1
|
Kobalter S, Wriessnegger T, Pichler H. Engineering yeast for tailored fatty acid profiles. Appl Microbiol Biotechnol 2025; 109:101. [PMID: 40263140 PMCID: PMC12014800 DOI: 10.1007/s00253-025-13487-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 04/24/2025]
Abstract
The demand for sustainable and eco-friendly alternatives to fossil and plant oil-derived chemicals has spurred interest in microbial production of lipids, particularly triacylglycerols, fatty acids, and their derivatives. Yeasts are promising platforms for synthesizing these compounds due to their high lipid accumulation capabilities, robust growth, and generally recognized as safe (GRAS) status. There is vast interest in fatty acid and triacylglycerol products with tailored fatty acid chain lengths and compositions, such as polyunsaturated fatty acids and substitutes for cocoa butter and palm oil. However, microbes naturally produce a limited set of mostly long-chain fatty acids, necessitating the development of microbial cell factories with customized fatty acid profiles. This review explores the capabilities of key enzymes involved in fatty acid and triacylglycerol synthesis, including fatty acid synthases, desaturases, elongases, and acyltransferases. It discusses factors influencing fatty acid composition and presents engineering strategies to enhance fatty acid synthesis. Specifically, we highlight successful engineering approaches to modify fatty acid profiles in triacylglycerols and produce tailored fatty acids, and we offer recommendations for host selection to streamline engineering efforts. KEY POINTS: • Detailed overview on all basic aspects of fatty acid metabolism in yeast • Comprehensive description of fatty acid profile tailoring in yeast • Extensive summary of applying tailored fatty acid profiles in production processes.
Collapse
Affiliation(s)
- Simon Kobalter
- Austrian Centre of Industrial Biotechnology (acib) GmbH, Petersgasse 14, 8010, Graz, Austria
| | - Tamara Wriessnegger
- Austrian Centre of Industrial Biotechnology (acib) GmbH, Petersgasse 14, 8010, Graz, Austria
| | - Harald Pichler
- Austrian Centre of Industrial Biotechnology (acib) GmbH, Petersgasse 14, 8010, Graz, Austria.
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, BioTechMed Graz, Petersgasse 14, 8010, Graz, Austria.
| |
Collapse
|
2
|
Park YK, Studena L, Hapeta P, Haddouche R, Bell DJ, Torres-Montero P, Martinez JL, Nicaud JM, Botes A, Ledesma-Amaro R. Efficient biosynthesis of β-caryophyllene by engineered Yarrowia lipolytica. Microb Cell Fact 2025; 24:38. [PMID: 39910564 PMCID: PMC11800524 DOI: 10.1186/s12934-025-02660-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 01/21/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND β-Caryophyllene, a sesquiterpenoid, holds considerable potential in pharmaceutical, nutraceutical, cosmetic, and chemical industries. In order to overcome the limitation of β-caryophyllene production by the extraction from plants or chemical synthesis, we aimed the microbial production of β-caryophyllene in non-conventional yeast Yarrowia lipolytica in this study. RESULTS Two genes, tHMG1 from S. cerevisiae to boost the mevalonate pool and QHS1 from Artemisia annua, were expressed under different promoters and copy numbers in Y. lipolytica. The co-expression of 8UAS pEYK1-QHS1 and pTEF-tHMG1 in the obese strain yielded 165.4 mg/L and 201.5 mg/L of β-caryophyllene in single and double copies, respectively. Employing the same combination of promoters and genes in wild-type-based strain with two copies resulted in a 1.36-fold increase in β-caryophyllene. The introduction of an additional three copies of 8UAS pEYK1-tHMG1 further augmented the β-caryophyllene, reaching 318.5 mg/L in flask fermentation. To maximize the production titer, we optimized the carbon source ratio between glucose and erythritol as well as fermentation condition that led to 798.1 mg/L of β-caryophyllene. CONCLUSIONS A biosynthetic pathway of β-caryophyllene was firstly investigated in Y. lipolytica in this study. Through the modulation of key enzyme expression, we successfully demonstrated an improvement in β-caryophyllene production. This strategy suggests its potential extension to studies involving the microbial production of various industrially relevant terpenes.
Collapse
Affiliation(s)
- Young-Kyoung Park
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, 78350, France
| | - Lucie Studena
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| | - Piotr Hapeta
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| | | | - David J Bell
- SynbiCITE Innovation and Knowledge Centre, Imperial College London, London, UK
| | - Pablo Torres-Montero
- Department of Biotechnology and Biomedicine, Section for Synthetic Biology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jose Luis Martinez
- Department of Biotechnology and Biomedicine, Section for Synthetic Biology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jean-Marc Nicaud
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, 78350, France
| | | | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, UK.
- Bezos Centre for Sustainable Protein, Imperial College London, London, UK.
- UKRI Mission Hub on Microbial Food, Imperial College London, London, UK.
| |
Collapse
|
3
|
Kimura-Ishimaru C, Liang S, Matsuse K, Iwama R, Sato K, Watanabe N, Tezaki S, Horiuchi H, Fukuda R. Mar1, a high mobility group box protein, regulates n-alkane adsorption and cell morphology of the dimorphic yeast Yarrowia lipolytica. Appl Environ Microbiol 2024; 90:e0054624. [PMID: 39058021 PMCID: PMC11337826 DOI: 10.1128/aem.00546-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
The dimorphic yeast Yarrowia lipolytica possesses an excellent ability to utilize n-alkane as a sole carbon and energy source. Although there are detailed studies on the enzymes that catalyze the reactions in the metabolic processes of n-alkane in Y. lipolytica, the molecular mechanism underlying the incorporation of n-alkane into the cells remains to be elucidated. Because Y. lipolytica adsorbs n-alkane, we postulated that Y. lipolytica incorporates n-alkane through direct interaction with it. We isolated and characterized mutants defective in adsorption to n-hexadecane. One of the mutants harbored a nonsense mutation in MAR1 (Morphology and n-alkane Adsorption Regulator 1) encoding a protein containing a high mobility group box. The deletion mutant of MAR1 exhibited defects in adsorption to n-hexadecane and filamentous growth on solid media, whereas the strain that overexpressed MAR1 exhibited hyperfilamentous growth. Fluorescence microscopic observations suggested that Mar1 localizes in the nucleus. RNA-sequencing analysis revealed the alteration of the transcript levels of several genes, including those encoding transcription factors and cell surface proteins, by the deletion of MAR1. These findings suggest that MAR1 is involved in the transcriptional regulation of the genes required for n-alkane adsorption and cell morphology transition.IMPORTANCEYarrowia lipolytica, a dimorphic yeast capable of assimilating n-alkane as a carbon and energy source, has been extensively studied as a promising host for bioconversion of n-alkane into useful chemicals and bioremediation of soil and water contaminated by petroleum. While the metabolic pathway of n-alkane in this yeast and the enzymes involved in this pathway have been well characterized, the molecular mechanism to incorporate n-alkane into the cells is yet to be fully understood. Due to the ability of Y. lipolytica to adsorb n-alkane, it has been hypothesized that Y. lipolytica incorporates n-alkane through direct interaction with it. In this study, we identified a gene, MAR1, which plays a crucial role in the transcriptional regulation of the genes necessary for the adsorption to n-alkane and the transition of the cell morphology in Y. lipolytica. Our findings provide valuable insights that could lead to advanced applications of Y. lipolytica in n-alkane bioconversion and bioremediation.
Collapse
Affiliation(s)
| | - Simiao Liang
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Katsuro Matsuse
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Ryo Iwama
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kenta Sato
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, Wako, Saitama, Japan
| | - Natsuhito Watanabe
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Satoshi Tezaki
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hiroyuki Horiuchi
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Ryouichi Fukuda
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
4
|
Poopanitpan N, Piampratom S, Viriyathanit P, Lertvatasilp T, Horiuchi H, Fukuda R, Kiatwuthinon P. SNF1 plays a crucial role in the utilization of n-alkane and transcriptional regulation of the genes involved in it in the yeast Yarrowia lipolytica. Heliyon 2024; 10:e32886. [PMID: 38975102 PMCID: PMC11226914 DOI: 10.1016/j.heliyon.2024.e32886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 07/09/2024] Open
Abstract
Yarrowia lipolytica is an ascomycetous yeast that can assimilate hydrophobic carbon sources including oil and n-alkane. The sucrose non-fermenting 1/AMP-activated protein kinase (Snf1/AMPK) complex is involved in the assimilation of non-fermentable carbon sources in various yeasts. However, the role of the Snf1/AMPK complex in n-alkane assimilation in Y. lipolytica has not yet been elucidated. This study aimed to clarify the role of Y. lipolytica SNF1 (YlSNF1) in the utilization of n-alkane. The deletion mutant of YlSNF1 (ΔYlsnf1) exhibited substantial growth defects on n-alkanes of various lengths (C10, C12, C14, and C16), and its growth was restored through the introduction of YlSNF1. Microscopic observations revealed that YlSnf1 tagged with enhanced green fluorescence protein showed dot-like distribution patterns in some cells cultured in the medium containing n-decane, which were not observed in cells cultured in the medium containing glucose or glycerol. The RNA sequencing analysis of ΔYlsnf1 cultured in the medium containing n-decane exhibited 302 downregulated and 131 upregulated genes compared with the wild-type strain cultured in the same medium. Gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses suggested that a significant fraction of the downregulated genes functioned in peroxisomes or were involved in the metabolism of n-alkane and fatty acids. Quantitative real-time PCR analysis confirmed the downregulation of 12 genes involved in the metabolism of n-alkane and fatty acid, ALK1-ALK3, ALK5, ADH7, PAT1, POT1, POX2, PEX3, PEX11, YAS1, and HFD3. Furthermore, ΔYlsnf1 exhibited growth defects on the medium containing the metabolites of n-alkane (fatty alcohol and fatty aldehyde). These findings suggest that YlSNF1 plays a crucial role in the utilization of n-alkane in Y. lipolytica. This study provides important insights into the advanced biotechnological applications of this yeast, including the bioconversion of n-alkane to useful chemicals and the bioremediation of petroleum-contaminated environments.
Collapse
Affiliation(s)
- Napapol Poopanitpan
- Department of Biochemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
- Interdisciplinary Program in Genetic Engineering, The Graduate School, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | - Sorawit Piampratom
- Interdisciplinary Program in Genetic Engineering, The Graduate School, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | - Patthanant Viriyathanit
- Department of Biochemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | - Threesara Lertvatasilp
- Department of Biochemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | - Hiroyuki Horiuchi
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Ryouichi Fukuda
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Pichamon Kiatwuthinon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| |
Collapse
|
5
|
Mariam I, Krikigianni E, Rantzos C, Bettiga M, Christakopoulos P, Rova U, Matsakas L, Patel A. Transcriptomics aids in uncovering the metabolic shifts and molecular machinery of Schizochytrium limacinum during biotransformation of hydrophobic substrates to docosahexaenoic acid. Microb Cell Fact 2024; 23:97. [PMID: 38561811 PMCID: PMC10983653 DOI: 10.1186/s12934-024-02381-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Biotransformation of waste oil into value-added nutraceuticals provides a sustainable strategy. Thraustochytrids are heterotrophic marine protists and promising producers of omega (ω) fatty acids. Although the metabolic routes for the assimilation of hydrophilic carbon substrates such as glucose are known for these microbes, the mechanisms employed for the conversion of hydrophobic substrates are not well established. Here, thraustochytrid Schizochytrium limacinum SR21 was investigated for its ability to convert oils (commercial oils with varying fatty acid composition and waste cooking oil) into ω-3 fatty acid; docosahexaenoic acid (DHA). RESULTS Within 72 h SR21 consumed ~ 90% of the oils resulting in enhanced biomass (7.5 g L- 1) which was 2-fold higher as compared to glucose. Statistical analysis highlights C16 fatty acids as important precursors of DHA biosynthesis. Transcriptomic data indicated the upregulation of multiple lipases, predicted to possess signal peptides for secretory, membrane-anchored and cytoplasmic localization. Additionally, transcripts encoding for mitochondrial and peroxisomal β-oxidation along with acyl-carnitine transporters were abundant for oil substrates that allowed complete degradation of fatty acids to acetyl CoA. Further, low levels of oxidative biomarkers (H2O2, malondialdehyde) and antioxidants were determined for hydrophobic substrates, suggesting that SR21 efficiently mitigates the metabolic load and diverts the acetyl CoA towards energy generation and DHA accumulation. CONCLUSIONS The findings of this study contribute to uncovering the route of assimilation of oil substrates by SR21. The thraustochytrid employs an intricate crosstalk among the extracellular and intracellular molecular machinery favoring energy generation. The conversion of hydrophobic substrates to DHA can be further improved using synthetic biology tools, thereby providing a unique platform for the sustainable recycling of waste oil substrates.
Collapse
Affiliation(s)
- Iqra Mariam
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, Luleå, SE-971 87, Sweden
| | - Eleni Krikigianni
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, Luleå, SE-971 87, Sweden
| | - Chloe Rantzos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, Luleå, SE-971 87, Sweden
| | - Maurizio Bettiga
- Department of Life Sciences - LIFE, Division of Industrial Biotechnology, Chalmers University of Technology, Gothenburg, SE-412 96, Sweden
- Innovation Unit, Italbiotec Srl Società Benefit, Milan, Italy
| | - Paul Christakopoulos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, Luleå, SE-971 87, Sweden
| | - Ulrika Rova
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, Luleå, SE-971 87, Sweden
| | - Leonidas Matsakas
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, Luleå, SE-971 87, Sweden
| | - Alok Patel
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, Luleå, SE-971 87, Sweden.
| |
Collapse
|
6
|
Using oils and fats to replace sugars as feedstocks for biomanufacturing: Challenges and opportunities for the yeast Yarrowia lipolytica. Biotechnol Adv 2023; 65:108128. [PMID: 36921878 DOI: 10.1016/j.biotechadv.2023.108128] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023]
Abstract
More than 200 million tons of plant oils and animal fats are produced annually worldwide from oil, crops, and the rendered animal fat industry. Triacylglycerol, an abundant energy-dense compound, is the major form of lipid in oils and fats. While oils or fats are very important raw materials and functional ingredients for food or related products, a significant portion is currently diverted to or recovered as waste. To significantly increase the value of waste oils or fats and expand their applications with a minimal environmental footprint, microbial biomanufacturing is presented as an effective strategy for adding value. Though both bacteria and yeast can be engineered to use oils or fats as the biomanufacturing feedstocks, the yeast Yarrowia lipolytica is presented as one of the most attractive platforms. Y. lipolytica is oleaginous, generally regarded as safe, demonstrated as a promising industrial producer, and has unique capabilities for efficient catabolism and bioconversion of lipid substrates. This review summarizes the major challenges and opportunities for Y. lipolytica as a new biomanufacturing platform for the production of value-added products from oils and fats. This review also discusses relevant cellular and metabolic engineering strategies such as fatty acid transport, fatty acid catabolism and bioconversion, redox balances and energy yield, cell morphology and stress response, and bioreaction engineering. Finally, this review highlights specific product classes including long-chain diacids, wax esters, terpenes, and carotenoids with unique synthesis opportunities from oils and fats in Y. lipolytica.
Collapse
|
7
|
Wang M, Ding M, Yuan Y. Bioengineering for the Microbial Degradation of Petroleum Hydrocarbon Contaminants. Bioengineering (Basel) 2023; 10:bioengineering10030347. [PMID: 36978738 PMCID: PMC10045523 DOI: 10.3390/bioengineering10030347] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 03/18/2023] Open
Abstract
Petroleum hydrocarbons are relatively recalcitrant compounds, and as contaminants, they are one of the most serious environmental problems. n-Alkanes are important constituents of petroleum hydrocarbons. Advances in synthetic biology and metabolic engineering strategies have made n-alkane biodegradation more designable and maneuverable for solving environmental pollution problems. In the microbial degradation of n-alkanes, more and more degradation pathways, related genes, microbes, and alkane hydroxylases have been discovered, which provide a theoretical basis for the further construction of degrading strains and microbial communities. In this review, the current advances in the microbial degradation of n-alkanes under aerobic condition are summarized in four aspects, including the biodegradation pathways and related genes, alkane hydroxylases, engineered microbial chassis, and microbial community. Especially, the microbial communities of “Alkane-degrader and Alkane-degrader” and “Alkane-degrader and Helper” provide new ideas for the degradation of petroleum hydrocarbons. Surfactant producers and nitrogen providers as a “Helper” are discussed in depth. This review will be helpful to further achieve bioremediation of oil-polluted environments rapidly.
Collapse
Affiliation(s)
- Minzhen Wang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Mingzhu Ding
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Correspondence:
| | - Yingjin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
8
|
Utilization of n-alkane and roles of lipid transfer proteins in Yarrowia lipolytica. World J Microbiol Biotechnol 2023; 39:97. [PMID: 36781616 PMCID: PMC9925530 DOI: 10.1007/s11274-023-03541-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/03/2023] [Indexed: 02/15/2023]
Abstract
Yarrowia lipolytica, a dimorphic yeast belonging to the Ascomycota, has potent abilities to utilize hydrophobic compounds, such as n-alkanes and fatty acids, as carbon and energy sources. Yarrowia lipolytica can synthesize and accumulate large amounts of lipids, making it a promising host to produce various lipids and convert n-alkanes to useful compounds. For advanced use of Y. lipolytica in these applications, it is necessary to understand the metabolism of these hydrophobic compounds in this yeast and the underlying molecular mechanisms. In this review, current knowledge on the n-alkane metabolism and how this is regulated in Y. lipolytica is summarized. Furthermore, recent studies revealed that lipid transfer proteins are involved in the utilization of n-alkanes and the regulation of cell morphology in response to n-alkanes. This review discusses the roles of membrane lipids in these processes in Y. lipolytica.
Collapse
|
9
|
Poudyal NR, Paul KS. Fatty acid uptake in Trypanosoma brucei: Host resources and possible mechanisms. Front Cell Infect Microbiol 2022; 12:949409. [PMID: 36478671 PMCID: PMC9719944 DOI: 10.3389/fcimb.2022.949409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/24/2022] [Indexed: 11/22/2022] Open
Abstract
Trypanosoma brucei spp. causes African Sleeping Sickness in humans and nagana, a wasting disease, in cattle. As T. brucei goes through its life cycle in its mammalian and insect vector hosts, it is exposed to distinct environments that differ in their nutrient resources. One such nutrient resource is fatty acids, which T. brucei uses to build complex lipids or as a potential carbon source for oxidative metabolism. Of note, fatty acids are the membrane anchoring moiety of the glycosylphosphatidylinositol (GPI)-anchors of the major surface proteins, Variant Surface Glycoprotein (VSG) and the Procyclins, which are implicated in parasite survival in the host. While T. brucei can synthesize fatty acids de novo, it also readily acquires fatty acids from its surroundings. The relative contribution of parasite-derived vs. host-derived fatty acids to T. brucei growth and survival is not known, nor have the molecular mechanisms of fatty acid uptake been defined. To facilitate experimental inquiry into these important aspects of T. brucei biology, we addressed two questions in this review: (1) What is known about the availability of fatty acids in different host tissues where T. brucei can live? (2) What is known about the molecular mechanisms mediating fatty acid uptake in T. brucei? Finally, based on existing biochemical and genomic data, we suggest a model for T. brucei fatty acid uptake that proposes two major routes of fatty acid uptake: diffusion across membranes followed by intracellular trapping, and endocytosis of host lipoproteins.
Collapse
Affiliation(s)
- Nava Raj Poudyal
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, United States
- Eukaryotic Pathogens Innovation Center (EPIC), Clemson University, Clemson, SC, United States
| | - Kimberly S. Paul
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, United States
- Eukaryotic Pathogens Innovation Center (EPIC), Clemson University, Clemson, SC, United States
| |
Collapse
|
10
|
Salvador López JM, Vandeputte M, Van Bogaert INA. Oleaginous yeasts: Time to rethink the definition? Yeast 2022; 39:553-606. [PMID: 36366783 DOI: 10.1002/yea.3827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/21/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Oleaginous yeasts are typically defined as those able to accumulate more than 20% of their cell dry weight as lipids or triacylglycerides. Research on these yeasts has increased lately fuelled by an interest to use biotechnology to produce lipids and oleochemicals that can substitute those coming from fossil fuels or offer sustainable alternatives to traditional extractions (e.g., palm oil). Some oleaginous yeasts are attracting attention both in research and industry, with Yarrowia lipolytica one of the best-known and studied ones. Oleaginous yeasts can be found across several clades and different metabolic adaptations have been found, affecting not only fatty acid and neutral lipid synthesis, but also lipid particle stability and degradation. Recently, many novel oleaginous yeasts are being discovered, including oleaginous strains of the traditionally considered non-oleaginous Saccharomyces cerevisiae. In the face of this boom, a closer analysis of the definition of "oleaginous yeast" reveals that this term has instrumental value for biotechnology, while it does not give information about distinct types of yeasts. Having this perspective in mind, we propose to expand the term "oleaginous yeast" to those able to produce either intracellular or extracellular lipids, not limited to triacylglycerides, in at least one growth condition (including ex novo lipid synthesis). Finally, a critical look at Y. lipolytica as a model for oleaginous yeasts shows that the term "oleaginous" should be reserved only for strains and not species and that in the case of Y. lipolytica, it is necessary to distinguish clearly between the lipophilic and oleaginous phenotype.
Collapse
Affiliation(s)
- José Manuel Salvador López
- BioPort Group, Centre for Synthetic Biology (CSB), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Meriam Vandeputte
- BioPort Group, Centre for Synthetic Biology (CSB), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Inge N A Van Bogaert
- BioPort Group, Centre for Synthetic Biology (CSB), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
11
|
Brands M, Dörmann P. Two AMP-Binding Domain Proteins from Rhizophagus irregularis Involved in Import of Exogenous Fatty Acids. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:464-476. [PMID: 35285673 DOI: 10.1094/mpmi-01-22-0026-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) colonize roots, where they provide nutrients in exchange for sugars and lipids. Because AMF lack genes for cytosolic fatty acid de novo synthase (FAS), they depend on host-derived fatty acids. AMF colonization is accompanied by expression of specific lipid genes and synthesis of sn-2 monoacylglycerols (MAGs). It is unknown how host-derived fatty acids are taken up by AMF. We describe the characterization of two AMP-binding domain protein genes from Rhizophagus irregularis, RiFAT1 and RiFAT2, with sequence similarity to Saccharomyces cerevisiae fatty acid transporter 1 (FAT1). Uptake of 13C-myristic acid (14:0) and, to a lesser extent, 13C-palmitic acid (16:0) was enhanced after expression of RiFAT1 or RiFAT2 in S. cerevisiae Δfat1 cells. The uptake of 2H-labeled fatty acids from 2H-myristoylglycerol or 2H-palmitoylglycerol was also increased after RiFAT1 and RiFAT2 expression in Δfat, but intact 2H-MAGs were not detected. RiFAT1 and RiFAT2 expression was induced in colonized roots compared with extraradical mycelium. 13C-label in the AMF-specific palmitvaccenic acid (16:1Δ11) and eicosatrienoic acid (20:3) were detected in colonized roots only when 13C2-acetate was supplemented but not 13C-fatty acids, demonstrating that de novo synthesized, host-derived fatty acids are rapidly taken up by R. irregularis from the roots. The results show that RiFAT1 and RiFAT2 are involved in the uptake of myristic acid (14:0) and palmitic acid (16:0), while fatty acids from MAGs are only taken up after hydrolysis. Therefore, the two proteins might be involved in fatty acid import into the fungal arbuscules in colonized roots.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Mathias Brands
- University of Bonn, Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), Karlrobert-Kreiten-Straße 13, 53115 Bonn, Germany
- University of Cologne, Botanical Institute, Cologne Biocenter, Zülpicher Straße 47b, 50674 Cologne, Germany
| | - Peter Dörmann
- University of Bonn, Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), Karlrobert-Kreiten-Straße 13, 53115 Bonn, Germany
| |
Collapse
|
12
|
OUP accepted manuscript. FEMS Yeast Res 2022; 22:6522173. [DOI: 10.1093/femsyr/foac006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 01/20/2022] [Accepted: 02/02/2022] [Indexed: 11/12/2022] Open
|
13
|
Tenagy, Iwama R, Kobayashi S, Shiwa Y, Yoshikawa H, Horiuchi H, Fukuda R, Kajiwara S. Acyl-CoA synthetases, Aal4 and Aal7, are involved in the utilization of exogenous fatty acids in Yarrowia lipolytica. J GEN APPL MICROBIOL 2021; 67:9-14. [PMID: 33100277 DOI: 10.2323/jgam.2020.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The yeast Yarrowia lipolytica assimilates hydrophobic compounds, such as n-alkanes and fatty acids, as sole carbon and energy sources. It has been shown that the acyl-CoA synthetase (ACS) genes, FAT1 and FAA1, are involved in the activation of fatty acids produced during the metabolism of n-alkanes, but the ACS genes that are involved in the metabolism of fatty acids from the culture medium remains to be identified. In this paper, we have identified the ACS genes involved in the utilization of exogenous fatty acids. RNA-seq analysis and qRT-PCR revealed that the transcript levels of the peroxisomal ACS-like protein-encoding genes AAL4 and AAL7 were increased in the presence of oleic acid. The single deletion mutant of AAL4 or AAL7 and double deletion mutant of AAL4 and AAL7 did not show any defects in the growth on the medium containing glucose, glycerol, n-alkanes, or fatty acids. In contrast, the mutant with deletion of seven genes, FAA1, FAT1-FAT4, AAL4, and AAL7, showed severe growth defects on the medium containing dodecanoic acid or oleic acid. These results suggest that Aal4p and Aal7p play important roles in the metabolism of exogenous fatty acids in collaboration with Faa1p and Fat1p-Fat4p.
Collapse
Affiliation(s)
- Tenagy
- School of Life Science and Technology, Tokyo Institute of Technology
| | - Ryo Iwama
- Department of Biotechnology, The University of Tokyo.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo
| | | | - Yuh Shiwa
- Genome Research Center, NODAI Research Institute, Tokyo University of Agriculture.,Department of Molecular Microbiology, Tokyo University of Agriculture
| | - Hirofumi Yoshikawa
- Genome Research Center, NODAI Research Institute, Tokyo University of Agriculture.,Department of Bioscience, Tokyo University of Agriculture
| | - Hiroyuki Horiuchi
- Department of Biotechnology, The University of Tokyo.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo
| | - Ryouichi Fukuda
- Department of Biotechnology, The University of Tokyo.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo
| | - Susumu Kajiwara
- School of Life Science and Technology, Tokyo Institute of Technology
| |
Collapse
|
14
|
Zhang L, Xiu X, Wang Z, Jiang Y, Fan H, Su J, Sui S, Wang S, Wang R, Li J, Wang J, Li N, Wang J. Increasing Long-Chain Dicarboxylic Acid Production in Candida tropicalis by Engineering Fatty Transporters. Mol Biotechnol 2021; 63:544-555. [PMID: 33786739 DOI: 10.1007/s12033-021-00319-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/20/2021] [Indexed: 01/03/2023]
Abstract
Candida tropicalis can metabolize alkanes or fatty acids to produce long-chain dicarboxylic acids (DCAs). Fatty acid transporters located on the cell or peroxisome membrane may play an important role in this process. Using amino acid sequence homologous alignment, two putative proteins, CtFat1p and CtPxa1p, located on the cell and peroxisome membrane were found, respectively. Moreover, single- and double-knockout homologous recombination technology was used to study ctfat1p and ctpxa1p gene effects on DCA synthesis. In comparison to the wild-type strain, long-chain DCA yield decreased by 65.14%, 88.38% and 56.19% after single and double-copy knockout of ctfat1p genes and double-copy knockout of ctpxa1p genes, respectively, indicating that the knockout of ctfat1p and ctpxa1p genes had a significant effect on the conversion of oils and fats into long-chain DCAs by C. tropicalis. However, the yield of long-chain DCAs increased by 21.90% after single-knockout of the ctpxa1p gene, indicating that the single-knockout of the ctpxa1p gene may reduce fatty acid transport to peroxisome for further oxidation. Moreover, to improve the intracellular transport rate of fatty acids, ctfat1p copy number increased, increasing DCA yield by 30.10%. These results may provide useful information for enhancing the production of long-chain DCAs by C. tropicalis.
Collapse
Affiliation(s)
- Lihua Zhang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, 250353, Shandong, People's Republic of China
| | - Xiang Xiu
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Zirui Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, 250353, Shandong, People's Republic of China
| | - Yanjun Jiang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, 250353, Shandong, People's Republic of China
| | - Han Fan
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, 250353, Shandong, People's Republic of China
| | - Jing Su
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, 250353, Shandong, People's Republic of China
| | - Songsen Sui
- Zhucheng Dongxiao Biotechnology Co., Ltd, Xinxing Town, Zhucheng, Shandong, 262200, People's Republic of China
| | - Songjiang Wang
- Zhucheng Dongxiao Biotechnology Co., Ltd, Xinxing Town, Zhucheng, Shandong, 262200, People's Republic of China
| | - Ruiming Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, 250353, Shandong, People's Republic of China
| | - Junlin Li
- Zhucheng Dongxiao Biotechnology Co., Ltd, Xinxing Town, Zhucheng, Shandong, 262200, People's Republic of China
| | - Junqing Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, 250353, Shandong, People's Republic of China.
| | - Nan Li
- Collage of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
| | - Jianbin Wang
- Zhucheng Dongxiao Biotechnology Co., Ltd, Xinxing Town, Zhucheng, Shandong, 262200, People's Republic of China
| |
Collapse
|
15
|
Salvador López JM, Van Bogaert INA. Microbial fatty acid transport proteins and their biotechnological potential. Biotechnol Bioeng 2021; 118:2184-2201. [PMID: 33638355 DOI: 10.1002/bit.27735] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/08/2021] [Accepted: 02/24/2021] [Indexed: 12/11/2022]
Abstract
Fatty acid metabolism has been widely studied in various organisms. However, fatty acid transport has received less attention, even though it plays vital physiological roles, such as export of toxic free fatty acids or uptake of exogenous fatty acids. Hence, there are important knowledge gaps in how fatty acids cross biological membranes, and many mechanisms and proteins involved in these processes still need to be determined. The lack of information is more predominant in microorganisms, even though the identification of fatty acids transporters in these cells could lead to establishing new drug targets or improvements in microbial cell factories. This review provides a thorough analysis of the current information on fatty acid transporters in microorganisms, including bacteria, yeasts and microalgae species. Most available information relates to the model organisms Escherichia coli and Saccharomyces cerevisiae, but transport systems of other species are also discussed. Intracellular trafficking of fatty acids and their transport through organelle membranes in eukaryotic organisms is described as well. Finally, applied studies and engineering efforts using fatty acids transporters are presented to show the applied potential of these transporters and to stress the need for further identification of new transporters and their engineering.
Collapse
Affiliation(s)
- José M Salvador López
- BioPort Group, Faculty of Bioscience Engineering, Centre for Synthetic Biology (CSB), Ghent University, Ghent, Belgium
| | - Inge N A Van Bogaert
- BioPort Group, Faculty of Bioscience Engineering, Centre for Synthetic Biology (CSB), Ghent University, Ghent, Belgium
| |
Collapse
|
16
|
Mbuyane LL, Bauer FF, Divol B. The metabolism of lipids in yeasts and applications in oenology. Food Res Int 2021; 141:110142. [PMID: 33642009 DOI: 10.1016/j.foodres.2021.110142] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/26/2020] [Accepted: 01/09/2021] [Indexed: 12/14/2022]
Abstract
Lipids are valuable compounds present in all living organisms, which display an array of functions related to compartmentalization, energy storage and enzyme activation. Furthermore, these compounds are an integral part of the plasma membrane which is responsible for maintaining structure, facilitating the transport of solutes in and out of the cell and cellular signalling necessary for cell survival. The lipid composition of the yeast Saccharomyces cerevisiae has been extensively investigated and the impact of lipids on S. cerevisiae cellular functions during wine alcoholic fermentation is well documented. Although other yeast species are currently used in various industries and are receiving increasing attention in winemaking, little is known about their lipid metabolism. This review article provides an extensive and critical evaluation of our knowledge on the biosynthesis, accumulation, metabolism and regulation of fatty acids and sterols in yeasts. The implications of the yeast lipid content on stress resistance as well as performance during alcoholic fermentation are discussed and a particular emphasis is given on non-Saccharomyces yeasts. Understanding lipid requirements and metabolism in non-Saccharomyces yeasts may lead to a better management of these yeast to enhance their contributions to wine properties.
Collapse
Affiliation(s)
- Lethiwe Lynett Mbuyane
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Florian Franz Bauer
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Benoit Divol
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, Stellenbosch 7600, South Africa.
| |
Collapse
|
17
|
Park YK, Bordes F, Letisse F, Nicaud JM. Engineering precursor pools for increasing production of odd-chain fatty acids in Yarrowia lipolytica. Metab Eng Commun 2021; 12:e00158. [PMID: 33391990 PMCID: PMC7773535 DOI: 10.1016/j.mec.2020.e00158] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/09/2020] [Accepted: 12/16/2020] [Indexed: 01/12/2023] Open
Abstract
Microbial production of lipids is one of the promising alternatives to fossil resources with increasing environmental and energy concern. Odd-chain fatty acids (OCFA), a type of unusual lipids, are recently gaining a lot of interest as target compounds in microbial production due to their diverse applications in the medical, pharmaceutical, and chemical industries. In this study, we aimed to enhance the pool of precursors with three-carbon chain (propionyl-CoA) and five-carbon chain (β-ketovaleryl-CoA) for the production of OCFAs in Yarrowia lipolytica. We evaluated different propionate-activating enzymes and the overexpression of propionyl-CoA transferase gene from Ralstonia eutropha increased the accumulation of OCFAs by 3.8 times over control strain, indicating propionate activation is the limiting step of OCFAs synthesis. It was shown that acetate supplement was necessary to restore growth and to produce a higher OCFA contents in total lipids, suggesting the balance of the precursors between acetyl-CoA and propionyl-CoA is crucial for OCFA accumulation. To improve β-ketovaleryl-CoA pools for further increase of OCFA production, we co-expressed the bktB encoding β-ketothiolase in the producing strain, and the OCFA production was increased by 33% compared to control. Combining strain engineering and the optimization of the C/N ratio promoted the OCFA production up to 1.87 g/L representing 62% of total lipids, the highest recombinant OCFAs titer reported in yeast, up to date. This study provides a strong basis for the microbial production of OCFAs and its derivatives having high potentials in a wide range of applications.
Collapse
Affiliation(s)
- Young-Kyoung Park
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Florence Bordes
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Fabien Letisse
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France.,Université Toulouse III - Paul Sabatier, Toulouse, France
| | - Jean-Marc Nicaud
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| |
Collapse
|
18
|
Park YK, Nicaud JM. Metabolic Engineering for Unusual Lipid Production in Yarrowia lipolytica. Microorganisms 2020; 8:E1937. [PMID: 33291339 PMCID: PMC7762315 DOI: 10.3390/microorganisms8121937] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 12/15/2022] Open
Abstract
Using microorganisms as lipid-production factories holds promise as an alternative method for generating petroleum-based chemicals. The non-conventional yeast Yarrowia lipolytica is an excellent microbial chassis; for example, it can accumulate high levels of lipids and use a broad range of substrates. Furthermore, it is a species for which an array of efficient genetic engineering tools is available. To date, extensive work has been done to metabolically engineer Y. lipolytica to produce usual and unusual lipids. Unusual lipids are scarce in nature but have several useful applications. As a result, they are increasingly becoming the targets of metabolic engineering. Unusual lipids have distinct structures; they can be generated by engineering endogenous lipid synthesis or by introducing heterologous enzymes to alter the functional groups of fatty acids. In this review, we describe current metabolic engineering strategies for improving lipid production and highlight recent researches on unusual lipid production in Y. lipolytica.
Collapse
Affiliation(s)
- Young-Kyoung Park
- Micalis Institute, AgroParisTech, INRAE, Université Paris-Saclay, 78352 Jouy-en-Josas, France;
| | | |
Collapse
|
19
|
Ghogare R, Chen S, Xiong X. Metabolic Engineering of Oleaginous Yeast Yarrowia lipolytica for Overproduction of Fatty Acids. Front Microbiol 2020; 11:1717. [PMID: 32849364 PMCID: PMC7418586 DOI: 10.3389/fmicb.2020.01717] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 06/30/2020] [Indexed: 01/24/2023] Open
Abstract
The oleaginous yeast Yarrowia lipolytica has attracted much attention due to its ability to utilize a wide range of substrates to accumulate high lipid content and its flexibility for genetic manipulation. In this study, intracellular lipid metabolism in Y. lipolytica was tailored to produce fatty acid, a renewable oleochemical and precursor for production of advanced biofuels. Two main strategies, including blocking activation and peroxisomal uptake of fatty acids and elimination of biosynthesis of lipids, were employed to reduce fatty acid consumption by the native pathways in Y. lipolytica. Both genetic modifications improved fatty acid production. However, disruption of the genes responsible for assembly of nonpolar lipid molecules including triacylglycerols (TAGs) and steryl esters resulted in the deleterious effects on the cell growth. The gene tesA encoding thioesterase from Escherichia coli was expressed in the strain with disrupted faa genes encoding fatty acyl-CoA synthetases and pxa1 encoding peroxisomal acyl-CoA transporter, and the titer of fatty acids resulted in 2.3 g/L in shake flask culture, representing 11-fold improvement compared with the parent strain. Expressing the native genes encoding acetyl-CoA carboxylase (ACC) and hexokinase also increased fatty acid production, although the improvement was not as significant as that with tesA expression. Saturated fatty acids including palmitic acid (C16:0) and stearic acid (C18:0) increased remarkably in the fatty acid composition of the recombinant bearing tesA compared with the parent strain. The recombinant expressing tesA gene resulted in high lipid content, indicating the great fatty acid producing potential of Y. lipolytica. The results highlight the achievement of fatty acid overproduction without adverse effect on growth of the strain. Results of this study provided insight into the relationship between fatty acid and lipid metabolism in Y. lipolytica, confirming the avenue to reprogram lipid metabolism of this host for overproduction of renewable fatty acids.
Collapse
Affiliation(s)
- Rishikesh Ghogare
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, United States
| | - Shulin Chen
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, United States
| | - Xiaochao Xiong
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, United States
| |
Collapse
|
20
|
Imatoukene N, Back A, Nonus M, Thomasset B, Rossignol T, Nicaud JM. Fermentation process for producing CFAs using Yarrowia lipolytica. J Ind Microbiol Biotechnol 2020; 47:403-412. [PMID: 32372295 DOI: 10.1007/s10295-020-02276-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 04/22/2020] [Indexed: 10/24/2022]
Abstract
Past research has sought to improve the production of cyclopropane fatty acids by the oleaginous yeast Yarrowia lipolytica by heterologously expressing the E. coli fatty acid synthase gene and improving cultivation processes. Cyclopropane fatty acids display properties that hold promise for biofuel applications. The E. coli fatty acid synthase gene was introduced into several genetic backgrounds of the yeast Y. lipolytica to optimize lipid synthesis; the mean cyclopropane fatty acid productivity was 43 mg L-1 h-1 on glucose, and the production rate reached its maximum (3.06 g L-1) after 72 h of cultivation in a bioreactor. The best strain (JMY6851) overexpressed simultaneously the E. coli cyclopropane fatty acid synthase gene under a hybrid promoter (hp8d) and Y. lipolytica LRO1 gene. In fed-batch process using crude glycerol as carbon source, JMY6851 strain displayed high lipid accumulation (78% of dry cell weight) and high biomass production (56 g L-1). After 165 h of cultivation, cyclopropane fatty acids represented 22% of the lipids produced; cyclopropane fatty acid productivity (103.3 mg L-1 h-1) was maximal at 72.5 h of cultivation.
Collapse
Affiliation(s)
- Nabila Imatoukene
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-En-Josas, France.
- Sorbonne Universités, UMR-CNRS 7025, Université de Technologie de Compiègne (UTC), CS 60319, 60203, Compiègne Cedex, France.
- Sorbonne Universités, EA 4297 TIMR, Université de Technologie de Compiègne (UTC), CS 60319, 60203, Compiègne Cedex, France.
- Centre Européen de Biotechnologie Et de Bioéconomie, Agro-Biotechnologies Industrielles, Rue des Rouges Terres, 51110, Pomacle, France.
| | - Alexandre Back
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-En-Josas, France
| | - Maurice Nonus
- Sorbonne Universités, EA 4297 TIMR, Université de Technologie de Compiègne (UTC), CS 60319, 60203, Compiègne Cedex, France
| | - Brigitte Thomasset
- Sorbonne Universités, UMR-CNRS 7025, Université de Technologie de Compiègne (UTC), CS 60319, 60203, Compiègne Cedex, France
| | - Tristan Rossignol
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-En-Josas, France
| | - Jean-Marc Nicaud
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-En-Josas, France
| |
Collapse
|
21
|
Park YK, Ledesma-Amaro R, Nicaud JM. De novo Biosynthesis of Odd-Chain Fatty Acids in Yarrowia lipolytica Enabled by Modular Pathway Engineering. Front Bioeng Biotechnol 2020; 7:484. [PMID: 32039184 PMCID: PMC6987463 DOI: 10.3389/fbioe.2019.00484] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 12/27/2019] [Indexed: 01/21/2023] Open
Abstract
Microbial oils are regarded as promising alternatives to fossil fuels as concerns over environmental issues and energy production systems continue to mount. Odd-chain fatty acids (FAs) are a type of valuable lipid with various applications: they can serve as biomarkers, intermediates in the production of flavor and fragrance compounds, fuels, and plasticizers. Microorganisms naturally produce FAs, but such FAs are primarily even-chain; only negligible amounts of odd-chain FAs are generated. As a result, studies using microorganisms to produce odd-chain FAs have had limited success. Here, our objective was to biosynthesize odd-chain FAs de novo in Yarrowia lipolytica using inexpensive carbon sources, namely glucose, without any propionate supplementation. To achieve this goal, we constructed a modular metabolic pathway containing seven genes. In the engineered strain expressing this pathway, the percentage of odd-chain FAs out of total FAs was higher than in the control strain (3.86 vs. 0.84%). When this pathway was transferred into an obese strain, which had been engineered to accumulate large amounts of lipids, odd-chain fatty acid production was 7.2 times greater than in the control (0.05 vs. 0.36 g/L). This study shows that metabolic engineering research is making progress toward obtaining efficient cell factories that produce odd-chain FAs.
Collapse
Affiliation(s)
- Young-Kyoung Park
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Rodrigo Ledesma-Amaro
- Imperial College Centre for Synthetic Biology and Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Jean-Marc Nicaud
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| |
Collapse
|
22
|
Park YK, Nicaud JM. Screening a genomic library for genes involved in propionate tolerance in Yarrowia lipolytica. Yeast 2019; 37:131-140. [PMID: 31293017 DOI: 10.1002/yea.3431] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/20/2019] [Accepted: 07/08/2019] [Indexed: 01/18/2023] Open
Abstract
Microbial oils are regarded as promising alternatives to fossil fuels. For bio-oil production to be sustainable over the long term, utilizing low-cost substrates like volatile fatty acids (VFAs) is crucial. Increasing attention is being paid to one of the most common VFAs: propionate, a substrate that could be used to produce the odd-chain FAs of industrial interest. However, little is known about microbial responses to propionate-induced stress and the genes involved. Using genomic library screening, we identified two genes involved in propionate tolerance in Yarrowia lipolytica-MFS1 and RTS1. Strains containing each of the genes displayed enhanced tolerance to propionate even when the genes were expressed in truncated form via a replicative plasmid. Compared with the control strain, the strain overexpressing MFS1 under a constitutive promoter displayed greater tolerance to propionate: It had a shorter lag phase and higher growth rate in propionate medium (0.047 hr-1 versus 0.030 hr-1 for the control in 40 g/L propionate); it also accumulated more total lipids and more odd-chain lipids (10% and 3.3%, respectively) than the control. The strain overexpressing RTS1 showed less tolerance for propionate than the strains harboring the truncated form (0.057 hr-1 versus 0.065 hr-1 in 40 g/L propionate medium) but still had higher tolerance than the control strain. Furthermore, the overexpression of RTS1 seemed to confer tolerance to other weak acids such as lactate, formic acid, malic acid, and succinic acid. This work provides a basis for better understanding the response to propionate-induced stress in Y. lipolytica.
Collapse
Affiliation(s)
- Young-Kyoung Park
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Jean-Marc Nicaud
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
23
|
Thomas S, Sanya DRA, Fouchard F, Nguyen HV, Kunze G, Neuvéglise C, Crutz-Le Coq AM. Blastobotrys adeninivorans and B. raffinosifermentans, two sibling yeast species which accumulate lipids at elevated temperatures and from diverse sugars. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:154. [PMID: 31249618 PMCID: PMC6587252 DOI: 10.1186/s13068-019-1492-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 06/09/2019] [Indexed: 06/08/2023]
Abstract
BACKGROUND In the context of sustainable development, yeast are one class of microorganisms foreseen for the production of oil from diverse renewable feedstocks, in particular those that do not compete with the food supply. However, their use in bulk production, such as for the production of biodiesel, is still not cost effective, partly due to the possible poor use of desired substrates or poor robustness in the practical bioconversion process. We investigated the natural capacity of Blastobotrys adeninivorans, a yeast already used in biotechnology, to store lipids under different conditions. RESULTS The genotyping of seven strains showed the species to actually be composed of two different groups, one that (including the well-known strain LS3) could be reassigned to Blastobotrys raffinosifermentans. We showed that, under nitrogen limitation, strains of both species can synthesize lipids to over 20% of their dry-cell weight during shake-flask cultivation in glucose or xylose medium for 96 h. In addition, organic acids were excreted into the medium. LS3, our best lipid-producing strain, could also accumulate lipids from exogenous oleic acid, up to 38.1 ± 1.6% of its dry-cell weight, and synthesize lipids from various sugar substrates, up to 36.6 ± 0.5% when growing in cellobiose. Both species, represented by LS3 and CBS 8244T, could grow with little filamentation in the lipogenic medium from 28 to 45 °C and reached lipid titers ranging from 1.76 ± 0.28 to 3.08 ± 0.49 g/L in flasks. Under these conditions, the maximum bioconversion yield (Y FA/S = 0.093 ± 0.017) was obtained with LS3 at 37 °C. The presence of genes for predicted subunits of an ATP citrate lyase in the genome of LS3 reinforces its oleaginous character. CONCLUSIONS Blastobotrys adeninivorans and B. raffinosifermentans, which are known to be xerotolerant and genetically-tractable, are promising biotechnological yeasts of the Saccharomycotina that could be further developed through genetic engineering for the production of microbial oil. To our knowledge, this is the first report of efficient lipid storage in yeast when cultivated at a temperature above 40 °C. This paves the way to help reducing costs through consolidated bioprocessing.
Collapse
Affiliation(s)
- Stéphane Thomas
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Daniel R. A. Sanya
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Florian Fouchard
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Huu-Vang Nguyen
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Gotthard Kunze
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Correnstr. 3, 06466 Gatersleben, Germany
| | - Cécile Neuvéglise
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Anne-Marie Crutz-Le Coq
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| |
Collapse
|
24
|
Claus S, Jezierska S, Van Bogaert INA. Protein‐facilitated transport of hydrophobic molecules across the yeast plasma membrane. FEBS Lett 2019; 593:1508-1527. [DOI: 10.1002/1873-3468.13469] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Silke Claus
- Biochemical and Microbial Technology Universiteit Gent Belgium
| | | | - Inge N. A. Van Bogaert
- Lab. of Industrial Microbiology and Biocatalysis Faculty of Bioscience Engineering Ghent University Belgium
| |
Collapse
|
25
|
Overexpression screen reveals transcription factors involved in lipid accumulation in Yarrowia lipolytica. FEMS Yeast Res 2018; 18:4956524. [DOI: 10.1093/femsyr/foy037] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/28/2018] [Indexed: 12/22/2022] Open
|
26
|
Park YK, Dulermo T, Ledesma-Amaro R, Nicaud JM. Optimization of odd chain fatty acid production by Yarrowia lipolytica. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:158. [PMID: 29930704 PMCID: PMC5991449 DOI: 10.1186/s13068-018-1154-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/26/2018] [Indexed: 05/16/2023]
Abstract
BACKGROUND Odd chain fatty acids (odd FAs) have a wide range of applications in therapeutic and nutritional industries, as well as in chemical industries including biofuel. Yarrowia lipolytica is an oleaginous yeast considered a preferred microorganism for the production of lipid-derived biofuels and chemicals. However, it naturally produces negligible amounts of odd chain fatty acids. RESULTS The possibility of producing odd FAs using Y. lipolytica was investigated. Y. lipolytica wild-type strain was shown able to grow on weak acids; acetate, lactate, and propionate. Maximal growth rate on propionate reached 0.24 ± 0.01 h-1 at 2 g/L, and growth inhibition occurred at concentration above 10 g/L. Wild-type strain accumulated lipids ranging from 7.39 to 8.14% (w/w DCW) depending on the carbon source composition, and odd FAs represented only 0.01-0.12 g/L. We here proved that the deletion of the PHD1 gene improved odd FAs production, which reached a ratio of 46.82% to total lipids. When this modification was transferred to an obese strain, engineered for improving lipid accumulation, further increase odd FAs production reaching a total of 0.57 g/L was shown. Finally, a fed-batch co-feeding strategy was optimized for further increase odd FAs production, which generated 0.75 g/L, the best production described so far in Y. lipolytica. CONCLUSIONS A Y. lipolytica strain able to accumulate high level of odd chain fatty acids, mainly heptadecenoic acid, has been successfully developed. In addition, a fed-batch co-feeding strategy was optimized to further improve lipid accumulation and odd chain fatty acid content. These lipids enriched in odd chain fatty acid can (1) improve the properties of the biodiesel generated from Y. lipolytica lipids and (2) be used as renewable source of odd chain fatty acid for industrial applications. This work paves the way for further improvements in odd chain fatty acids and fatty acid-derived compound production.
Collapse
Affiliation(s)
- Young-Kyoung Park
- UMR1319, Team BIMLip: Biologie Intégrative du Métabolisme Lipidique, Institut Micalis, INRA-AgroParisTech, Université Paris-Saclay, Domaine de Vilvert, 78352 Jouy-en-Josas, France
| | - Thierry Dulermo
- UMR1319, Team BIMLip: Biologie Intégrative du Métabolisme Lipidique, Institut Micalis, INRA-AgroParisTech, Université Paris-Saclay, Domaine de Vilvert, 78352 Jouy-en-Josas, France
- Lesaffre International, Marcq-en-Baroeul, France
| | - Rodrigo Ledesma-Amaro
- UMR1319, Team BIMLip: Biologie Intégrative du Métabolisme Lipidique, Institut Micalis, INRA-AgroParisTech, Université Paris-Saclay, Domaine de Vilvert, 78352 Jouy-en-Josas, France
- Department of Bioengineering, Imperial College London, London, UK
| | - Jean-Marc Nicaud
- UMR1319, Team BIMLip: Biologie Intégrative du Métabolisme Lipidique, Institut Micalis, INRA-AgroParisTech, Université Paris-Saclay, Domaine de Vilvert, 78352 Jouy-en-Josas, France
| |
Collapse
|
27
|
Xie D. Integrating Cellular and Bioprocess Engineering in the Non-Conventional Yeast Yarrowia lipolytica for Biodiesel Production: A Review. Front Bioeng Biotechnol 2017; 5:65. [PMID: 29090211 PMCID: PMC5650997 DOI: 10.3389/fbioe.2017.00065] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/02/2017] [Indexed: 12/14/2022] Open
Abstract
As one of the major biofuels to replace fossil fuel, biodiesel has now attracted more and more attention due to its advantages in higher energy density and overall less greenhouse gas generation. Biodiesel (fatty acid alkyl esters) is produced by chemically or enzymatically catalyzed transesterification of lipids from microbial cells, microalgae, oil crops, or animal fats. Currently, plant oils or waste cooking oils/fats remain the major source for biodiesel production via enzymatic route, but the production capacity is limited either by the uncertain supplement of plant oils or by the low or inconsistent quality of waste oils/fats. In the past decades, significant progresses have been made on synthesis of microalgae oils directly from CO2via a photosynthesis process, but the production cost from any current technologies is still too high to be commercialized due to microalgae’s slow growth rate on CO2, inefficiency in photo-bioreactors, lack of efficient contamination control methods, and high cost in downstream recovery. At the same time, many oleaginous microorganisms have been studied to produce lipids via the fatty acid synthesis pathway under aerobic fermentation conditions, among them one of the most studied is the non-conventional yeast, Yarrowia lipolytica, which is able to produce fatty acids at very high titer, rate, and yield from various economical substrates. This review summarizes the recent research progresses in both cellular and bioprocess engineering in Y. lipolytica to produce lipids at a low cost that may lead to commercial-scale biodiesel production. Specific technologies include the strain engineering for using various substrates, metabolic engineering in high-yield lipid synthesis, cell morphology study for efficient substrate uptake and product formation, free fatty acid formation and secretion for improved downstream recovery, and fermentation engineering for higher productivities and less operating cost. To further improve the economics of the microbial oil-based biodiesel, production of lipid-related or -derived high-value products are also discussed.
Collapse
Affiliation(s)
- Dongming Xie
- Massachusetts Biomanufacturing Center, Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA, United States
| |
Collapse
|
28
|
A metabolic engineering strategy for producing conjugated linoleic acids using the oleaginous yeast Yarrowia lipolytica. Appl Microbiol Biotechnol 2017; 101:4605-4616. [PMID: 28357546 PMCID: PMC5442254 DOI: 10.1007/s00253-017-8240-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/06/2017] [Accepted: 03/09/2017] [Indexed: 12/13/2022]
Abstract
Conjugated linoleic acids (CLAs) have been found to have beneficial effects on human health when used as dietary supplements. However, their availability is limited because pure, chemistry-based production is expensive, and biology-based fermentation methods can only create small quantities. In an effort to enhance microbial production of CLAs, four genetically modified strains of the oleaginous yeast Yarrowia lipolytica were generated. These mutants presented various genetic modifications, including the elimination of β-oxidation (pox1-6∆), the inability to store lipids as triglycerides (dga1∆ dga2∆ are1∆ lro1∆), and the overexpression of the Y. lipolytica ∆12-desaturase gene (YlFAD2) under the control of the constitutive pTEF promoter. All strains received two copies of the pTEF-oPAI or pPOX-oPAI expression cassettes; PAI encodes linoleic acid isomerase in Propionibacterium acnes. The strains were cultured in neosynthesis or bioconversion medium in flasks or a bioreactor. The strain combining the three modifications mentioned above showed the best results: when it was grown in neosynthesis medium in a flask, CLAs represented 6.5% of total fatty acids and in bioconversion medium in a bioreactor, and CLA content reached 302 mg/L. In a previous study, a CLA degradation rate of 117 mg/L/h was observed in bioconversion medium. Here, by eliminating β-oxidation, we achieved a much lower rate of 1.8 mg/L/h.
Collapse
|
29
|
Dulermo R, Brunel F, Dulermo T, Ledesma-Amaro R, Vion J, Trassaert M, Thomas S, Nicaud JM, Leplat C. Using a vector pool containing variable-strength promoters to optimize protein production in Yarrowia lipolytica. Microb Cell Fact 2017; 16:31. [PMID: 28212656 PMCID: PMC5316184 DOI: 10.1186/s12934-017-0647-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 02/10/2017] [Indexed: 11/10/2022] Open
Abstract
Background The yeast Yarrowia lipolytica is an increasingly common biofactory. To enhance protein expression, several promoters have been developed, including the constitutive TEF promoter, the inducible POX2 promotor, and the hybrid hp4d promoter. Recently, new hp4d-inspired promoters have been created that couple various numbers of UAS1 tandem elements with the minimal LEU2 promoter or the TEF promoter. Three different protein-secretion signaling sequences can be used: preLip2, preXpr2, and preSuc2. Results To our knowledge, our study is the first to use a set of vectors with promoters of variable strength to produce proteins of industrial interest. We used the more conventional TEF and hp4d promoters along with five new hybrid promoters: 2UAS1-pTEF, 3UAS1-pTEF, 4UAS1-pTEF, 8UAS1-pTEF, and hp8d. We compared the production of RedStar2, glucoamylase, and xylanase C when strains were grown on three media. As expected, levels of RedStar2 and glucoamylase were greatest in the strain with the 8UAS1-pTEF promoter, which was stronger. However, surprisingly, the 2UAS1-pTEF promoter was associated with the greatest xylanase C production and activity. This finding underscored that stronger promoters are not always better when it comes to protein production. We therefore developed a method for easily identifying the best promoter for a given protein of interest. In this gateway method, genes for YFP and α-amylase were transferred into a pool of vectors containing different promoters and gene expression was then analyzed. We observed that, in most cases, protein production and activity were correlated with promoter strength, although this pattern was protein dependent. Conclusions Protein expression depends on more than just promoter strength. Indeed, promoter suitability appears to be protein dependent; in some cases, optimal expression and activity was obtained using a weaker promoter. We showed that using a vector pool containing promoters of variable strength can be a powerful tool for rapidly identifying the best producer for a given protein of interest. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0647-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rémi Dulermo
- Micalis Institute, INRA-AgroParisTech, UMR1319, Team BIMLip: Integrative Metabolism of Microbial Lipids, Université Paris-Saclay, domaine de Vilvert, 78350, Jouy-en-Josas, France.
| | - François Brunel
- Micalis Institute, INRA-AgroParisTech, UMR1319, Team BIMLip: Integrative Metabolism of Microbial Lipids, Université Paris-Saclay, domaine de Vilvert, 78350, Jouy-en-Josas, France
| | - Thierry Dulermo
- Micalis Institute, INRA-AgroParisTech, UMR1319, Team BIMLip: Integrative Metabolism of Microbial Lipids, Université Paris-Saclay, domaine de Vilvert, 78350, Jouy-en-Josas, France
| | - Rodrigo Ledesma-Amaro
- Micalis Institute, INRA-AgroParisTech, UMR1319, Team BIMLip: Integrative Metabolism of Microbial Lipids, Université Paris-Saclay, domaine de Vilvert, 78350, Jouy-en-Josas, France
| | - Jérémy Vion
- Micalis Institute, INRA-AgroParisTech, UMR1319, Team BIMLip: Integrative Metabolism of Microbial Lipids, Université Paris-Saclay, domaine de Vilvert, 78350, Jouy-en-Josas, France
| | - Marion Trassaert
- Micalis Institute, INRA-AgroParisTech, UMR1319, Team BIMLip: Integrative Metabolism of Microbial Lipids, Université Paris-Saclay, domaine de Vilvert, 78350, Jouy-en-Josas, France
| | - Stéphane Thomas
- Micalis Institute, INRA-AgroParisTech, UMR1319, Team BIMLip: Integrative Metabolism of Microbial Lipids, Université Paris-Saclay, domaine de Vilvert, 78350, Jouy-en-Josas, France
| | - Jean-Marc Nicaud
- Micalis Institute, INRA-AgroParisTech, UMR1319, Team BIMLip: Integrative Metabolism of Microbial Lipids, Université Paris-Saclay, domaine de Vilvert, 78350, Jouy-en-Josas, France.
| | - Christophe Leplat
- Micalis Institute, INRA-AgroParisTech, UMR1319, Team BIMLip: Integrative Metabolism of Microbial Lipids, Université Paris-Saclay, domaine de Vilvert, 78350, Jouy-en-Josas, France.
| |
Collapse
|
30
|
Bredeweg EL, Pomraning KR, Dai Z, Nielsen J, Kerkhoven EJ, Baker SE. A molecular genetic toolbox for Yarrowia lipolytica. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:2. [PMID: 28066508 PMCID: PMC5210315 DOI: 10.1186/s13068-016-0687-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 12/13/2016] [Indexed: 05/29/2023]
Abstract
BACKGROUND Yarrowia lipolytica is an ascomycete yeast used in biotechnological research for its abilities to secrete high concentrations of proteins and accumulate lipids. Genetic tools have been made in a variety of backgrounds with varying similarity to a comprehensively sequenced strain. RESULTS We have developed a set of genetic and molecular tools in order to expand capabilities of Y. lipolytica for both biological research and industrial bioengineering applications. In this work, we generated a set of isogenic auxotrophic strains with decreased non-homologous end joining for targeted DNA incorporation. Genome sequencing, assembly, and annotation of this genetic background uncovers previously unidentified genes in Y. lipolytica. To complement these strains, we constructed plasmids with Y. lipolytica-optimized superfolder GFP for targeted overexpression and fluorescent tagging. We used these tools to build the "Yarrowia lipolytica Cell Atlas," a collection of strains with endogenous fluorescently tagged organelles in the same genetic background, in order to define organelle morphology in live cells. CONCLUSIONS These molecular and isogenetic tools are useful for live assessment of organelle-specific protein expression, and for localization of lipid biosynthetic enzymes or other proteins in Y. lipolytica. This work provides the Yarrowia community with tools for cell biology and metabolism research in Y. lipolytica for further development of biofuels and natural products.
Collapse
Affiliation(s)
- Erin L. Bredeweg
- Earth and Biological Sciences Directorate, Environmental Molecular Sciences Laboratory, Richland, WA 99354 USA
- Department of Energy, Battelle EMSL, 3335 Innovation Blvd, Richland, WA 99354 USA
| | - Kyle R. Pomraning
- Chemical & Biological Process Development Group, Energy and Environment Directorate, Pacific Northwest National Laboratories, Richland, WA 99354 USA
| | - Ziyu Dai
- Chemical & Biological Process Development Group, Energy and Environment Directorate, Pacific Northwest National Laboratories, Richland, WA 99354 USA
| | - Jens Nielsen
- Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Eduard J. Kerkhoven
- Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden
| | - Scott E. Baker
- Earth and Biological Sciences Directorate, Environmental Molecular Sciences Laboratory, Richland, WA 99354 USA
- Department of Energy, Battelle EMSL, 3335 Innovation Blvd, Richland, WA 99354 USA
| |
Collapse
|
31
|
Sassi H, Delvigne F, Kar T, Nicaud JM, Coq AMCL, Steels S, Fickers P. Deciphering how LIP2 and POX2 promoters can optimally regulate recombinant protein production in the yeast Yarrowia lipolytica. Microb Cell Fact 2016; 15:159. [PMID: 27651221 PMCID: PMC5028966 DOI: 10.1186/s12934-016-0558-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 09/09/2016] [Indexed: 11/13/2022] Open
Abstract
Background In recent years, the non-conventional model yeast species Yarrowia lipolytica has received much attention because it is a useful cell factory for producing recombinant proteins. In this species, expression vectors involving LIP2 and POX2 promoters have been developed and used successfully for protein production at yields similar to or even higher than those of other cell factories, such as Pichia pastoris. However, production processes involving these promoters can be difficult to manage, especially if carried out at large scales in fed-batch bioreactors, because they require hydrophobic inducers, such as oleic acid or methyl oleate. Thus, the challenge has become to reduce loads of hydrophobic substrates while simultaneously promoting recombinant protein production. One possible solution is to replace a portion of the inducer with a co-substrate that can serve as an alternative energy source. However, implementing such an approach would require detailed knowledge of how carbon sources impact promoter regulation, which is surprisingly still lacking for the LIP2 and POX2 promoters. This study’s aim was thus to better characterize promoter regulation and cell metabolism in Y. lipolytica cultures grown in media supplemented with different carbon sources. Results pPOX2 induction could be detected when glucose or glycerol was used as sole carbon source, which meant these carbon source could not prevent promoter induction. In addition, when a mixture of glucose and oleic acid was used in complex medium, pPOX2 induction level was lower that that of pLIP2. In contrast, pLIP2 induction was absent when glucose was present in the culture medium, which meant that cell growth could occur without any recombinant gene expression. When a 40/60 mixture of glucose and oleic acid (w/w) was used, a tenfold increase in promoter induction, as compared to when an oleic-acid-only medium was observed. It was also clear that individual cells were adapting metabolically to use both glucose and oleic acid. Indeed, no distinct subpopulations that specialized on glucose versus oleic acid were observed; such an outcome would have led to producer and non-producer phenotypes. In medium containing both glucose and oleic acid, cells tended to directly metabolize oleic acid instead of storing it in lipid bodies. Conclusions This study found that pLIP2 is a promoter of choice as compared to pPOX2 to drive gene expression for recombinant protein production by Y. lipolytica used as cell factory. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0558-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hosni Sassi
- Biotechnology and Bioprocesses, Université libre de Bruxelles, Avenue F.D. Roosevelt 50, 1050, Brussels, Belgium
| | - Frank Delvigne
- Microbial Processes and Interactions, University of Liège-Gembloux AgroBio Tech, Passage des Déportés, 2, B-5030, Gembloux, Belgium
| | - Tambi Kar
- Microbial Processes and Interactions, University of Liège-Gembloux AgroBio Tech, Passage des Déportés, 2, B-5030, Gembloux, Belgium
| | - Jean-Marc Nicaud
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en Josas, France
| | - Anne-Marie Crutz-Le Coq
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en Josas, France
| | - Sebastien Steels
- Microbial Processes and Interactions, University of Liège-Gembloux AgroBio Tech, Passage des Déportés, 2, B-5030, Gembloux, Belgium
| | - Patrick Fickers
- Biotechnology and Bioprocesses, Université libre de Bruxelles, Avenue F.D. Roosevelt 50, 1050, Brussels, Belgium. .,Microbial Processes and Interactions, University of Liège-Gembloux AgroBio Tech, Passage des Déportés, 2, B-5030, Gembloux, Belgium.
| |
Collapse
|
32
|
Dulermo R, Gamboa-Meléndez H, Ledesma-Amaro R, Thevenieau F, Nicaud JM. Yarrowia lipolytica AAL genes are involved in peroxisomal fatty acid activation. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:555-65. [PMID: 27067366 DOI: 10.1016/j.bbalip.2016.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 03/15/2016] [Accepted: 04/06/2016] [Indexed: 01/07/2023]
Abstract
In yeast, β-oxidation of fatty acids (FAs) essentially takes place in peroxisomes, and FA activation must precede FA oxidation. In Saccharomyces cerevisiae, a single fatty-acyl–CoA-synthetase, ScFaa2p, mediates peroxisomal FA activation. We have previously shown that this reaction also exists in the oleaginous yeast Yarrowia lipolytica; however, the protein involved in this process remains unknown. Here, we found that proteins, named Aal proteins (Acyl/Aryl-CoA-ligases), resembling the 4-coumarate–CoA-ligase-like enzymes found in plants are involved in peroxisomal FA activation in Y. lipolytica; Y. lipolytica has 10 AAL genes, eight of which are upregulated by oleate. All the Aal proteins contain a PTS1-type peroxisomal targeting sequence (A/SKL), suggesting a peroxisomal localization. The function of the Aal proteins was analyzed using the faa1Δant1Δ mutant strain, which demonstrates neither cytoplasmic FA activation (direct result of FAA1 deletion) nor peroxisomal FA activation (indirect result of ANT1 deletion, a gene coding an ATP transporter). This strain is thus highly sensitive to external FA levels and unable to store external FAs in lipid bodies (LBs). Whereas the overexpression of (cytoplasmic) AAL1ΔPTS1 was able to partially complement the growth defect observed in the faa1Δant1Δ mutant on short-, medium- and long-chain FA media, the presence of Aal2p to Aal10p only allowed growth on the short-chain FA medium. Additionally, partial LB formation was observed in the oleate medium for strains overexpressing Aal1ΔPTS1p, Aal4ΔPTS1p, Aal7ΔPTS1p, and Aal8ΔPTS1p. Finally, an analysis of the FA content of cells grown in the oleate medium suggested that Aal4p and Aal6p present substrate specificity for C16:1 and/or C18:0.
Collapse
Affiliation(s)
- Rémi Dulermo
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
| | - Heber Gamboa-Meléndez
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Rodrigo Ledesma-Amaro
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - France Thevenieau
- SOFIPROTEOL, Direction Innovation, 11 rue de Monceau, Paris F-75378, France
| | - Jean-Marc Nicaud
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
| |
Collapse
|
33
|
Synthetic biology and molecular genetics in non-conventional yeasts: Current tools and future advances. Fungal Genet Biol 2016; 89:126-136. [DOI: 10.1016/j.fgb.2015.12.001] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/18/2015] [Accepted: 12/05/2015] [Indexed: 12/16/2022]
|
34
|
Li N, Xu C, Li-Beisson Y, Philippar K. Fatty Acid and Lipid Transport in Plant Cells. TRENDS IN PLANT SCIENCE 2016; 21:145-158. [PMID: 26616197 DOI: 10.1016/j.tplants.2015.10.011] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/29/2015] [Accepted: 10/15/2015] [Indexed: 05/18/2023]
Abstract
Fatty acids (FAs) and lipids are essential - not only as membrane constituents but also for growth and development. In plants and algae, FAs are synthesized in plastids and to a large extent transported to the endoplasmic reticulum for modification and lipid assembly. Subsequently, lipophilic compounds are distributed within the cell, and thus are transported across most membrane systems. Membrane-intrinsic transporters and proteins for cellular FA/lipid transfer therefore represent key components for delivery and dissemination. In addition to highlighting their role in lipid homeostasis and plant performance, different transport mechanisms for land plants and green algae - in the model systems Arabidopsis thaliana, Chlamydomonas reinhardtii - are compared, thereby providing a current perspective on protein-mediated FA and lipid trafficking in photosynthetic cells.
Collapse
Affiliation(s)
- Nannan Li
- Research Center of Bioenergy and Bioremediation (RCBB), College of Resources and Environment, Southwest University, Beibei District, Chongqing, 400715, P.R. China
| | - Changcheng Xu
- Biology Department, Brookhaven National Laboratory, 50 Bell Avenue, Upton, NY 11973-5000, USA
| | - Yonghua Li-Beisson
- Institute of Environmental Biology and Biotechnology, The French Atomic and Alternative Energy Commission, Unité Mixte de Recherche 7265, Commissariat à l'Energie Atomique (CEA) Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - Katrin Philippar
- Department of Biology I, Ludwig-Maximilians-University München, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
35
|
Ledesma-Amaro R, Nicaud JM. Yarrowia lipolytica as a biotechnological chassis to produce usual and unusual fatty acids. Prog Lipid Res 2016; 61:40-50. [DOI: 10.1016/j.plipres.2015.12.001] [Citation(s) in RCA: 194] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/02/2015] [Accepted: 12/08/2015] [Indexed: 10/22/2022]
|
36
|
Zhu Q, Jackson EN. Metabolic engineering of Yarrowia lipolytica for industrial applications. Curr Opin Biotechnol 2015; 36:65-72. [DOI: 10.1016/j.copbio.2015.08.010] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/18/2015] [Accepted: 08/09/2015] [Indexed: 01/01/2023]
|
37
|
Dulermo R, Gamboa-Meléndez H, Ledesma-Amaro R, Thévenieau F, Nicaud JM. Unraveling fatty acid transport and activation mechanisms in Yarrowia lipolytica. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1202-17. [DOI: 10.1016/j.bbalip.2015.04.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 04/02/2015] [Accepted: 04/07/2015] [Indexed: 11/25/2022]
|
38
|
Zhao C, Gu D, Nambou K, Wei L, Chen J, Imanaka T, Hua Q. Metabolome analysis and pathway abundance profiling of Yarrowia lipolytica cultivated on different carbon sources. J Biotechnol 2015; 206:42-51. [DOI: 10.1016/j.jbiotec.2015.04.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 04/02/2015] [Accepted: 04/08/2015] [Indexed: 10/23/2022]
|
39
|
Tenagy, Park JS, Iwama R, Kobayashi S, Ohta A, Horiuchi H, Fukuda R. Involvement of acyl-CoA synthetase genes in n-alkane assimilation and fatty acid utilization in yeast Yarrowia lipolytica. FEMS Yeast Res 2015; 15:fov031. [PMID: 26019148 DOI: 10.1093/femsyr/fov031] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2015] [Indexed: 01/19/2023] Open
Abstract
Here, we investigated the roles of YAL1 (FAA1) and FAT1 encoding acyl-CoA synthetases (ACSs) and three additional orthologs of ACS genes FAT2-FAT4 of the yeast Yarrowia lipolytica in the assimilation or utilization of n-alkanes and fatty acids. ACS deletion mutants were generated to characterize their function. The FAT1 deletion mutant exhibited decreased growth on n-alkanes of 10-18 carbons, whereas the FAA1 mutant showed growth reduction on n-alkane of 16 carbons. However, FAT2-FAT4 deletion mutants did not show any growth defects, suggesting that FAT1 and FAA1 are involved in the activation of fatty acids produced during the metabolism of n-alkanes. In contrast, deletions of FAA1 and FAT1-FAT4 conferred no defect in growth on fatty acids. The wild-type strain grew in the presence of cerulenin, an inhibitor of fatty acid synthesis, by utilizing exogenously added fatty acid or fatty acid derived from n-alkane when oleic acid or n-alkane of 18 carbons was supplemented. However, the FAA1 deletion mutant did not grow, indicating a critical role for FAA1 in the utilization of fatty acids. Fluorescent microscopic observation and biochemical analyses suggested that Fat1p is present in the peroxisome and Faa1p is localized in the cytosol and to membranes.
Collapse
Affiliation(s)
- Tenagy
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Jun Seok Park
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ryo Iwama
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Satoshi Kobayashi
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Akinori Ohta
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| | - Hiroyuki Horiuchi
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ryouichi Fukuda
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
40
|
Dulermo R, Gamboa-Meléndez H, Michely S, Thevenieau F, Neuvéglise C, Nicaud JM. The evolution of Jen3 proteins and their role in dicarboxylic acid transport in Yarrowia. Microbiologyopen 2014; 4:100-20. [PMID: 25515252 PMCID: PMC4335979 DOI: 10.1002/mbo3.225] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 10/23/2014] [Accepted: 11/03/2014] [Indexed: 12/30/2022] Open
Abstract
Jen proteins in yeast are involved in the uptake of mono/dicarboxylic acids. The Jen1 subfamily transports lactate and pyruvate, while the Jen2 subfamily transports fumarate, malate, and succinate. Yarrowia lipolytica has six JEN genes: YALI0B19470g, YALI0C15488g, YALI0C21406g, YALI0D20108g, YALI0D24607g, and YALI0E32901g. Through phylogenetic analyses, we found that these genes represent a new subfamily, Jen3 and that these three Jen subfamilies derivate from three putative ancestral genes. Reverse transcription-PCR. revealed that only four YLJEN genes are expressed and they are upregulated in the presence of lactate, pyruvate, fumarate, malate, and/or succinate, suggesting that they are able to transport these substrates. Analysis of deletion mutant strains revealed that Jen3 subfamily proteins transport fumarate, malate, and succinate. We found evidence that YALI0C15488 encodes the main transporter because its deletion was sufficient to strongly reduce or suppress growth in media containing fumarate, malate, or succinate. It appears that the other YLJEN genes play a minor role, with the exception of YALI0E32901g, which is important for malate uptake. However, the overexpression of each YLJEN gene in the sextuple-deletion mutant strain ΔYLjen1-6 revealed that all six genes are functional and have evolved to transport different substrates with varying degrees of efficacy. In addition, we found that YALI0E32901p transported succinate more efficiently in the presence of lactate or fumarate.
Collapse
Affiliation(s)
- Rémi Dulermo
- UMR1319 Micalis, INRA, Jouy-en-Josas, F-78352, France
| | | | | | | | | | | |
Collapse
|