1
|
Mao Z, Zhao Z, Da J, Tao Y, Li H, Zhao B, Xing P, Wu Q. The selection of copiotrophs may complicate biodiversity-ecosystem functioning relationships in microbial dilution-to-extinction experiments. ENVIRONMENTAL MICROBIOME 2023; 18:19. [PMID: 36932455 PMCID: PMC10024408 DOI: 10.1186/s40793-023-00478-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
The relationships between biodiversity-ecosystem functioning (BEF) for microbial communities are poorly understood despite the important roles of microbes acting in natural ecosystems. Dilution-to-extinction (DTE), a method to manipulate microbial diversity, helps to fill the knowledge gap of microbial BEF relationships and has recently become more popular with the development of high-throughput sequencing techniques. However, the pattern of community assembly processes in DTE experiments is less explored and blocks our further understanding of BEF relationships in DTE studies. Here, a microcosm study and a meta-analysis of DTE studies were carried out to explore the dominant community assembly processes and their potential effect on exploring BEF relationships. While stochastic processes were dominant at low dilution levels due to the high number of rare species, the deterministic processes became stronger at a higher dilution level because the microbial copiotrophs were selected during the regrowth phase and rare species were lost. From the view of microbial functional performances, specialized functions, commonly carried by rare species, are more likely to be impaired in DTE experiments while the broad functions seem to be less impacted due to the good performance of copiotrophs. Our study indicated that shifts in the prokaryotic community and its assembly processes induced by dilutions result in more complex BEF relationships in DTE experiments. Specialized microbial functions could be better used for defining BEF. Our findings may be helpful for future studies to design, explore, and interpret microbial BEF relationships using DTE.
Collapse
Affiliation(s)
- Zhendu Mao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zifan Zhao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Jun Da
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
- College of Life Science, Anhui Normal University, Wuhu, 241002, China
| | - Ye Tao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huabing Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Biying Zhao
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
| | - Peng Xing
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Qinglong Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
- Center for Evolution and Conservation Biology, Southern Marine Sciences and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| |
Collapse
|
2
|
Horna-Gray I, Lopez NA, Ahn Y, Saks B, Girer N, Hentschel U, McCarthy PJ, Kerkhof LJ, Häggblom MM. Desulfoluna spp. form a cosmopolitan group of anaerobic dehalogenating bacteria widely distributed in marine sponges. FEMS Microbiol Ecol 2022; 98:6596282. [PMID: 35641184 DOI: 10.1093/femsec/fiac063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Host-specific microbial communities thrive within sponge tissues and this association between sponge and associated microbiota may be driven by the organohalogen chemistry of the sponge animal. Several sponge species produce diverse organobromine secondary metabolites (e.g. brominated phenolics, indoles, and pyrroles) that may function as a chemical defense against microbial fouling, infection or predation. In this study, anaerobic cultures prepared from marine sponges were amended with 2,6-dibromophenol as the electron acceptor and short chain organic acids as electron donors. We observed reductive dehalogenation from diverse sponge species collected at disparate temperate and tropical waters suggesting that biogenic organohalides appear to enrich for populations of dehalogenating microorganisms in the sponge animal. Further enrichment by successive transfers with 2,6-dibromophenol as the sole electron acceptor demonstrated the presence of dehalogenating bacteria in over 20 sponge species collected from temperate and tropical ecoregions in the Atlantic and Pacific Oceans and the Mediterranean Sea. The enriched dehalogenating strains were closely related to Desulfoluna spongiiphila and Desulfoluna butyratoxydans, suggesting a cosmopolitan association between Desulfoluna spp. and various marine sponges. In vivo reductive dehalogenation in intact sponges was also demonstrated. Organobromide-rich sponges may thus provide a specialized habitat for organohalide-respiring microbes and D. spongiiphila and/or its close relatives are responsible for reductive dehalogenation in geographically widely distributed sponge species.
Collapse
Affiliation(s)
- Isabel Horna-Gray
- Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| | - Nora A Lopez
- Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA.,Department of Marine and Coastal Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| | - Youngbeom Ahn
- Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA.,Division of Microbiology , National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Brandon Saks
- Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| | - Nathaniel Girer
- Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| | - Ute Hentschel
- RD3 Marine Microbiology, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | - Peter J McCarthy
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Boca Raton, FL, USA
| | - Lee J Kerkhof
- Department of Marine and Coastal Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| | - Max M Häggblom
- Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
3
|
Zhang Y, Yang Q, Ling J, Long L, Huang H, Yin J, Wu M, Tang X, Lin X, Zhang Y, Dong J. Shifting the microbiome of a coral holobiont and improving host physiology by inoculation with a potentially beneficial bacterial consortium. BMC Microbiol 2021; 21:130. [PMID: 33910503 PMCID: PMC8082877 DOI: 10.1186/s12866-021-02167-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/30/2021] [Indexed: 12/20/2022] Open
Abstract
Background The coral microbiome plays a key role in host health by being involved in energy metabolism, nutrient cycling, and immune system formation. Inoculating coral with beneficial bacterial consortia may enhance the ability of this host to cope with complex and changing marine environments. In this study, the coral Pocillopora damicornis was inoculated with a beneficial microorganisms for corals (BMC) consortium to investigate how the coral host and its associated microbial community would respond. Results High-throughput 16S rRNA gene sequencing revealed no significant differences in bacterial community α-diversity. However, the bacterial community structure differed significantly between the BMC and placebo groups at the end of the experiment. Addition of the BMC consortium significantly increased the relative abundance of potentially beneficial bacteria, including the genera Mameliella and Endozoicomonas. Energy reserves and calcification rates of the coral host were also improved by the addition of the BMC consortium. Co-occurrence network analysis indicated that inoculation of coral with the exogenous BMC consortium improved the physiological status of the host by shifting the coral-associated microbial community structure. Conclusions Manipulating the coral-associated microbial community may enhance the physiology of coral in normal aquarium conditions (no stress applied), which may hypothetically contribute to resilience and resistance in this host. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02167-5.
Collapse
Affiliation(s)
- Ying Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.,Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences and Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya, 572000, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qingsong Yang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juan Ling
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Lijuan Long
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.,Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences and Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya, 572000, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Hui Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.,Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences and Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya, 572000, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Jianping Yin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Meilin Wu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Xiaoyu Tang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiancheng Lin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanying Zhang
- Ocean school, Yantai University, Yantai, 264005, China.
| | - Junde Dong
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China. .,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China. .,Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences and Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya, 572000, China. .,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China.
| |
Collapse
|