-fold compared with that obtained under unoptimized conditions. This information is conducive to the control of flavor production by regulating variable parameters in Baijiu fermentation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Shenxi Chen
- Hubei Key Laboratory of Quality and Safety of Traditional Chinese Medicine and Health Food, Jing Brand Co., Ltd., Daye, China
| |
Collapse
|
3
|
Li Y, Long H, Jiang G, Gong X, Yu Z, Huang M, Guan T, Guan Y, Liu X. Analysis of the ethanol stress response mechanism in Wickerhamomyces anomalus based on transcriptomics and metabolomics approaches. BMC Microbiol 2022; 22:275. [PMCID: PMC9664796 DOI: 10.1186/s12866-022-02691-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/02/2022] [Indexed: 11/16/2022] Open
Abstract
Abstract
Background
Wickerhamomyces anomalus (W. anomalus) is a kind of non-Saccharomyces yeast that has a variety of unique physiological characteristics and metabolic features and is widely used in many fields, such as food preservation, biomass energy, and aquaculture feed protein production. However, the mechanism of W. anomalus response to ethanol stress is still unclear, which greatly limits its application in the production of ethanol beverages and ethanol fuels. Therefore, we checked the effects of ethanol stress on the morphology, the growth, and differentially expressed genes (DEGs) and metabolites (DEMs) of W. anomalus.
Results
High concentrations of ethanol (9% ethanol and 12% ethanol) remarkably inhibited the growth of W. anomalus. Energy metabolism, amino acid metabolism, fatty acids metabolism, and nucleic acid metabolism were significantly influenced when exposing to 9% ethanol and 12% ethanolstress, which maybe universal for W. anomalus to response to different concentrations of ethanol stressl Furthermore, extracellular addition of aspartate, glutamate, and arginine significantly abated ethanol damage and improved the survival rate of W. anomalus.
Conclusions
The results obtained in this study provide insights into the mechanisms involved in W. anomalus response to ethanol stress. Therefore, new strategies can be realized to improve the ethanol tolerance of W. anomalus through metabolic engineering.
Collapse
|
4
|
Paes BG, Steindorff AS, Formighieri EF, Pereira IS, Almeida JRM. Physiological characterization and transcriptome analysis of Pichia pastoris reveals its response to lignocellulose-derived inhibitors. AMB Express 2021; 11:2. [PMID: 33389238 PMCID: PMC7779389 DOI: 10.1186/s13568-020-01170-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022] Open
Abstract
The negative effects of lignocellulose-derived inhibitors such as acetic acid and furaldehydes on microbial metabolism constitute a significant drawback to the usage of biomass feedstocks for the production of fuels and chemicals. The yeast Pichia pastoris has shown a great biotechnological potential for producing heterologous proteins and renewable chemicals. Despite its relevance, the performance of P. pastoris in presence of lignocellulose-derived inhibitors remains unclear. In this work, our results show for the first time the dose-dependent response of P. pastoris to acetic acid, furaldehydes (HMF and furfural), and sugarcane biomass hydrolysate, both at physiological and transcriptional levels. The yeast was able to grow in synthetic media with up to 6 g.L-1 acetic acid, 1.75 g.L-1 furaldehydes or hydrolysate diluted to 10% (v/v). However, its metabolism was completely hindered in presence of hydrolysate diluted to 30% (v/v). Additionally, the yeast was capable to co-consume acetic acid and glucose. At the transcriptional level, P. pastoris response to lignocellulose-derived inhibitors relays on the up-regulation of genes related to transmembrane transport, oxidoreductase activities, RNA processing, and the repression of pathways related to biosynthetic processes and central carbon metabolism. These results demonstrate a polygenetic response that involves detoxification activities, and maintenance of energy and cellular homeostasis. In this context, ALD4, OYE3, QOR2, NTL100, YCT1, and PPR1 were identified as target genes to improve P. pastoris tolerance. Altogether, this work provides valuable insights into the P. pastoris stress tolerance, which can be useful to expand its use in different bioprocesses.
Collapse
Affiliation(s)
- Barbara G Paes
- Laboratory of Genetics and Biotechnology, Embrapa Agroenergia, Parque Estação Biológica, PqEB - W3 Norte Final s/no, Brasília, DF, 70.770-901, Brazil
- Graduate Program of Molecular Biology, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, Brazil
| | - Andrei Stecca Steindorff
- Laboratory of Genetics and Biotechnology, Embrapa Agroenergia, Parque Estação Biológica, PqEB - W3 Norte Final s/no, Brasília, DF, 70.770-901, Brazil
| | - Eduardo F Formighieri
- Laboratory of Genetics and Biotechnology, Embrapa Agroenergia, Parque Estação Biológica, PqEB - W3 Norte Final s/no, Brasília, DF, 70.770-901, Brazil
| | - Ildinete Silva Pereira
- Laboratory of Genetics and Biotechnology, Embrapa Agroenergia, Parque Estação Biológica, PqEB - W3 Norte Final s/no, Brasília, DF, 70.770-901, Brazil
- Graduate Program of Molecular Biology, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, Brazil
| | - João Ricardo M Almeida
- Laboratory of Genetics and Biotechnology, Embrapa Agroenergia, Parque Estação Biológica, PqEB - W3 Norte Final s/no, Brasília, DF, 70.770-901, Brazil.
- Graduate Program of Microbial Biology, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, Brazil.
| |
Collapse
|
5
|
Sustainable Second-Generation Bioethanol Production from Enzymatically Hydrolyzed Domestic Food Waste Using Pichia anomala as Biocatalyst. SUSTAINABILITY 2020. [DOI: 10.3390/su13010259] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In the current study, a domestic food waste containing more than 50% of carbohydrates was assessed as feedstock to produce second-generation bioethanol. Aiming to the maximum exploitation of the carbohydrate fraction of the waste, its hydrolysis via cellulolytic and amylolytic enzymatic blends was investigated and the saccharification efficiency was assessed in each case. Fermentation experiments were performed using the non-conventional yeast Pichia anomala (Wickerhamomyces anomalus) under both separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) modes to evaluate the conversion efficiencies and ethanol yields for different enzymatic loadings. It was shown that the fermentation efficiency of the yeast was not affected by the fermentation mode and was high for all handlings, reaching 83%, whereas the enzymatic blend containing the highest amount of both cellulolytic and amylolytic enzymes led to almost complete liquefaction of the waste, resulting also in ethanol yields reaching 141.06 ± 6.81 g ethanol/kg waste (0.40 ± 0.03 g ethanol/g consumed carbohydrates). In the sequel, a scale-up fermentation experiment was performed with the highest loading of enzymes in SHF mode, from which the maximum specific growth rate, μmax, and the biomass yield, Yx/s, of the yeast from the hydrolyzed waste were estimated. The ethanol yields that were achieved were similar to those of the respective small scale experiments reaching 138.67 ± 5.69 g ethanol/kg waste (0.40 ± 0.01 g ethanol/g consumed carbohydrates).
Collapse
|
6
|
Non-Saccharomyces in Winemaking: Source of Mannoproteins, Nitrogen, Enzymes, and Antimicrobial Compounds. FERMENTATION-BASEL 2020. [DOI: 10.3390/fermentation6030076] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Traditionally, non-Saccharomyces yeasts have been considered contaminants because of their high production of metabolites with negative connotations in wine. This aspect has been changing in recent years due to an increased interest in the use of these yeasts in the winemaking process. The majority of these yeasts have a low fermentation power, being used in mixed fermentations with Saccharomyces cerevisiae due to their ability to produce metabolites of enological interest, such as glycerol, fatty acids, organic acids, esters, higher alcohols, stable pigments, among others. Additionally, existing literature reports various compounds derived from the cellular structure of non-Saccharomyces yeasts with benefits in the winemaking process, such as polysaccharides, proteins, enzymes, peptides, amino acids, or antimicrobial compounds, some of which, besides contributing to improving the quality of the wine, can be used as a source of nitrogen for the fermentation yeasts. These compounds can be produced exogenously, and later incorporated into the winemaking process, or be uptake directly by S. cerevisiae from the fermentation medium after their release via lysis of non-Saccharomyces yeasts in sequential fermentations.
Collapse
|
7
|
Xylitol Production: Identification and Comparison of New Producing Yeasts. Microorganisms 2019; 7:microorganisms7110484. [PMID: 31652879 PMCID: PMC6920771 DOI: 10.3390/microorganisms7110484] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 09/14/2019] [Indexed: 01/31/2023] Open
Abstract
Xylitol is a sugar alcohol with five carbons that can be used in the pharmaceutical and food industries. It is industrially produced by chemical route; however, a more economical and environmentally friendly production process is of interest. In this context, this study aimed to select wild yeasts able to produce xylitol and compare their performance in sugarcane bagasse hydrolysate. For this, 960 yeast strains, isolated from soil, wood, and insects have been prospected and selected for the ability to grow on defined medium containing xylose as the sole carbon source. A total of 42 yeasts was selected and their profile of sugar consumption and metabolite production were analyzed in microscale fermentation. The six best xylose-consuming strains were molecularly identified as Meyerozyma spp. The fermentative kinetics comparisons on defined medium and on sugarcane bagasse hydrolysate showed physiological differences among these strains. Production yields vary from YP/S = 0.25 g/g to YP/S = 0.34 g/g in defined medium and from YP/S = 0.41 g/g to YP/S = 0.60 g/g in the hydrolysate. Then, the xylitol production performance of the best xylose-consuming strain obtained in the screening, which was named M. guilliermondii B12, was compared with the previously reported xylitol producing yeasts M. guilliermondii A3, Spathaspora sp. JA1, and Wickerhamomyces anomalus 740 in sugarcane bagasse hydrolysate under oxygen-limited conditions. All the yeasts were able to metabolize xylose, but W. anomalus 740 showed the highest xylitol production yield, reaching a maximum of 0.83 g xylitol/g of xylose in hydrolysate. The screening strategy allowed identification of a new M. guilliermondii strain that efficiently grows in xylose even in hydrolysate with a high content of acetic acid (~6 g/L). In addition, this study reports, for the first time, a high-efficient xylitol producing strain of W. anomalus, which achieved, to the best of our knowledge, one of the highest xylitol production yields in hydrolysate reported in the literature.
Collapse
|
8
|
Ben Atitallah I, Antonopoulou G, Ntaikou I, Alexandropoulou M, Nasri M, Mechichi T, Lyberatos G. On the evaluation of different saccharification schemes for enhanced bioethanol production from potato peels waste via a newly isolated yeast strain of Wickerhamomyces anomalus. BIORESOURCE TECHNOLOGY 2019; 289:121614. [PMID: 31203181 DOI: 10.1016/j.biortech.2019.121614] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/03/2019] [Accepted: 06/06/2019] [Indexed: 06/09/2023]
Abstract
The present study focuses on the exploration of the potential use of potato peels waste (PPW) as feedstock for bioethanol production, using a newly isolated yeast strain, Wickerhamomyces anomalus, via different saccharification and fermentation schemes. The saccharification of PPW was performed via thermal and chemical (acid, alkali) pretreatment, as well as via enzymatic hydrolysis through the use of commercial enzymes (cellulase and amylase) or enzymes produced at lab scale (alpha-amylase from Bacillus sp. Gb67), either separately or in mixtures. The results indicated that the enzymatic treatment by commercial enzymes led to a higher saccharification efficiency (72.38%) and ethanol yield (0.49 g/gconsumed sugars) corresponding to 96% of the maximum theoretical. In addition, acid pretreatment was found to be beneficial for the process, leading also to high hydrolysis and ethanol yields, indicating that PPW is a very promising feedstock for bio-ethanol production by W. anomalus under different process schemes.
Collapse
Affiliation(s)
- Imen Ben Atitallah
- Laboratory of Enzyme Engineering and Microbiology, National School of Engineers of Sfax, University of Sfax, BP 1173, 3038 Sfax, Tunisia; Laboratory of Biochemistry and Enzymatic Engineering of Lipases, National School of Engineers of Sfax, University of Sfax, 3038 Sfax, Tunisia
| | - Georgia Antonopoulou
- Institute of Chemical Engineering Sciences, Stadiou, Platani, Patras GR 26504, Greece.
| | - Ioanna Ntaikou
- Institute of Chemical Engineering Sciences, Stadiou, Platani, Patras GR 26504, Greece
| | - Maria Alexandropoulou
- Institute of Chemical Engineering Sciences, Stadiou, Platani, Patras GR 26504, Greece
| | - Moncef Nasri
- Laboratory of Enzyme Engineering and Microbiology, National School of Engineers of Sfax, University of Sfax, BP 1173, 3038 Sfax, Tunisia
| | - Tahar Mechichi
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, National School of Engineers of Sfax, University of Sfax, 3038 Sfax, Tunisia
| | - Gerasimos Lyberatos
- Institute of Chemical Engineering Sciences, Stadiou, Platani, Patras GR 26504, Greece; School of Chemical Engineering, National Technical University of Athens, GR 15780 Athens, Greece
| |
Collapse
|
9
|
Abstract
Nowadays it is widely accepted that non-Saccharomyces yeasts, which prevail during the early stages of alcoholic fermentation, contribute significantly to the character and quality of the final wine. Among these yeasts, Wickerhamomyces anomalus (formerly Pichia anomala, Hansenula anomala, Candida pelliculosa) has gained considerable importance for the wine industry since it exhibits interesting and potentially exploitable physiological and metabolic characteristics, although its growth along fermentation can still be seen as an uncontrollable risk. This species is widespread in nature and has been isolated from different environments including grapes and wines. Its use together with Saccharomyces cerevisiae in mixed culture fermentations has been proposed to increase wine particular characteristics. Here, we review the ability of W. anomalus to produce enzymes and metabolites of oenological relevance and we discuss its potential as a biocontrol agent in winemaking. Finally, biotechnological applications of W. anomalus beyond wine fermentation are briefly described.
Collapse
|
10
|
Liem M, Jansen HJ, Dirks RP, Henkel CV, van Heusden GPH, Lemmers RJLF, Omer T, Shao S, Punt PJ, Spaink HP. De novo whole-genome assembly of a wild type yeast isolate using nanopore sequencing. F1000Res 2017; 6:618. [PMID: 30135709 PMCID: PMC6081980 DOI: 10.12688/f1000research.11146.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/09/2018] [Indexed: 11/20/2022] Open
Abstract
Background: The introduction of the MinION sequencing device by Oxford Nanopore Technologies may greatly accelerate whole genome sequencing. Nanopore sequence data offers great potential for de novo assembly of complex genomes without using other technologies. Furthermore, Nanopore data combined with other sequencing technologies is highly useful for accurate annotation of all genes in the genome. In this manuscript we used nanopore sequencing as a tool to classify yeast strains. Methods: We compared various technical and software developments for the nanopore sequencing protocol, showing that the R9 chemistry is, as predicted, higher in quality than R7.3 chemistry. The R9 chemistry is an essential improvement for assembly of the extremely AT-rich mitochondrial genome. We double corrected assemblies from four different assemblers with PILON and assessed sequence correctness before and after PILON correction with a set of 290 Fungi genes using BUSCO. Results: In this study, we used this new technology to sequence and de novo assemble the genome of a recently isolated ethanologenic yeast strain, and compared the results with those obtained by classical Illumina short read sequencing. This strain was originally named Candida vartiovaarae ( Torulopsis vartiovaarae) based on ribosomal RNA sequencing. We show that the assembly using nanopore data is much more contiguous than the assembly using short read data. We also compared various technical and software developments for the nanopore sequencing protocol, showing that nanopore-derived assemblies provide the highest contiguity. Conclusions: The mitochondrial and chromosomal genome sequences showed that our strain is clearly distinct from other yeast taxons and most closely related to published Cyberlindnera species. In conclusion, MinION-mediated long read sequencing can be used for high quality de novo assembly of new eukaryotic microbial genomes.
Collapse
Affiliation(s)
- Michael Liem
- Institute of Biology, Leiden University, Leiden, 2300 RA, Netherlands
| | - Hans J Jansen
- Future Genomics Technologies B.V., Leiden, 2333 BE, Netherlands
| | - Ron P Dirks
- Future Genomics Technologies B.V., Leiden, 2333 BE, Netherlands
| | | | | | - Richard J L F Lemmers
- Department of Human Genetics, Leiden University Medical Center, Leiden, 2333 ZA, Netherlands
| | - Trifa Omer
- Dutch DNA Biotech B.V., Utrecht, 3584 CH, Netherlands
| | - Shuai Shao
- Institute of Biology, Leiden University, Leiden, 2300 RA, Netherlands
| | - Peter J Punt
- Institute of Biology, Leiden University, Leiden, 2300 RA, Netherlands.,Dutch DNA Biotech B.V., Utrecht, 3584 CH, Netherlands
| | - Herman P Spaink
- Institute of Biology, Leiden University, Leiden, 2300 RA, Netherlands
| |
Collapse
|
11
|
Liem M, Jansen HJ, Dirks RP, Henkel CV, van Heusden GPH, Lemmers RJLF, Omer T, Shao S, Punt PJ, Spaink HP. De novo whole-genome assembly of a wild type yeast isolate using nanopore sequencing. F1000Res 2017; 6:618. [PMID: 30135709 DOI: 10.12688/f1000research.11146.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/18/2017] [Indexed: 11/20/2022] Open
Abstract
Background: The introduction of the MinION sequencing device by Oxford Nanopore Technologies may greatly accelerate whole genome sequencing. Nanopore sequence data offers great potential for de novo assembly of complex genomes without using other technologies. Furthermore, Nanopore data combined with other sequencing technologies is highly useful for accurate annotation of all genes in the genome. In this manuscript we used nanopore sequencing as a tool to classify yeast strains. Methods: We compared various technical and software developments for the nanopore sequencing protocol, showing that the R9 chemistry is, as predicted, higher in quality than R7.3 chemistry. The R9 chemistry is an essential improvement for assembly of the extremely AT-rich mitochondrial genome. We double corrected assemblies from four different assemblers with PILON and assessed sequence correctness before and after PILON correction with a set of 290 Fungi genes using BUSCO. Results: In this study, we used this new technology to sequence and de novo assemble the genome of a recently isolated ethanologenic yeast strain, and compared the results with those obtained by classical Illumina short read sequencing. This strain was originally named Candida vartiovaarae ( Torulopsis vartiovaarae) based on ribosomal RNA sequencing. We show that the assembly using nanopore data is much more contiguous than the assembly using short read data. We also compared various technical and software developments for the nanopore sequencing protocol, showing that nanopore-derived assemblies provide the highest contiguity. Conclusions: The mitochondrial and chromosomal genome sequences showed that our strain is clearly distinct from other yeast taxons and most closely related to published Cyberlindnera species. In conclusion, MinION-mediated long read sequencing can be used for high quality de novo assembly of new eukaryotic microbial genomes.
Collapse
Affiliation(s)
- Michael Liem
- Institute of Biology, Leiden University, Leiden, 2300 RA, Netherlands
| | - Hans J Jansen
- Future Genomics Technologies B.V., Leiden, 2333 BE, Netherlands
| | - Ron P Dirks
- Future Genomics Technologies B.V., Leiden, 2333 BE, Netherlands
| | | | | | - Richard J L F Lemmers
- Department of Human Genetics, Leiden University Medical Center, Leiden, 2333 ZA, Netherlands
| | - Trifa Omer
- Dutch DNA Biotech B.V., Utrecht, 3584 CH, Netherlands
| | - Shuai Shao
- Institute of Biology, Leiden University, Leiden, 2300 RA, Netherlands
| | - Peter J Punt
- Institute of Biology, Leiden University, Leiden, 2300 RA, Netherlands.,Dutch DNA Biotech B.V., Utrecht, 3584 CH, Netherlands
| | - Herman P Spaink
- Institute of Biology, Leiden University, Leiden, 2300 RA, Netherlands
| |
Collapse
|
12
|
Fletcher E, Feizi A, Kim S, Siewers V, Nielsen J. RNA-seq analysis of Pichia anomala reveals important mechanisms required for survival at low pH. Microb Cell Fact 2015; 14:143. [PMID: 26376644 PMCID: PMC4574170 DOI: 10.1186/s12934-015-0331-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 08/31/2015] [Indexed: 02/08/2023] Open
Abstract
Background The product yield and titers of biological processes involving the conversion of biomass to desirable chemicals can be limited by environmental stresses encountered by the microbial hosts used for the bioconversion. One of these main stresses is growth inhibition due to exposure to low pH conditions. In order to circumvent this problem, understanding the biological mechanisms involved in acid stress response and tolerance is essential. Characterisation of wild yeasts that have a natural ability to resist such harsh conditions will pave the way to understand the biological basis underlying acid stress resistance. Pichia anomala possesses a unique ability to adapt to and tolerate a number of environmental stresses particularly low pH stress giving it the advantage to outcompete other microorganisms under such conditions. However, the genetic basis of this resistance has not been previously studied. Results To this end, we isolated an acid resistant strain of P. anomala, performed a gross phenotypic characterisation at low pH and also performed a whole genome and total RNA sequencing. By integrating the RNA-seq data with the genome sequencing data, we found that several genes associated with different biological processes including proton efflux, the electron transfer chain and oxidative phosphorylation were highly expressed in P. anomala cells grown in low pH media. We therefore present data supporting the notion that a high expression of proton pumps in the plasma membrane coupled with an increase in mitochondrial ATP production enables the high level of acid stress tolerance of P. anomala. Conclusions Our findings provide insight into the molecular and genetic basis of low pH tolerance in P. anomala which was previously unknown. Ultimately, this is a step towards developing non-conventional yeasts such as P. anomala for the production of industrially relevant chemicals under low pH conditions. Electronic supplementary material The online version of this article (doi:10.1186/s12934-015-0331-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eugene Fletcher
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden. .,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden.
| | - Amir Feizi
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden. .,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden.
| | - SungSoo Kim
- Samsung Advanced Institute of Technology, 130 Samsung-Ro YoungTong-Ku, Suwon, Kyunggi-do, South Korea. .,Biotech Research Team, Dongbu Farm Hannong Co., Ltd., Daejeon, 305-708, Republic of Korea.
| | - Verena Siewers
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden. .,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden.
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden. .,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden. .,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2970, Hørsholm, Denmark.
| |
Collapse
|
13
|
Radecka D, Mukherjee V, Mateo RQ, Stojiljkovic M, Foulquié-Moreno MR, Thevelein JM. Looking beyond Saccharomyces: the potential of non-conventional yeast species for desirable traits in bioethanol fermentation. FEMS Yeast Res 2015; 15:fov053. [PMID: 26126524 DOI: 10.1093/femsyr/fov053] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2015] [Indexed: 01/18/2023] Open
Abstract
Saccharomyces cerevisiae has been used for millennia in the production of food and beverages and is by far the most studied yeast species. Currently, it is also the most used microorganism in the production of first-generation bioethanol from sugar or starch crops. Second-generation bioethanol, on the other hand, is produced from lignocellulosic feedstocks that are pretreated and hydrolyzed to obtain monomeric sugars, mainly D-glucose, D-xylose and L-arabinose. Recently, S. cerevisiae recombinant strains capable of fermenting pentose sugars have been generated. However, the pretreatment of the biomass results in hydrolysates with high osmolarity and high concentrations of inhibitors. These compounds negatively influence the fermentation process. Therefore, robust strains with high stress tolerance are required. Up to now, more than 2000 yeast species have been described and some of these could provide a solution to these limitations because of their high tolerance to the most predominant stress conditions present in a second-generation bioethanol reactor. In this review, we will summarize what is known about the non-conventional yeast species showing unusual tolerance to these stresses, namely Zygosaccharomyces rouxii (osmotolerance), Kluyveromyces marxianus and Ogataea (Hansenula) polymorpha (thermotolerance), Dekkera bruxellensis (ethanol tolerance), Pichia kudriavzevii (furan derivatives tolerance) and Z. bailii (acetic acid tolerance).
Collapse
Affiliation(s)
- Dorota Radecka
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Vaskar Mukherjee
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium Laboratory for Process Microbial Ecology and Bioinspirational Management, Cluster for Bioengineering Technology (CBeT), Department of Microbial and Molecular Systems (M2S), KU Leuven, Campus De Nayer, B-2860 Sint-Katelijne-Waver, Flanders, Belgium
| | - Raquel Quintilla Mateo
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Marija Stojiljkovic
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - María R Foulquié-Moreno
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Johan M Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| |
Collapse
|
14
|
Assessing the potential of wild yeasts for bioethanol production. J Ind Microbiol Biotechnol 2014; 42:39-48. [PMID: 25413210 DOI: 10.1007/s10295-014-1544-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 11/07/2014] [Indexed: 10/24/2022]
Abstract
Bioethanol fermentations expose yeasts to a new, complex and challenging fermentation medium with specific inhibitors and sugar mixtures depending on the type of carbon source. It is, therefore, suggested that the natural diversity of yeasts should be further exploited in order to find yeasts with good ethanol yield in stressed fermentation media. In this study, we screened more than 50 yeast isolates of which we selected five isolates with promising features. The species Candida bombi, Wickerhamomyces anomalus and Torulaspora delbrueckii showed better osmo- and hydroxymethylfurfural tolerance than Saccharomyces cerevisiae. However, S. cerevisiae isolates had the highest ethanol yield in fermentation experiments mimicking high gravity fermentations (25 % glucose) and artificial lignocellulose hydrolysates (with a myriad of inhibitors). Interestingly, among two tested S. cerevisiae strains, a wild strain isolated from an oak tree performed better than Ethanol Red, a S. cerevisiae strain which is currently commonly used in industrial bioethanol fermentations. Additionally, a W. anomalus strain isolated from sugar beet thick juice was found to have a comparable ethanol yield, but needed longer fermentation time. Other non-Saccharomyces yeasts yielded lower ethanol amounts.
Collapse
|
15
|
Sitepu IR, Shi S, Simmons BA, Singer SW, Boundy-Mills K, Simmons CW. Yeast tolerance to the ionic liquid 1-ethyl-3-methylimidazolium acetate. FEMS Yeast Res 2014; 14:1286-94. [DOI: 10.1111/1567-1364.12224] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 10/17/2014] [Indexed: 11/30/2022] Open
Affiliation(s)
- Irnayuli R. Sitepu
- Department of Food Science and Technology; University of California; Davis CA USA
- Forestry Research and Development Agency (FORDA); The Ministry of Forestry; Bogor Indonesia
| | - Shuang Shi
- Department of Food Science and Technology; University of California; Davis CA USA
| | - Blake A. Simmons
- Deconstruction Division; Joint BioEnergy Institute; Emeryville CA USA
- Biological and Materials Sciences Center; Sandia National Laboratories; Livermore CA USA
| | - Steven W. Singer
- Deconstruction Division; Joint BioEnergy Institute; Emeryville CA USA
- Earth Sciences Division; Lawrence Berkeley National Laboratory; Berkeley CA USA
| | - Kyria Boundy-Mills
- Department of Food Science and Technology; University of California; Davis CA USA
| | - Christopher W. Simmons
- Department of Food Science and Technology; University of California; Davis CA USA
- Deconstruction Division; Joint BioEnergy Institute; Emeryville CA USA
| |
Collapse
|
16
|
Zha Y, Hossain AH, Tobola F, Sedee N, Havekes M, Punt PJ. Pichia anomala29X: a resistant strain for lignocellulosic biomass hydrolysate fermentation. FEMS Yeast Res 2014. [DOI: 10.1111/1567-1364.12127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Ying Zha
- TNO Microbiology & Systems Biology; Zeist The Netherlands
- Netherlands Metabolomics Centre (NMC); Leiden The Netherlands
| | | | - Felix Tobola
- TNO Microbiology & Systems Biology; Zeist The Netherlands
| | - Norbert Sedee
- TNO Microbiology & Systems Biology; Zeist The Netherlands
| | - Mieke Havekes
- TNO Microbiology & Systems Biology; Zeist The Netherlands
| | - Peter J. Punt
- TNO Microbiology & Systems Biology; Zeist The Netherlands
- Netherlands Metabolomics Centre (NMC); Leiden The Netherlands
| |
Collapse
|