1
|
Etesami H, Santoyo G. Boosting Rhizobium-legume symbiosis: The role of nodule non-rhizobial bacteria in hormonal and nutritional regulation under stress. Microbiol Res 2025; 297:128192. [PMID: 40279725 DOI: 10.1016/j.micres.2025.128192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/19/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Legumes are vital for sustainable agriculture due to their unique ability to fix atmospheric nitrogen through symbiosis with rhizobia. Recent research has highlighted the significant role of non-rhizobial bacteria (NRB) within root nodules in enhancing this symbiotic relationship, particularly under stress conditions. These NRB exhibit plant growth-promoting (PGP) metabolites by modulating phytohormones and enhancing nutrient availability, thereby improving nodule development and function. Bacteria produce essential hormones, such as auxin (indole-3-acetic acid), cytokinins, gibberellic acids abscisic acid, jasmonic acid, and salicylic acid, and enzymes like 1-aminocyclopropane-1-carboxylate deaminase, which mitigate ethylene's inhibitory effects on nodulation. Furthermore, NRB contribute to nutrient cycling by solubilizing minerals like phosphate, potassium, silicate, zinc, and iron, essential for effective nitrogen fixation. The co-inoculation of legumes with both rhizobia and NRB with multiple PGP metabolites has shown synergistic effects on plant growth, yield, and resilience against environmental stresses. This review emphasizes the need to further explore the diversity and functional roles of nodule-associated non-rhizobial endophytes, aiming to optimize legume productivity through improved nutrient and hormonal management. Understanding these interactions is crucial for developing sustainable agricultural practices that enhance the efficiency of legume-rhizobia symbiosis, ultimately contributing to food security and ecosystem health.
Collapse
Affiliation(s)
- Hassan Etesami
- Department of Soil Science, University of Tehran, Tehran, Iran.
| | - Gustavo Santoyo
- Institute of Chemical and Biological Research, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia 58095, Mexico
| |
Collapse
|
2
|
Alias A, Ramli M, Deventhiran KV, Siddique MNI, Yahaya N, Heděnec P. Diversity and composition of rare bacterial community in gut and vermicompost of Eudrilus eugeniae fed with multiple substrates during vermicomposting. Folia Microbiol (Praha) 2025:10.1007/s12223-025-01257-5. [PMID: 40164890 DOI: 10.1007/s12223-025-01257-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 03/18/2025] [Indexed: 04/02/2025]
Abstract
Vermicomposting has been recognized as a sustainable solution for the managing of organic waste, primarily because of the bacterial communities that drive microbial decomposition. However, while the roles of abundant bacteria in composting processes are well-documented, the contributions of rare bacteria remain underexplored. In this study, we investigated the diversity and composition of abundant and rare bacterial communities in gut of Eudrilus eugeniae and resulting vermicompost, comparing okara as a single substrate compared to a combination of more substrates, such as kitchen waste or okara and kitchen waste. Amplicon sequencing revealed a total of 3085 operational taxonomic units (OTUs), comprising 188 abundant OTUs and 2127 rare OTUs. Significant differences in bacterial community composition were observed between vermicompost and the earthworm gut, particularly in the rare bacterial communities, with distinct abundances of Gemmatimonadota, Desulfobacteria, Myxococcota, Acidobacteria, and Firmicutes. Interestingly, no significant differences were found between treatments in the abundant bacterial communities, suggesting that okara alone can sustain a bacterial community comparable to mixed substrates. However, rare bacterial communities were more sensitive to substrate variation, with okara fostering distinct rare microbial populations in the vermicompost and earthworm gut. Our results indicate okara can support both abundant and rare bacteria, producing compost with similar physico-chemical properties to those derived from mixed substrates. The study highlights the importance of rare bacterial communities in vermicomposting and demonstrates the potential of okara as a valuable resource for sustainable waste management and soil improvement.
Collapse
Affiliation(s)
- Amirah Alias
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, 21030, Malaysia
| | - Maisarah Ramli
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, 21030, Malaysia
| | - Khoseelaa Vijaya Deventhiran
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, 21030, Malaysia
| | - Md Nurul Islam Siddique
- Faculty of Marine Engineering Technology, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, 21030, Malaysia
| | - Nurshieren Yahaya
- Faculty of Chemical Engineering and Technology, Universiti Malaysia Perlis, Arau, Perlis, 02600, Malaysia
| | - Petr Heděnec
- Institute of Tropical Biodiversity and Sustainable Development, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, 21030, Malaysia.
| |
Collapse
|
3
|
Yeremko L, Czopek K, Staniak M, Marenych M, Hanhur V. Role of Environmental Factors in Legume- Rhizobium Symbiosis: A Review. Biomolecules 2025; 15:118. [PMID: 39858512 PMCID: PMC11764364 DOI: 10.3390/biom15010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/23/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Legumes play a pivotal role in addressing global challenges of food and nutrition security by offering a sustainable source of protein and bioactive compounds. The capacity of legumes to establish symbiotic relationships with rhizobia bacteria enables biological nitrogen fixation (BNF), reducing the dependence on chemical fertilizers while enhancing soil health. However, the efficiency of this symbiosis is significantly influenced by environmental factors, such as soil acidity, salinity, temperature, moisture content, light intensity, and nutrient availability. These factors affect key processes, including rhizobia survival, nodule formation, and nitrogenase activity, ultimately determining the growth and productivity of legumes. This review summarizes current knowledge on legume-rhizobia interactions under varying abiotic conditions. It highlights the impact of salinity and acidity in limiting nodule development, soil temperature in regulating microbial community dynamics, and moisture availability in modulating metabolic and hormonal responses during drought and waterlogging. Moreover, the role of essential nutrients, including nitrogen, phosphorus, potassium, and trace elements such as iron, molybdenum, and boron, in optimizing symbiosis is critically analyzed.
Collapse
Affiliation(s)
- Liudmyla Yeremko
- Department of Crop Production, Poltava State Agrarian University, Skovoroda St., 1/3, 36000 Poltava, Ukraine; (L.Y.); (V.H.)
| | - Katarzyna Czopek
- Department of Crops and Yield Quality, Institute of Soil Science and Plant Cultivation—State Research Institute, 8 Czartoryskich St., 24-100 Pulawy, Poland;
| | - Mariola Staniak
- Department of Crops and Yield Quality, Institute of Soil Science and Plant Cultivation—State Research Institute, 8 Czartoryskich St., 24-100 Pulawy, Poland;
| | - Mykola Marenych
- Department of Breeding, Seed Production and Genetics, Poltava State Agrarian University, Skovoroda St., 1/3, 36000 Poltava, Ukraine;
| | - Volodymyr Hanhur
- Department of Crop Production, Poltava State Agrarian University, Skovoroda St., 1/3, 36000 Poltava, Ukraine; (L.Y.); (V.H.)
| |
Collapse
|
4
|
Bharti A, Maheshwari HS, Garg S, Anwar K, Pareek A, Satpute G, Prakash A, Sharma MP. Exploring potential soybean bradyrhizobia from high trehalose-accumulating soybean genotypes for improved symbiotic effectiveness in soybean. Int Microbiol 2023; 26:973-987. [PMID: 37036547 DOI: 10.1007/s10123-023-00351-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/20/2023] [Accepted: 03/25/2023] [Indexed: 04/11/2023]
Abstract
Drought is the most important factor limiting the activity of rhizobia during N-fixation and plant growth. In the present study, we isolated Bradyrhizobium spp. from root nodules of higher trehalose-accumulating soybean genotypes and examined for moisture stress tolerance on a gradient of polyethylene glycol (PEG 6000) amended in yeast extract mannitol (YEM) broth. In addition, the bradyrhizobial strains were also evaluated for symbiotic effectiveness on soybean. Based on 16S rDNA gene sequences, four bradyrhizobial species were recovered from high trehalose-accumulating genotypes, i.e., two Bradyrhizobium liaoningense strains (accession number KX230053, KX230054) from EC 538828 and PK-472, respectively, one Bradyrhizobium daqingense (accession number KX230052) from PK-472, and one Bradyrhizobium kavangense (accession number MN197775) from Valder genotype having low trehalose. These strains, along with two native strains, viz., Bradyrhizobium japonicum (JF792425), Bradyrhizobium liaoningense (JF792426), and one commercial rhizobium, were studied for nodulation, leghaemoglobin, and N-fixation abilities on soybean under sterilized sand microcosm conditions in a completely randomized design. Among all the strains, D-4A (B. daqingense) followed by D-4B (B. liaoningense) was found to have significantly higher nodulation traits and acetylene reduction assay (ARA) activity when compared to other strains and commercial rhizobia. The bradyrhizobia isolates showed plant growth promotion traits such as indole acetic acid (IAA), exopolysaccharide (EPS), and siderophore production, phosphate-solubilizing potential, and proline accumulation. The novel species B. daqingense was reported for the first time from Indian soil and observed to be a potential candidate strain and should be evaluated for conferring drought tolerance in soybean under simulated stress conditions.
Collapse
Affiliation(s)
- Abhishek Bharti
- ICAR-Indian Institute of Soybean Research, Khandwa Road, Indore, 452001, India
- Department of Microbiology, Barkatullah University, Bhopal, 462026, India
| | - Hemant S Maheshwari
- ICAR-Indian Institute of Soybean Research, Khandwa Road, Indore, 452001, India
| | - Shivani Garg
- ICAR-Indian Institute of Soybean Research, Khandwa Road, Indore, 452001, India
| | - Khalid Anwar
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
- National Agri-Food Biotechnology Institute (NABI), Mohali, 140308, Punjab, India
| | - Gyanesh Satpute
- ICAR-Indian Institute of Soybean Research, Khandwa Road, Indore, 452001, India
| | - Anil Prakash
- Department of Microbiology, Barkatullah University, Bhopal, 462026, India
| | - Mahaveer P Sharma
- ICAR-Indian Institute of Soybean Research, Khandwa Road, Indore, 452001, India.
| |
Collapse
|
5
|
Balzer AHA, Whitehurst CB. An Analysis of the Biotin-(Strept)avidin System in Immunoassays: Interference and Mitigation Strategies. Curr Issues Mol Biol 2023; 45:8733-8754. [PMID: 37998726 PMCID: PMC10670868 DOI: 10.3390/cimb45110549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/25/2023] Open
Abstract
An immunoassay is an analytical test method in which analyte quantitation is based on signal responses generated as a consequence of an antibody-antigen interaction. They are the method of choice for the measurement of a large panel of diagnostic markers. Not only are they fully automated, allowing for a short turnaround time and high throughput, but offer high sensitivity and specificity with low limits of detection for a wide range of analytes. Many immunoassay manufacturers exploit the extremely high affinity of biotin for streptavidin in their assay design architectures as a means to immobilize and detect analytes of interest. The biotin-(strept)avidin system is, however, vulnerable to interference with high levels of supplemental biotin that may cause elevated or suppressed test results. Since this system is heavily applied in clinical diagnostics, biotin interference has become a serious concern, prompting the FDA to issue a safety report alerting healthcare workers and the public about the potential harm of ingesting high levels of supplemental biotin contributing toward erroneous diagnostic test results. This review includes a general background and historical prospective of immunoassays with a focus on the biotin-streptavidin system, interferences within the system, and what mitigations are applied to minimize false diagnostic results.
Collapse
Affiliation(s)
- Amy H. A. Balzer
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Basic Medical Science Building, 15 Dana Rd., Valhalla, NY 10595, USA
| | - Christopher B. Whitehurst
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Basic Medical Science Building, 15 Dana Rd., Valhalla, NY 10595, USA
| |
Collapse
|
6
|
Zhong Y, Tian J, Li X, Liao H. Cooperative interactions between nitrogen fixation and phosphorus nutrition in legumes. THE NEW PHYTOLOGIST 2023; 237:734-745. [PMID: 36324147 DOI: 10.1111/nph.18593] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Legumes such as soybean are considered important crops as they provide proteins and oils for humans and livestock around the world. Different from other crops, leguminous crops accumulate nitrogen (N) for plant growth through symbiotic nitrogen fixation (SNF) in coordination with rhizobia. A number of studies have shown that efficient SNF requires the cooperation of other nutrients, especially phosphorus (P), a nutrient deficient in most soils. During the last decades, great progress has been made in understanding the molecular mechanisms underlying the interactions between SNF and P nutrition, specifically through the identification of transporters involved in P transport to nodules and bacteroids, signal transduction, and regulation of P homeostasis in nodules. These studies revealed a distinct N-P interaction in leguminous crops, which is characterized by specific signaling cross talk between P and SNF. This review aimed to present an updated picture of the cross talk between N fixation and P nutrition in legumes, focusing on soybean as a model crop, and Medicago truncatula and Lotus japonicus as model plants. We also discuss the possibilities for enhancing SNF through improving P nutrition, which are important for high and sustainable production of leguminous crops.
Collapse
Affiliation(s)
- Yongjia Zhong
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jiang Tian
- Root Biology Center, South China Agricultural University, Guangzhou, 510642, China
| | - Xinxin Li
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hong Liao
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
7
|
Buoso S, Zamboni A, Franco A, Commisso M, Guzzo F, Varanini Z, Pinton R, Tomasi N, Zanin L. Nodulating white lupins take advantage of the reciprocal interplay between N and P nutritional responses. PHYSIOLOGIA PLANTARUM 2022; 174:e13607. [PMID: 34837246 PMCID: PMC9303408 DOI: 10.1111/ppl.13607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
The low bioavailability of nutrients, especially nitrogen (N) and phosphorus (P), is one of the most limiting factors for crop production. In this study, under N- and P-free nutrient solution (-N-P), nodulating white lupin plants developed some nodules and analogous cluster root structures characterized by different morphological, physiological, and molecular responses than those observed upon single nutrient deficiency (strong acidification of external media, a better nutritional status than -N+P and +N-P plants). The multi-elemental analysis highlighted that the concentrations of nutrients in white lupin plants were mainly affected by P availability. Gene-expression analyses provided evidence of interconnections between N and P nutritional pathways that are active to promote N and P balance in plants. The root exudome was mainly characterized by N availability in nutrient solution, and, in particular, the absence of N and P in the nutrient solution triggered a high release of phenolic compounds, nucleosides monophosphate and saponines by roots. These morphological, physiological, and molecular responses result from a close interplay between N and P nutritional pathways. They contribute to the good development of nodulating white lupin plants when grown on N- and P-free media. This study provides evidence that limited N and P availability in the nutrient solution can promote white lupin-Bradyrhizobium symbiosis, which is favourable for the sustainability of legume production.
Collapse
Affiliation(s)
- Sara Buoso
- Department of Agricultural, Food, Environmental and Animal SciencesUniversity of UdineUdineItaly
| | - Anita Zamboni
- Department of BiotechnologyUniversity of VeronaVeronaItaly
| | - Alessandro Franco
- Department of Agricultural, Food, Environmental and Animal SciencesUniversity of UdineUdineItaly
| | - Mauro Commisso
- Department of BiotechnologyUniversity of VeronaVeronaItaly
| | - Flavia Guzzo
- Department of BiotechnologyUniversity of VeronaVeronaItaly
| | - Zeno Varanini
- Department of BiotechnologyUniversity of VeronaVeronaItaly
| | - Roberto Pinton
- Department of Agricultural, Food, Environmental and Animal SciencesUniversity of UdineUdineItaly
| | - Nicola Tomasi
- Department of Agricultural, Food, Environmental and Animal SciencesUniversity of UdineUdineItaly
| | - Laura Zanin
- Department of Agricultural, Food, Environmental and Animal SciencesUniversity of UdineUdineItaly
| |
Collapse
|
8
|
Nguyen NNT, Clua J, Vetal PV, Vuarambon DJ, De Bellis D, Pervent M, Lepetit M, Udvardi M, Valentine AJ, Poirier Y. PHO1 family members transport phosphate from infected nodule cells to bacteroids in Medicago truncatula. PLANT PHYSIOLOGY 2021; 185:196-209. [PMID: 33631809 PMCID: PMC8133656 DOI: 10.1093/plphys/kiaa016] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/14/2020] [Indexed: 05/20/2023]
Abstract
Legumes play an important role in the soil nitrogen availability via symbiotic nitrogen fixation (SNF). Phosphate (Pi) deficiency severely impacts SNF because of the high Pi requirement of symbiosis. Whereas PHT1 transporters are involved in Pi uptake into nodules, it is unknown how Pi is transferred from the plant infected cells to nitrogen-fixing bacteroids. We hypothesized that Medicago truncatula genes homologous to Arabidopsis PHO1, encoding a vascular apoplastic Pi exporter, are involved in Pi transfer to bacteroids. Among the seven MtPHO1 genes present in M. truncatula, we found that two genes, namely MtPHO1.1 and MtPHO1.2, were broadly expressed across the various nodule zones in addition to the root vascular system. Expressions of MtPHO1.1 and MtPHO1.2 in Nicotiana benthamiana mediated specific Pi export. Plants with nodule-specific downregulation of both MtPHO1.1 and MtPHO1.2 were generated by RNA interference (RNAi) to examine their roles in nodule Pi homeostasis. Nodules of RNAi plants had lower Pi content and a three-fold reduction in SNF, resulting in reduced shoot growth. Whereas the rate of 33Pi uptake into nodules of RNAi plants was similar to control, transfer of 33Pi from nodule cells into bacteroids was reduced and bacteroids activated their Pi-deficiency response. Our results implicate plant MtPHO1 genes in bacteroid Pi homeostasis and SNF via the transfer of Pi from nodule infected cells to bacteroids.
Collapse
Affiliation(s)
- Nga N T Nguyen
- Department of Plant Molecular Biology, Biophore Building, University of Lausanne, Lausanne 1015, Switzerland
| | - Joaquin Clua
- Department of Plant Molecular Biology, Biophore Building, University of Lausanne, Lausanne 1015, Switzerland
| | - Pallavi V Vetal
- Department of Plant Molecular Biology, Biophore Building, University of Lausanne, Lausanne 1015, Switzerland
| | - Dominique Jacques Vuarambon
- Department of Plant Molecular Biology, Biophore Building, University of Lausanne, Lausanne 1015, Switzerland
| | - Damien De Bellis
- Department of Plant Molecular Biology, Biophore Building, University of Lausanne, Lausanne 1015, Switzerland
- Electron Microscopy Facility, Biophore Building, University of Lausanne, Lausanne 1015, Switzerland
| | - Marjorie Pervent
- Laboratoire des Symbioses Tropicales et Méditerranéennes UMR 1342 INRAE-IRD-CIRAD-UM-Montpellier SupAgro, Montpellier, France
| | - Marc Lepetit
- Laboratoire des Symbioses Tropicales et Méditerranéennes UMR 1342 INRAE-IRD-CIRAD-UM-Montpellier SupAgro, Montpellier, France
| | - Michael Udvardi
- The Noble Research Institute, 2510 Sam Noble Parkway, Ardmore, OK, USA
| | - Alexander J Valentine
- Botany & Zoology Department, University of Stellenbosch, Matieland 7602, South Africa
| | - Yves Poirier
- Department of Plant Molecular Biology, Biophore Building, University of Lausanne, Lausanne 1015, Switzerland
- Author for communication:
| |
Collapse
|
9
|
Gitonga NM, Njeru EM, Cheruiyot R, Maingi JM. Genetic and Morphological Diversity of Indigenous Bradyrhizobium Nodulating Soybean in Organic and Conventional Family Farming Systems. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2020.606618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Organic farming systems are gaining popularity as agronomically and environmentally sound soil management strategies with potential to enhance soil microbial diversity and fertility, environmental quality and sustainable crop production. This work aimed at understanding the effect of organic and conventional farming on the diversity of soybean nodulating bradyrhizobia species. Field trapping of indigenous soybean Bradyrhizobium was done by planting promiscuous soybeans varieties SB16 and SC squire as well as non-promiscuous Gazelle in three organic and three conventional farms in Tharaka-Nithi County of Kenya. After 45 days of growth, 108 nodule isolates were obtained from the soybean nodules and placed into 13 groups based on their morphological characteristics. Genetic diversity was done by polymerase chain reaction (PCR) targeting 16S rDNA gene using universal primers P5-R and P3-F and sequencing was carried out using the same primer. High morphological and genetic diversity of the nodule isolates was observed in organic farms as opposed to conventional farms. There was little or no genetic differentiation between the nodule isolates from the different farms with the highest molecular variation (91.12%) being partitioned within populations as opposed to among populations (8.88%). All the isolates were identified as bradyrhizobia with close evolutionary ties with Bradyrhizobium japonicum and Bradyrhizobium yuanminense. Organic farming systems favor the proliferation of bradyrhizobia species and therefore a suitable environmentally friendly alternative for enhancing soybean production.
Collapse
|
10
|
Liu A, Ku YS, Contador CA, Lam HM. The Impacts of Domestication and Agricultural Practices on Legume Nutrient Acquisition Through Symbiosis With Rhizobia and Arbuscular Mycorrhizal Fungi. Front Genet 2020; 11:583954. [PMID: 33193716 PMCID: PMC7554533 DOI: 10.3389/fgene.2020.583954] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/08/2020] [Indexed: 12/03/2022] Open
Abstract
Legumes are unique among plants as they can obtain nitrogen through symbiosis with nitrogen-fixing rhizobia that form root nodules in the host plants. Therefore they are valuable crops for sustainable agriculture. Increasing nitrogen fixation efficiency is not only important for achieving better plant growth and yield, but it is also crucial for reducing the use of nitrogen fertilizer. Arbuscular mycorrhizal fungi (AMF) are another group of important beneficial microorganisms that form symbiotic relationships with legumes. AMF can promote host plant growth by providing mineral nutrients and improving the soil ecosystem. The trilateral legume-rhizobia-AMF symbiotic relationships also enhance plant development and tolerance against biotic and abiotic stresses. It is known that domestication and agricultural activities have led to the reduced genetic diversity of cultivated germplasms and higher sensitivity to nutrient deficiencies in crop plants, but how domestication has impacted the capability of legumes to establish beneficial associations with rhizospheric microbes (including rhizobia and fungi) is not well-studied. In this review, we will discuss the impacts of domestication and agricultural practices on the interactions between legumes and soil microbes, focusing on the effects on AMF and rhizobial symbioses and hence nutrient acquisition by host legumes. In addition, we will summarize the genes involved in legume-microbe interactions and studies that have contributed to a better understanding of legume symbiotic associations using metabolic modeling.
Collapse
Affiliation(s)
| | | | | | - Hon-Ming Lam
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
11
|
Co-Inoculation of Bacillus velezensis Strain S141 and Bradyrhizobium Strains Promotes Nodule Growth and Nitrogen Fixation. Microorganisms 2020; 8:microorganisms8050678. [PMID: 32392716 PMCID: PMC7284691 DOI: 10.3390/microorganisms8050678] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/29/2020] [Accepted: 05/05/2020] [Indexed: 11/29/2022] Open
Abstract
The objective of this research was to evaluate the PGPR effect on nodulation and nitrogen-fixing efficiency of soybean (Glycine max (L.) Merr.) by co-inoculation with Bradyrhizobiumdiazoefficiens USDA110. Co-inoculation of Bacillusvelezensis S141 with USDA110 into soybean resulted in enhanced nodulation and N2-fixing efficiency by producing larger nodules. To understand the role of S141 on soybean and USDA110 symbiosis, putative genes related to IAA biosynthesis were disrupted, suggesting that co-inoculation of USDA110 with S141ΔyhcX reduces the number of large size nodules. It was revealed that yhcX may play a major role in IAA biosynthesis in S141 as well as provide a major impact on soybean growth promotion. The disruption of genes related to cytokinin biosynthesis and co-inoculation of USDA110 with S141ΔIPI reduced the number of very large size nodules, and it appears that IPI might play an important role in nodule size of soybean–Bradyrhizobium symbiosis. However, it was possible that not only IAA and cytokinin but also some other substances secreted from S141 facilitate Bradyrhizobium to trigger bigger nodule formation, resulting in enhanced N2-fixation. Therefore, the ability of S141 with Bradyrhizobium co-inoculation to enhance soybean N2-fixation strategy could be further developed for supreme soybean inoculants.
Collapse
|
12
|
Montes-Grajales D, Esturau-Escofet N, Esquivel B, Martinez-Romero E. Exo-Metabolites of Phaseolus vulgaris-Nodulating Rhizobial Strains. Metabolites 2019; 9:E105. [PMID: 31151153 PMCID: PMC6630823 DOI: 10.3390/metabo9060105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 01/01/2023] Open
Abstract
Rhizobia are able to convert dinitrogen into biologically available forms of nitrogen through their symbiotic association with leguminous plants. This results in plant growth promotion, and also in conferring host resistance to different types of stress. These bacteria can interact with other organisms and survive in a wide range of environments, such as soil, rhizosphere, and inside roots. As most of these processes are molecularly mediated, the aim of this research was to identify and quantify the exo-metabolites produced by Rhizobium etli CFN42, Rhizobium leucaenae CFN299, Rhizobium tropici CIAT899, Rhizobium phaseoli Ch24-10, and Sinorhizobium americanum CFNEI156, by nuclear magnetic resonance (NMR). Bacteria were grown in free-living cultures using minimal medium containing sucrose and glutamate. Interestingly, we found that even when these bacteria belong to the same family (Rhizobiaceae) and all form nitrogen-fixing nodules on Phaseolus vulgaris roots, they exhibited different patterns and concentrations of chemical species produced by them.
Collapse
Affiliation(s)
- Diana Montes-Grajales
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico.
- Instituto de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.
- Environmental and Computational Chemistry Group, University of Cartagena, Cartagena 130015, Colombia.
| | - Nuria Esturau-Escofet
- Instituto de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.
| | - Baldomero Esquivel
- Instituto de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.
| | | |
Collapse
|
13
|
diCenzo GC, Zamani M, Checcucci A, Fondi M, Griffitts JS, Finan TM, Mengoni A. Multidisciplinary approaches for studying rhizobium–legume symbioses. Can J Microbiol 2019; 65:1-33. [DOI: 10.1139/cjm-2018-0377] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The rhizobium–legume symbiosis is a major source of fixed nitrogen (ammonia) in the biosphere. The potential for this process to increase agricultural yield while reducing the reliance on nitrogen-based fertilizers has generated interest in understanding and manipulating this process. For decades, rhizobium research has benefited from the use of leading techniques from a very broad set of fields, including population genetics, molecular genetics, genomics, and systems biology. In this review, we summarize many of the research strategies that have been employed in the study of rhizobia and the unique knowledge gained from these diverse tools, with a focus on genome- and systems-level approaches. We then describe ongoing synthetic biology approaches aimed at improving existing symbioses or engineering completely new symbiotic interactions. The review concludes with our perspective of the future directions and challenges of the field, with an emphasis on how the application of a multidisciplinary approach and the development of new methods will be necessary to ensure successful biotechnological manipulation of the symbiosis.
Collapse
Affiliation(s)
- George C. diCenzo
- Department of Biology, University of Florence, Sesto Fiorentino, FI 50019, Italy
| | - Maryam Zamani
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Alice Checcucci
- Department of Biology, University of Florence, Sesto Fiorentino, FI 50019, Italy
| | - Marco Fondi
- Department of Biology, University of Florence, Sesto Fiorentino, FI 50019, Italy
| | - Joel S. Griffitts
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Turlough M. Finan
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Alessio Mengoni
- Department of Biology, University of Florence, Sesto Fiorentino, FI 50019, Italy
| |
Collapse
|
14
|
Functional Genomics Approaches to Studying Symbioses between Legumes and Nitrogen-Fixing Rhizobia. High Throughput 2018; 7:ht7020015. [PMID: 29783718 PMCID: PMC6023288 DOI: 10.3390/ht7020015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/13/2018] [Accepted: 05/16/2018] [Indexed: 01/24/2023] Open
Abstract
Biological nitrogen fixation gives legumes a pronounced growth advantage in nitrogen-deprived soils and is of considerable ecological and economic interest. In exchange for reduced atmospheric nitrogen, typically given to the plant in the form of amides or ureides, the legume provides nitrogen-fixing rhizobia with nutrients and highly specialised root structures called nodules. To elucidate the molecular basis underlying physiological adaptations on a genome-wide scale, functional genomics approaches, such as transcriptomics, proteomics, and metabolomics, have been used. This review presents an overview of the different functional genomics approaches that have been performed on rhizobial symbiosis, with a focus on studies investigating the molecular mechanisms used by the bacterial partner to interact with the legume. While rhizobia belonging to the alpha-proteobacterial group (alpha-rhizobia) have been well studied, few studies to date have investigated this process in beta-proteobacteria (beta-rhizobia).
Collapse
|
15
|
Lardi M, Liu Y, Giudice G, Ahrens CH, Zamboni N, Pessi G. Metabolomics and Transcriptomics Identify Multiple Downstream Targets of Paraburkholderia phymatum σ 54 During Symbiosis with Phaseolus vulgaris. Int J Mol Sci 2018; 19:ijms19041049. [PMID: 29614780 PMCID: PMC5979394 DOI: 10.3390/ijms19041049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/28/2018] [Accepted: 03/28/2018] [Indexed: 12/20/2022] Open
Abstract
RpoN (or σ54) is the key sigma factor for the regulation of transcription of nitrogen fixation genes in diazotrophic bacteria, which include α- and β-rhizobia. Our previous studies showed that an rpoN mutant of the β-rhizobial strain Paraburkholderia phymatum STM815T formed root nodules on Phaseolus vulgaris cv. Negro jamapa, which were unable to reduce atmospheric nitrogen into ammonia. In an effort to further characterize the RpoN regulon of P. phymatum, transcriptomics was combined with a powerful metabolomics approach. The metabolome of P. vulgaris root nodules infected by a P. phymatumrpoN Fix− mutant revealed statistically significant metabolic changes compared to wild-type Fix+ nodules, including reduced amounts of chorismate and elevated levels of flavonoids. A transcriptome analysis on Fix− and Fix+ nodules—combined with a search for RpoN binding sequences in promoter regions of regulated genes—confirmed the expected control of σ54 on nitrogen fixation genes in nodules. The transcriptomic data also allowed us to identify additional target genes, whose differential expression was able to explain the observed metabolite changes in numerous cases. Moreover, the genes encoding the two-component regulatory system NtrBC were downregulated in root nodules induced by the rpoN mutant, and contained a putative RpoN binding motif in their promoter region, suggesting direct regulation. The construction and characterization of an ntrB mutant strain revealed impaired nitrogen assimilation in free-living conditions, as well as a noticeable symbiotic phenotype, as fewer but heavier nodules were formed on P. vulgaris roots.
Collapse
Affiliation(s)
- Martina Lardi
- Department of Plant and Microbial Biology, University of Zurich, CH-8057 Zurich, Switzerland.
| | - Yilei Liu
- Department of Plant and Microbial Biology, University of Zurich, CH-8057 Zurich, Switzerland.
| | - Gaetano Giudice
- Department of Plant and Microbial Biology, University of Zurich, CH-8057 Zurich, Switzerland.
| | - Christian H Ahrens
- Agroscope, Research Group Molecular Diagnostics, Genomics and Bioinformatics & Swiss Institute of Bioinformatics (SIB), CH-8820 Wädenswil, Switzerland.
| | - Nicola Zamboni
- Institute of Molecular Systems Biology, ETH Zurich, CH-8093 Zurich, Switzerland.
| | - Gabriella Pessi
- Department of Plant and Microbial Biology, University of Zurich, CH-8057 Zurich, Switzerland.
| |
Collapse
|
16
|
Liu A, Contador CA, Fan K, Lam HM. Interaction and Regulation of Carbon, Nitrogen, and Phosphorus Metabolisms in Root Nodules of Legumes. FRONTIERS IN PLANT SCIENCE 2018; 9:1860. [PMID: 30619423 PMCID: PMC6305480 DOI: 10.3389/fpls.2018.01860] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/30/2018] [Indexed: 05/19/2023]
Abstract
Members of the plant family Leguminosae (Fabaceae) are unique in that they have evolved a symbiotic relationship with rhizobia (a group of soil bacteria that can fix atmospheric nitrogen). Rhizobia infect and form root nodules on their specific host plants before differentiating into bacteroids, the symbiotic form of rhizobia. This complex relationship involves the supply of C4-dicarboxylate and phosphate by the host plants to the microsymbionts that utilize them in the energy-intensive process of fixing atmospheric nitrogen into ammonium, which is in turn made available to the host plants as a source of nitrogen, a macronutrient for growth. Although nitrogen-fixing bacteroids are no longer growing, they are metabolically active. The symbiotic process is complex and tightly regulated by both the host plants and the bacteroids. The metabolic pathways of carbon, nitrogen, and phosphate are heavily regulated in the host plants, as they need to strike a fine balance between satisfying their own needs as well as those of the microsymbionts. A network of transporters for the various metabolites are responsible for the trafficking of these essential molecules between the two partners through the symbiosome membrane (plant-derived membrane surrounding the bacteroid), and these are in turn regulated by various transcription factors that control their expressions under different environmental conditions. Understanding this complex process of symbiotic nitrogen fixation is vital in promoting sustainable agriculture and enhancing soil fertility.
Collapse
Affiliation(s)
- Ailin Liu
- Centre for Soybean Research, State Key Laboratory of Agrobiotechnology, Shatin, Hong Kong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Carolina A. Contador
- Centre for Soybean Research, State Key Laboratory of Agrobiotechnology, Shatin, Hong Kong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Kejing Fan
- Centre for Soybean Research, State Key Laboratory of Agrobiotechnology, Shatin, Hong Kong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Hon-Ming Lam
- Centre for Soybean Research, State Key Laboratory of Agrobiotechnology, Shatin, Hong Kong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
- *Correspondence: Hon-Ming Lam,
| |
Collapse
|
17
|
Stopka SA, Agtuca BJ, Koppenaal DW, Paša-Tolić L, Stacey G, Vertes A, Anderton CR. Laser-ablation electrospray ionization mass spectrometry with ion mobility separation reveals metabolites in the symbiotic interactions of soybean roots and rhizobia. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:340-354. [PMID: 28394446 DOI: 10.1111/tpj.13569] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/03/2017] [Accepted: 04/04/2017] [Indexed: 05/18/2023]
Abstract
Technologies enabling in situ metabolic profiling of living plant systems are invaluable for understanding physiological processes and could be used for rapid phenotypic screening (e.g., to produce plants with superior biological nitrogen-fixing ability). The symbiotic interaction between legumes and nitrogen-fixing soil bacteria results in a specialized plant organ (i.e., root nodule) where the exchange of nutrients between host and endosymbiont occurs. Laser-ablation electrospray ionization mass spectrometry (LAESI-MS) is a method that can be performed under ambient conditions requiring minimal sample preparation. Here, we employed LAESI-MS to explore the well characterized symbiosis between soybean (Glycine max L. Merr.) and its compatible symbiont, Bradyrhizobium japonicum. The utilization of ion mobility separation (IMS) improved the molecular coverage, selectivity, and identification of the detected biomolecules. Specifically, incorporation of IMS resulted in an increase of 153 differentially abundant spectral features in the nodule samples. The data presented demonstrate the advantages of using LAESI-IMS-MS for the rapid analysis of intact root nodules, uninfected root segments, and free-living rhizobia. Untargeted pathway analysis revealed several metabolic processes within the nodule (e.g., zeatin, riboflavin, and purine synthesis). Compounds specific to the uninfected root and bacteria were also detected. Lastly, we performed depth profiling of intact nodules to reveal the location of metabolites to the cortex and inside the infected region, and lateral profiling of sectioned nodules confirmed these molecular distributions. Our results established the feasibility of LAESI-IMS-MS for the analysis and spatial mapping of plant tissues, with its specific demonstration to improve our understanding of the soybean-rhizobial symbiosis.
Collapse
Affiliation(s)
- Sylwia A Stopka
- Department of Chemistry, W. M. Keck Institute for Proteomics Technology and Applications, The George Washington University, Washington, DC, 20052, USA
| | - Beverly J Agtuca
- Divisions of Plant Sciences and Biochemistry, C. S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - David W Koppenaal
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99354, USA
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99354, USA
| | - Gary Stacey
- Divisions of Plant Sciences and Biochemistry, C. S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Akos Vertes
- Department of Chemistry, W. M. Keck Institute for Proteomics Technology and Applications, The George Washington University, Washington, DC, 20052, USA
| | - Christopher R Anderton
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99354, USA
| |
Collapse
|
18
|
Lardi M, Murset V, Fischer HM, Mesa S, Ahrens CH, Zamboni N, Pessi G. Metabolomic Profiling of Bradyrhizobium diazoefficiens-Induced Root Nodules Reveals Both Host Plant-Specific and Developmental Signatures. Int J Mol Sci 2016; 17:E815. [PMID: 27240350 PMCID: PMC4926349 DOI: 10.3390/ijms17060815] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/13/2016] [Accepted: 05/19/2016] [Indexed: 01/17/2023] Open
Abstract
Bradyrhizobium diazoefficiens is a nitrogen-fixing endosymbiont, which can grow inside root-nodule cells of the agriculturally important soybean and other host plants. Our previous studies described B. diazoefficiens host-specific global expression changes occurring during legume infection at the transcript and protein level. In order to further characterize nodule metabolism, we here determine by flow injection-time-of-flight mass spectrometry analysis the metabolome of (i) nodules and roots from four different B. diazoefficiens host plants; (ii) soybean nodules harvested at different time points during nodule development; and (iii) soybean nodules infected by two strains mutated in key genes for nitrogen fixation, respectively. Ribose (soybean), tartaric acid (mungbean), hydroxybutanoyloxybutanoate (siratro) and catechol (cowpea) were among the metabolites found to be specifically elevated in one of the respective host plants. While the level of C4-dicarboxylic acids decreased during soybean nodule development, we observed an accumulation of trehalose-phosphate at 21 days post infection (dpi). Moreover, nodules from non-nitrogen-fixing bacteroids (nifA and nifH mutants) showed specific metabolic alterations; these were also supported by independent transcriptomics data. The alterations included signs of nitrogen limitation in both mutants, and an increased level of a phytoalexin in nodules induced by the nifA mutant, suggesting that the tissue of these nodules exhibits defense and stress reactions.
Collapse
Affiliation(s)
- Martina Lardi
- Department of Plant and Microbial Biology, University of Zürich, CH-8057 Zürich, Switzerland.
| | - Valérie Murset
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, CH-8093 Zürich, Switzerland.
| | - Hans-Martin Fischer
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, CH-8093 Zürich, Switzerland.
| | - Socorro Mesa
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), E-18080 Granada, Spain.
| | - Christian H Ahrens
- Agroscope, Institute for Plant Production Sciences, Research Group Molecular Diagnostics, Genomics and Bioinformatics & Swiss Institute of Bioinformatics (SIB), CH-8820 Wädenswil, Switzerland.
| | - Nicola Zamboni
- Institute of Molecular Systems Biology, ETH Zürich, CH-8093 Zürich, Switzerland.
| | - Gabriella Pessi
- Department of Plant and Microbial Biology, University of Zürich, CH-8057 Zürich, Switzerland.
| |
Collapse
|
19
|
Isolation of salt-tolerant mutants of Mesorhizobium ciceri strain Rch125 and identification of genes involved in salt sensitivity. Symbiosis 2015. [DOI: 10.1007/s13199-015-0357-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
20
|
Abstract
Rhizobia are bacteria in the α-proteobacterial genera Rhizobium, Sinorhizobium, Mesorhizobium, Azorhizobium and Bradyrhizobium that reduce (fix) atmospheric nitrogen in symbiotic association with a compatible host plant. In free-living and/or symbiotically associated rhizobia, amino acids may, in addition to their incorporation into proteins, serve as carbon, nitrogen or sulfur sources, signals of cellular nitrogen status and precursors of important metabolites. Depending on the rhizobia-host plant combination, microsymbiont amino acid metabolism (biosynthesis, transport and/or degradation) is often crucial to the establishment and maintenance of an effective nitrogen-fixing symbiosis and is intimately interconnected with the metabolism of the plant. This review summarizes past findings and current research directions in rhizobial amino acid metabolism and evaluates the genetic, biochemical and genome expression studies from which these are derived. Specific sections deal with the regulation of rhizobial amino acid metabolism, amino acid transport, and finally the symbiotic roles of individual amino acids in different plant-rhizobia combinations.
Collapse
|