1
|
Sapkota S, Burlakoti RR, Lubberts M, Lamour K. Genome resources and whole genome resequencing of Phytophthora rubi isolates from red raspberry. FRONTIERS IN PLANT SCIENCE 2023; 14:1161864. [PMID: 37457337 PMCID: PMC10339809 DOI: 10.3389/fpls.2023.1161864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/15/2023] [Indexed: 07/18/2023]
Abstract
Phytophthora rubi is a primary causal agent of Phytophthora root rot and wilting of raspberry (Rubus idaeus L.) worldwide. The disease is a major concern for raspberry growers in Canada and USA. To date, no information is available on genomic diversity of P. rubi population from raspberry in Canada. Using a PCR-free library prep with dual-indexing for an Illumina HiSEQX running a 2x150 bp configuration, we generated whole genome sequence data of P. rubi isolates (n = 25) recovered during 2018 to 2020 from nine fields, four locations and four cultivars of raspberry growing areas of British Columbia, Canada. The assembled genome of 24 isolates of P. rubi averaged 8,541 scaffolds, 309× coverage, and 65,960,000 bp. We exploited single nucleotide polymorphisms (SNPs) obtained from whole genome sequence data to analyze the genome structure and genetic diversity of the P. rubi isolates. Low heterozygosity among the 72% of pathogen isolates and standardized index of association revealed that those isolates were clonal. Principal component analysis, discriminant analysis of principal component, and phylogenetic tree revealed that P. rubi isolates clustered with the raspberry specific cultivars. This study provides novel resources and insight into genome structure, genetic diversity, and reproductive biology of P rubi isolated from red raspberry. The availability of the P. rubi genomes also provides valuable resources for future comparative genomic and evolutionary studies for oomycetes pathogens.
Collapse
Affiliation(s)
- Sanjib Sapkota
- Agassiz Research and Development Centre, Agriculture and Agri-Food Canada, Agassiz, BC, Canada
| | - Rishi R. Burlakoti
- Agassiz Research and Development Centre, Agriculture and Agri-Food Canada, Agassiz, BC, Canada
| | - Mark Lubberts
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC, Canada
| | - Kurt Lamour
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
2
|
Cox MP, Guo Y, Winter DJ, Sen D, Cauldron NC, Shiller J, Bradley EL, Ganley AR, Gerth ML, Lacey RF, McDougal RL, Panda P, Williams NM, Grunwald NJ, Mesarich CH, Bradshaw RE. Chromosome-level assembly of the Phytophthora agathidicida genome reveals adaptation in effector gene families. Front Microbiol 2022; 13:1038444. [PMID: 36406440 PMCID: PMC9667082 DOI: 10.3389/fmicb.2022.1038444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/11/2022] [Indexed: 01/25/2023] Open
Abstract
Phytophthora species are notorious plant pathogens, with some causing devastating tree diseases that threaten the survival of their host species. One such example is Phytophthora agathidicida, the causal agent of kauri dieback - a root and trunk rot disease that kills the ancient, iconic and culturally significant tree species, Agathis australis (New Zealand kauri). A deeper understanding of how Phytophthora pathogens infect their hosts and cause disease is critical for the development of effective treatments. Such an understanding can be gained by interrogating pathogen genomes for effector genes, which are involved in virulence or pathogenicity. Although genome sequencing has become more affordable, the complete assembly of Phytophthora genomes has been problematic, particularly for those with a high abundance of repetitive sequences. Therefore, effector genes located in repetitive regions could be truncated or missed in a fragmented genome assembly. Using a combination of long-read PacBio sequences, chromatin conformation capture (Hi-C) and Illumina short reads, we assembled the P. agathidicida genome into ten complete chromosomes, with a genome size of 57 Mb including 34% repeats. This is the first Phytophthora genome assembled to chromosome level and it reveals a high level of syntenic conservation with the complete genome of Peronospora effusa, the only other completely assembled genome sequence of an oomycete. All P. agathidicida chromosomes have clearly defined centromeres and contain candidate effector genes such as RXLRs and CRNs, but in different proportions, reflecting the presence of gene family clusters. Candidate effector genes are predominantly found in gene-poor, repeat-rich regions of the genome, and in some cases showed a high degree of duplication. Analysis of candidate RXLR effector genes that occur in multicopy gene families indicated half of them were not expressed in planta. Candidate CRN effector gene families showed evidence of transposon-mediated recombination leading to new combinations of protein domains, both within and between chromosomes. Further analysis of this complete genome assembly will help inform new methods of disease control against P. agathidicida and other Phytophthora species, ultimately helping decipher how Phytophthora pathogens have evolved to shape their effector repertoires and how they might adapt in the future.
Collapse
Affiliation(s)
- Murray P. Cox
- Laboratory of Molecular Plant Pathology/Bioprotection Aotearoa, School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Yanan Guo
- Laboratory of Molecular Plant Pathology/Bioprotection Aotearoa, School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - David J. Winter
- Institute of Environmental Science and Research (ESR), Porirua, New Zealand
| | | | - Nicholas C. Cauldron
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | | | - Ellie L. Bradley
- Laboratory of Molecular Plant Pathology/Bioprotection Aotearoa, School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Austen R. Ganley
- School of Biological Sciences and Digital Life Institute, University of Auckland, Auckland, New Zealand
| | - Monica L. Gerth
- Bioprotection Aotearoa, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Randy F. Lacey
- Bioprotection Aotearoa, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | | | | | | - Niklaus J. Grunwald
- Horticultural Crops Disease and Pest Management Research Unit, USDA Agricultural Research Service, Corvallis, OR, United States
| | - Carl H. Mesarich
- Laboratory of Molecular Plant Pathology/Bioprotection Aotearoa, School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Rosie E. Bradshaw
- Laboratory of Molecular Plant Pathology/Bioprotection Aotearoa, School of Natural Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
3
|
de Vries S, de Vries J, Archibald JM, Slamovits CH. Comparative analyses of saprotrophy in Salisapilia sapeloensis and diverse plant pathogenic oomycetes reveal lifestyle-specific gene expression. FEMS Microbiol Ecol 2021; 96:5904760. [PMID: 32918444 PMCID: PMC7585586 DOI: 10.1093/femsec/fiaa184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/08/2020] [Indexed: 11/14/2022] Open
Abstract
Oomycetes include many devastating plant pathogens. Across oomycete diversity, plant-infecting lineages are interspersed by non-pathogenic ones. Unfortunately, our understanding of the evolution of lifestyle switches is hampered by a scarcity of data on the molecular biology of saprotrophic oomycetes, ecologically important primary colonizers of dead tissue that can serve as informative reference points for understanding the evolution of pathogens. Here, we established Salisapilia sapeloensis as a tractable system for the study of saprotrophic oomycetes. We generated multiple transcriptomes from S. sapeloensis and compared them with (i) 22 oomycete genomes and (ii) the transcriptomes of eight pathogenic oomycetes grown under 13 conditions. We obtained a global perspective on gene expression signatures of oomycete lifestyles. Our data reveal that oomycete saprotrophs and pathogens use similar molecular mechanisms for colonization but exhibit distinct expression patterns. We identify a S. sapeloensis-specific array and expression of carbohydrate-active enzymes and putative regulatory differences, highlighted by distinct expression levels of transcription factors. Salisapilia sapeloensis expresses only a small repertoire of candidates for virulence-associated genes. Our analyses suggest lifestyle-specific gene regulatory signatures and that, in addition to variation in gene content, shifts in gene regulatory networks underpin the evolution of oomycete lifestyles.
Collapse
Affiliation(s)
- Sophie de Vries
- Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2 Canada
| | - Jan de Vries
- Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2 Canada.,Institute of Microbiology, Technische Universität Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany.,Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goldschmidtstr. 1, 37077 Goettingen, Germany.,Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig-Weg 11, 37077 Goettingen, Germany.,Campus Institute Data Science (CIDAS), University of Goettingen, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - John M Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2 Canada
| | - Claudio H Slamovits
- Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2 Canada
| |
Collapse
|
4
|
Xiang G, Yin X, Niu W, Chen T, Liu R, Shang B, Fu Q, Liu G, Ma H, Xu Y. Characterization of CRN-Like Genes From Plasmopara viticola: Searching for the Most Virulent Ones. Front Microbiol 2021; 12:632047. [PMID: 33868192 PMCID: PMC8044898 DOI: 10.3389/fmicb.2021.632047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 02/26/2021] [Indexed: 11/13/2022] Open
Abstract
Grapevine downy mildew is an insurmountable disease that endangers grapevine production and the wine industry worldwide. The causal agent of the disease is the obligate biotrophic oomycete Plasmopara viticola, for which the pathogenic mechanism remains largely unknown. Crinkling and necrosis proteins (CRN) are an ancient class of effectors utilized by pathogens, including oomycetes, that interfere with host plant defense reactions. In this study, 27 CRN-like genes were cloned from the P. viticola isolate YL genome, hereafter referred to as PvCRN genes, and characterized in silico and in planta. PvCRN genes in ‘YL’ share high sequence identities with their ortholog genes in the other three previously sequenced P. viticola isolates. Sequence divergence among the genes in the PvCRN family indicates that different PvCRN genes have different roles. Phylogenetic analysis of the PvCRN and the CRN proteins encoded by genes in the P. halstedii genome suggests that various functions might have been acquired by the CRN superfamily through independent evolution of Plasmopara species. When transiently expressed in plant cells, the PvCRN protein family shows multiple subcellular localizations. None of the cloned PvCRN proteins induced hypersensitive response (HR)-like cell death on the downy mildew-resistant grapevine Vitis riparia. This was in accordance with the result that most PvCRN proteins, except PvCRN11, failed to induce necrosis in Nicotiana benthamiana. Pattern-triggered immunity (PTI) induced by INF1 was hampered by several PvCRN proteins. In addition, 15 PvCRN proteins prevented Bax-induced plant programmed cell death. Among the cell death-suppressing members, PvCRN17, PvCRN20, and PvCRN23 were found to promote the susceptibility of N. benthamiana to Phytophthora capsici, which is a semi-biotrophic oomycete. Moreover, the nucleus-targeting member, PvCRN19, promoted the susceptibility of N. benthamiana to P. capsici. Therefore, these PvCRN proteins were estimated to be virulent effectors involved in the pathogenicity of P. viticola YL. Collectively, this study provides comprehensive insight into the CRN effector repertoire of P. viticola YL, which will help further elucidate the molecular mechanisms of the pathogenesis of grapevine downy mildew.
Collapse
Affiliation(s)
- Gaoqing Xiang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A&F University, Yangling, China.,College of Horticulture, Northwest A&F University, Yangling, China
| | - Xiao Yin
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A&F University, Yangling, China.,College of Horticulture, Northwest A&F University, Yangling, China
| | - Weili Niu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A&F University, Yangling, China.,College of Horticulture, Northwest A&F University, Yangling, China
| | - Tingting Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A&F University, Yangling, China.,College of Horticulture, Northwest A&F University, Yangling, China
| | - Ruiqi Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A&F University, Yangling, China.,College of Horticulture, Northwest A&F University, Yangling, China
| | - Boxing Shang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A&F University, Yangling, China.,College of Horticulture, Northwest A&F University, Yangling, China
| | - Qingqing Fu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A&F University, Yangling, China.,College of Horticulture, Northwest A&F University, Yangling, China
| | - Guotian Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A&F University, Yangling, China.,College of Horticulture, Northwest A&F University, Yangling, China
| | - Hui Ma
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A&F University, Yangling, China.,College of Horticulture, Northwest A&F University, Yangling, China
| | - Yan Xu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A&F University, Yangling, China.,College of Horticulture, Northwest A&F University, Yangling, China
| |
Collapse
|
5
|
Pánek M, Střížková I, Zouhar M, Kudláček T, Tomšovský M. Mixed-Mating Model of Reproduction Revealed in European Phytophthora cactorum by ddRADseq and Effector Gene Sequence Data. Microorganisms 2021; 9:345. [PMID: 33578718 PMCID: PMC7916502 DOI: 10.3390/microorganisms9020345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/27/2021] [Accepted: 02/06/2021] [Indexed: 02/07/2023] Open
Abstract
A population study of Phytophthora cactorum was performed using ddRADseq sequence variation analysis completed by the analysis of effector genes-RXLR6, RXLR7 and SCR113. The population structure was described by F-statistics, heterozygosity, nucleotide diversity, number of private alleles, number of polymorphic sites, kinship coefficient and structure analysis. The population of P. cactorum in Europe seems to be structured into host-associated groups. The isolates from woody hosts are structured into four groups described previously, while isolates from strawberry form another group. The groups are diverse in effector gene composition and the frequency of outbreeding. When populations from strawberry were analysed, both asexual reproduction and occasional outbreeding confirmed by gene flow among distinct populations were detected. Therefore, distinct P. cactorum populations differ in the level of heterozygosity. The data support the theory of the mixed-mating model for P. cactorum, comprising frequent asexual behaviour and inbreeding alternating with occasional outbreeding. Because P. cactorum is not indigenous to Europe, such variability is probably caused by multiple introductions of different lineages from the area of its original distribution, and the different histories of sexual recombination and host adaptation of particular populations.
Collapse
Affiliation(s)
- Matěj Pánek
- Crop Research Institute, Team of Ecology and Diagnostics of Fungal Plant Pathogens, Drnovská 507/73, 161 06 Praha, Czech Republic;
| | - Ivana Střížková
- Crop Research Institute, Team of Ecology and Diagnostics of Fungal Plant Pathogens, Drnovská 507/73, 161 06 Praha, Czech Republic;
| | - Miloslav Zouhar
- Department of Plant Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences in Prague, Kamýcká 129, 165 00 Praha, Czech Republic;
| | - Tomáš Kudláček
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, CZ-613 00 Brno, Czech Republic; (T.K.); (M.T.)
| | - Michal Tomšovský
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, CZ-613 00 Brno, Czech Republic; (T.K.); (M.T.)
| |
Collapse
|
6
|
de Vries S, de Vries J. A Global Survey of Carbohydrate Esterase Families 1 and 10 in Oomycetes. Front Genet 2020; 11:756. [PMID: 32849784 PMCID: PMC7427535 DOI: 10.3389/fgene.2020.00756] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/25/2020] [Indexed: 12/11/2022] Open
Abstract
Carbohydrate-active enzymes (CAZymes) are a cornerstone in the phytopathogenicity of filamentous microbes. CAZymes are required for every step of a successful infection cycle-from penetration, to nutrient acquisition (during colonization), to exit and dispersal. Yet, CAZymes are not a unique feature of filamentous pathogens. They are found across eukaryotic genomes and including, for example, saprotrophic relatives of major pathogens. Comparative genomics and functional analyses revealed that CAZyme content is shaped by a multitude of factors, including utilized substrate, lifestyle, and host preference. Yet, family size alone says little about usage. Indeed, in a previous study, we found that genes putatively coding for the CAZyme families of carbohydrate esterase (CE)1 and CE10, while not specifically enriched in number, were suggested to have lifestyle-specific gene expression patterns. Here, we used comparative genomics and a clustering approach to understand how the repertoire of the CE1- and CE10-encoding gene families is shaped across oomycete evolution. These data are combined with comparative transcriptomic analyses across homologous clusters within the gene families. We find that CE1 and CE10 have been reduced in number in biotrophic oomycetes independent of the phylogenetic relationship of the biotrophs to each other. The reduction in CE1 is different from that observed for CE10: While in CE10 specific clusters of homologous sequences show convergent reduction, CE1 reduction is caused by species-specific losses. Comparative transcriptomics revealed that some clusters of CE1 or CE10 sequences have a higher expression than others, independent of the species composition within them. Further, we find that CE1- and CE10-encoding genes are mainly induced in plant pathogens and that some homologous genes show lifestyle-specific gene expression levels during infection, with hemibiotrophs showing the highest expression levels.
Collapse
Affiliation(s)
- Sophie de Vries
- Institute of Population Genetics, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jan de Vries
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Göettingen, Göettingen, Germany
- Göettingen Center for Molecular Biosciences (GZMB), University of Göettingen, Göettingen, Germany
- Campus Institute Data Science, University of Göettingen, Göettingen, Germany
| |
Collapse
|
7
|
Organize, Don't Agonize: Strategic Success of Phytophthora Species. Microorganisms 2020; 8:microorganisms8060917. [PMID: 32560346 PMCID: PMC7355776 DOI: 10.3390/microorganisms8060917] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 12/20/2022] Open
Abstract
Plants are constantly challenged by various environmental stressors ranging from abiotic-sunlight, elevated temperatures, drought, and nutrient deficits, to biotic factors-microbial pathogens and insect pests. These not only affect the quality of harvest but also the yield, leading to substantial annual crop losses, worldwide. Although plants have a multi-layered immune system, phytopathogens such as species of the oomycete genus Phytophthora, can employ elaborate mechanisms to breach this defense. For the last two decades, researchers have focused on the co-evolution between Phytophthora and interacting hosts to decouple the mechanisms governing their molecular associations. This has provided a comprehensive understanding of the pathobiology of plants affected by oomycetes. Ultimately, this is important for the development of strategies to sustainably improve agricultural production. Therefore, this paper discusses the present-day state of knowledge of the strategic mode of operation employed by species of Phytophthora for successful infection. Specifically, we consider motility, attachment, and host cell wall degradation used by these pathogenic species to obtain nutrients from their host. Also discussed is an array of effector types from apoplastic (hydrolytic proteins, protease inhibitors, elicitins) to cytoplastic (RxLRs, named after Arginine-any amino acid-Leucine-Arginine consensus sequence and CRNs, for CRinkling and Necrosis), which upon liberation can subvert the immune response and promote diseases in plants.
Collapse
|
8
|
Sharma R, Ökmen B, Doehlemann G, Thines M. Saprotrophic yeasts formerly classified as Pseudozyma have retained a large effector arsenal, including functional Pep1 orthologs. Mycol Prog 2019. [DOI: 10.1007/s11557-019-01486-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Liu L, Xu L, Jia Q, Pan R, Oelmüller R, Zhang W, Wu C. Arms race: diverse effector proteins with conserved motifs. PLANT SIGNALING & BEHAVIOR 2019; 14:1557008. [PMID: 30621489 PMCID: PMC6351098 DOI: 10.1080/15592324.2018.1557008] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Effector proteins play important roles in the infection by pathogenic oomycetes and fungi or the colonization by endophytic and mycorrhizal fungi. They are either translocated into the host plant cells via specific translocation mechanisms and function in the host's cytoplasm or nucleus, or they reside in the apoplast of the plant cells and act at the extracellular host-microbe interface. Many effector proteins possess conserved motifs (such as the RXLR, CRN, LysM, RGD, DELD, EAR, RYWT, Y/F/WXC or CFEM motifs) localized in their N- or C-terminal regions. Analysis of the functions of effector proteins, especially so-called "core effectors", is crucial for the understanding of pathogenicity/symbiosis mechanisms and plant defense strategies, and helps to develop breeding strategies for pathogen-resistant cultivars, and to increase crop yield and quality as well as abiotic stress resistance. This review summarizes current knowledge about these effector proteins with the conversed motifs and their involvement in pathogenic or mutualistic plant/fungal interactions.
Collapse
Affiliation(s)
- Liping Liu
- College of Horticulture & Gardening, Yangtze University, Jingzhou, China
| | - Le Xu
- Hubei Collaborative Innovation Center for Grain Industry/Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou, China
| | - Qie Jia
- College of Horticulture & Gardening, Yangtze University, Jingzhou, China
| | - Rui Pan
- Hubei Collaborative Innovation Center for Grain Industry/Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou, China
| | - Ralf Oelmüller
- Plant Physiology, Matthias-Schleiden-Institute for Genetics, Bioinformatics and Molecular Botany, Faculty of Biological Science, Friedrich-Schiller-University Jena, Jena, Germany
| | - Wenying Zhang
- Hubei Collaborative Innovation Center for Grain Industry/Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou, China
- CONTACT Wenying Zhang Hubei Collaborative Innovation Center for Grain Industry/Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou 434025, China; Chu Wu College of Horticulture & Gardening, Yangtze University, Jingzhou 434025, China
| | - Chu Wu
- College of Horticulture & Gardening, Yangtze University, Jingzhou, China
- Institute of Plant Ecology and Environmental Restoration, Yangtze University, Jingzhou, China
| |
Collapse
|
10
|
Vetukuri RR, Tripathy S, Malar C M, Panda A, Kushwaha SK, Chawade A, Andreasson E, Grenville-Briggs LJ, Whisson SC. Draft Genome Sequence for the Tree Pathogen Phytophthora plurivora. Genome Biol Evol 2018; 10:2432-2442. [PMID: 30060094 PMCID: PMC6152947 DOI: 10.1093/gbe/evy162] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2018] [Indexed: 12/19/2022] Open
Abstract
Species from the genus Phytophthora are well represented among organisms causing serious diseases on trees. Phytophthora plurivora has been implicated in long-term decline of woodland trees across Europe. Here we present a draft genome sequence of P. plurivora, originally isolated from diseased European beech (Fagus sylvatica) in Malmö, Sweden. When compared with other sequenced Phytophthora species, the P. plurivora genome assembly is relatively compact, spanning 41 Mb. This is organized in 1,919 contigs and 1,898 scaffolds, encompassing 11,741 predicted genes, and has a repeat content of approximately 15%. Comparison of allele frequencies revealed evidence for tetraploidy in the sequenced isolate. As in other sequenced Phytophthora species, P. plurivora possesses genes for pathogenicity-associated RXLR and Crinkle and Necrosis effectors, predominantly located in gene-sparse genomic regions. Comparison of the P. plurivora RXLR effectors with orthologs in other sequenced species in the same clade (Phytophthora multivora and Phytophthora capsici) revealed that the orthologs were likely to be under neutral or purifying selection.
Collapse
Affiliation(s)
- Ramesh R Vetukuri
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Sucheta Tripathy
- Computational Genomics Laboratory, Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research, Indian Institute of Chemical Biology, Kolkata, India.,Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| | - Mathu Malar C
- Computational Genomics Laboratory, Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research, Indian Institute of Chemical Biology, Kolkata, India.,Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| | - Arijit Panda
- Computational Genomics Laboratory, Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research, Indian Institute of Chemical Biology, Kolkata, India.,Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| | - Sandeep K Kushwaha
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden.,National Bioinformatics Infrastructure Sweden (NBIS), Department of Biology, Lund University, Sweden
| | - Aakash Chawade
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Erik Andreasson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Laura J Grenville-Briggs
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Stephen C Whisson
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| |
Collapse
|
11
|
Yang M, Duan S, Mei X, Huang H, Chen W, Liu Y, Guo C, Yang T, Wei W, Liu X, He X, Dong Y, Zhu S. The Phytophthora cactorum genome provides insights into the adaptation to host defense compounds and fungicides. Sci Rep 2018; 8:6534. [PMID: 29695739 PMCID: PMC5916904 DOI: 10.1038/s41598-018-24939-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 04/12/2018] [Indexed: 02/08/2023] Open
Abstract
Phytophthora cactorum is a homothallic oomycete pathogen, which has a wide host range and high capability to adapt to host defense compounds and fungicides. Here we report the 121.5 Mb genome assembly of the P. cactorum using the third-generation single-molecule real-time (SMRT) sequencing technology. It is the second largest genome sequenced so far in the Phytophthora genera, which contains 27,981 protein-coding genes. Comparison with other Phytophthora genomes showed that P. cactorum had a closer relationship with P. parasitica, P. infestans and P. capsici. P. cactorum has similar gene families in the secondary metabolism and pathogenicity-related effector proteins compared with other oomycete species, but specific gene families associated with detoxification enzymes and carbohydrate-active enzymes (CAZymes) underwent expansion in P. cactorum. P. cactorum had a higher utilization and detoxification ability against ginsenosides-a group of defense compounds from Panax notoginseng-compared with the narrow host pathogen P. sojae. The elevated expression levels of detoxification enzymes and hydrolase activity-associated genes after exposure to ginsenosides further supported that the high detoxification and utilization ability of P. cactorum play a crucial role in the rapid adaptability of the pathogen to host plant defense compounds and fungicides.
Collapse
Affiliation(s)
- Min Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China
| | - Shengchang Duan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Nowbio Biotechnology Company, Kunming, 650201, China
| | - Xinyue Mei
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China
| | - Huichuan Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China
| | - Wei Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming, 650201, China
| | - Yixiang Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China
| | - Cunwu Guo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China
| | - Ting Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China
| | - Wei Wei
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China
| | - Xili Liu
- Department of Plant Pathology, China Agricultural University, Beijing, 100083, China
| | - Xiahong He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China.
- Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China.
| | - Yang Dong
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China.
- Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming, 650201, China.
| | - Shusheng Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China.
- Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
12
|
Genomic, Network, and Phylogenetic Analysis of the Oomycete Effector Arsenal. mSphere 2017; 2:mSphere00408-17. [PMID: 29202039 PMCID: PMC5700374 DOI: 10.1128/msphere.00408-17] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/02/2017] [Indexed: 02/07/2023] Open
Abstract
The oomycetes are a class of microscopic, filamentous eukaryotes and include ecologically significant animal and plant pathogens. Oomycetes secrete large arsenals of effector proteins that degrade host cell components, manipulate host immune responses, and induce necrosis, enabling parasitic colonization. In this study, we catalogued the number and evolution of effectors in 37 oomycete species whose genomes have been completely sequenced. Large expansions of effector protein families in Phytophthora species, including glycoside hydrolases, pectinases, and necrosis-inducing proteins, were observed. Species-specific expansions were detected, including chitinases in Aphanomyces astaci and Pythium oligandrum. Novel effectors which may be involved in suppressing animal immune responses were identified in Ap. astaci and Py. oligandrum. Type 2 necrosis-inducing proteins with an unusual phylogenetic history were also located. This work represents an up-to-date in silico catalogue of the effector arsenal of the oomycetes based on the 37 genomes currently available. The oomycetes are a class of microscopic, filamentous eukaryotes within the stramenopiles-alveolate-Rhizaria (SAR) supergroup and include ecologically significant animal and plant pathogens. Oomycetes secrete large arsenals of effector proteins that degrade host cell components, manipulate host immune responses, and induce necrosis, enabling parasitic colonization. This study investigated the expansion and evolution of effectors in 37 oomycete species in 4 oomycete orders, including Albuginales, Peronosporales, Pythiales, and Saprolegniales species. Our results highlight the large expansions of effector protein families, including glycoside hydrolases, pectinases, and necrosis-inducing proteins, in Phytophthora species. Species-specific expansions, including expansions of chitinases in Aphanomyces astaci and Pythium oligandrum, were detected. Novel effectors which may be involved in suppressing animal immune responses in Ap. astaci and Py. insidiosum were also identified. Type 2 necrosis-inducing proteins with an unusual phylogenetic history were also located in a number of oomycete species. We also investigated the "RxLR" effector complement of all 37 species and, as expected, observed large expansions in Phytophthora species numbers. Our results provide in-depth sequence information on all putative RxLR effectors from all 37 species. This work represents an up-to-date in silico catalogue of the effector arsenal of the oomycetes based on the 37 genomes currently available. IMPORTANCE The oomycetes are a class of microscopic, filamentous eukaryotes and include ecologically significant animal and plant pathogens. Oomycetes secrete large arsenals of effector proteins that degrade host cell components, manipulate host immune responses, and induce necrosis, enabling parasitic colonization. In this study, we catalogued the number and evolution of effectors in 37 oomycete species whose genomes have been completely sequenced. Large expansions of effector protein families in Phytophthora species, including glycoside hydrolases, pectinases, and necrosis-inducing proteins, were observed. Species-specific expansions were detected, including chitinases in Aphanomyces astaci and Pythium oligandrum. Novel effectors which may be involved in suppressing animal immune responses were identified in Ap. astaci and Py. oligandrum. Type 2 necrosis-inducing proteins with an unusual phylogenetic history were also located. This work represents an up-to-date in silico catalogue of the effector arsenal of the oomycetes based on the 37 genomes currently available.
Collapse
|
13
|
Longmuir AL, Beech PL, Richardson MF. Draft genomes of two Australian strains of the plant pathogen, Phytophthora cinnamomi. F1000Res 2017; 6:1972. [PMID: 29188023 PMCID: PMC5698912 DOI: 10.12688/f1000research.12867.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/23/2017] [Indexed: 11/20/2022] Open
Abstract
Background: The oomycete plant pathogen, Phytophthora cinnamomi, is responsible for the destruction of thousands of species of native Australian plants, as well as several crops, such as avocado and macadamia, and has one of the widest host-plant ranges of the Phytophthora genus. The current reference genome of P. cinnamomi is based on an atypical strain and has large gaps in its assembly. To further studies of the pathogenicity of this species, especially in Australia, robust genome assemblies of more typical strains are required. Here we report the genome sequencing, draft assembly, and preliminary annotation of two geographically separated Australian strains of P. cinnamomi. Findings: Some 308 million raw reads were generated for the two strains, DU054 and WA94.26. Independent genome assembly produced final genome sequences of 62.8 Mb (in 14,268 scaffolds) and 68.1 Mb (in 10,084 scaffolds), which are comparable in size and contiguity to other Phytophthora genomes. Gene prediction yielded > 22,000 predicted protein-encoding genes within each genome, while BUSCO assessment showed 94.4% and 91.5% of the stramenopile single-copy orthologs to be present in the assembled genomes, respectively. Conclusions: The assembled genomes of two geographically distant isolates of Phytophthora cinnamomi will provide a valuable resource for further comparative analyses and evolutionary studies of this destructive pathogen, and further annotation of the presented genomes may yield possible targets for novel pathogen control methods.
Collapse
Affiliation(s)
- Amy L. Longmuir
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, VIC, 3125, Australia
| | - Peter L. Beech
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, VIC, 3125, Australia
| | - Mark F. Richardson
- Bioinformatics Core Research Group, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, 3220, Australia
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, 3220, Australia
| |
Collapse
|
14
|
Longmuir AL, Beech PL, Richardson MF. Draft genomes of two Australian strains of the plant pathogen, Phytophthora cinnamomi. F1000Res 2017; 6:1972. [PMID: 29188023 PMCID: PMC5698912 DOI: 10.12688/f1000research.12867.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/21/2017] [Indexed: 01/14/2023] Open
Abstract
Background: The oomycete plant pathogen, Phytophthora cinnamomi, is responsible for the destruction of thousands of species of native Australian plants, as well as several crops, such as avocado and macadamia, and has one of the widest host-plant ranges of the Phytophthora genus. The currently available genome of P. cinnamomi is based on an atypical strain and has large gaps in its assembly. To further studies of the pathogenicity of this species, especially in Australia, more robust assemblies of the genomes of more typical strains are required. Here we report the genome sequencing, draft assembly, and preliminary annotation of two geographically separated Australian strains of P. cinnamomi. Findings: Some 308 million raw reads were generated for the two strains. Independent genome assembly produced final genomes of 62.8 Mb (in 14,268 scaffolds) and 68.1 Mb (in 10,084 scaffolds), which are comparable in size and contiguity to other Phytophthora genomes. Gene prediction yielded > 22,000 predicted protein-encoding genes within each genome, while BUSCO assessment showed 82.5% and 81.8% of the eukaryote universal single-copy orthologs to be present in the assembled genomes, respectively. Conclusions: The assembled genomes of two geographically distant isolates of Phytophthora cinnamomi will provide a valuable resource for further comparative analysis and evolutionary studies of this destructive pathogen, and further annotation of the presented genomes may yield possible targets for novel pathogen control methods.
Collapse
Affiliation(s)
- Amy L. Longmuir
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, VIC, 3125, Australia
| | - Peter L. Beech
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, VIC, 3125, Australia
| | - Mark F. Richardson
- Bioinformatics Core Research Group, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, 3220, Australia
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, 3220, Australia
| |
Collapse
|
15
|
Turner J, O'Neill P, Grant M, Mumford RA, Thwaites R, Studholme DJ. Genome sequences of 12 isolates of the EU1 lineage of Phytophthora ramorum, a fungus-like pathogen that causes extensive damage and mortality to a wide range of trees and other plants. GENOMICS DATA 2017; 12:17-21. [PMID: 28243575 PMCID: PMC5320048 DOI: 10.1016/j.gdata.2017.02.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 02/05/2017] [Indexed: 11/24/2022]
Abstract
Here we present genome sequences for twelve isolates of the invasive pathogen Phytophthora ramorum EU1. The assembled genome sequences and raw sequence data are available via BioProject accession number PRJNA177509. These data will be useful in developing molecular tools for specific detection and identification of this pathogen.
Collapse
Affiliation(s)
- Judith Turner
- Fera Science Ltd (Fera), National Agri-Food Innovation Campus, Sand Hutton, York YO41 1LZ, United Kingdom
| | - Paul O'Neill
- Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom
| | - Murray Grant
- Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom
| | - Rick A. Mumford
- Fera Science Ltd (Fera), National Agri-Food Innovation Campus, Sand Hutton, York YO41 1LZ, United Kingdom
| | - Richard Thwaites
- Fera Science Ltd (Fera), National Agri-Food Innovation Campus, Sand Hutton, York YO41 1LZ, United Kingdom
| | - David J. Studholme
- Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom
| |
Collapse
|
16
|
Grenville-Briggs LJ, Kushwaha SK, Cleary MR, Witzell J, Savenkov EI, Whisson SC, Chawade A, Vetukuri RR. Draft genome of the oomycete pathogen Phytophthora cactorum strain LV007 isolated from European beech ( Fagus sylvatica). GENOMICS DATA 2017; 12:155-156. [PMID: 28560165 PMCID: PMC5435576 DOI: 10.1016/j.gdata.2017.05.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/11/2017] [Accepted: 05/12/2017] [Indexed: 11/06/2022]
Abstract
Phytophthora cactorum is a broad host range phytopathogenic oomycete. P. cactorum strain LV007 was isolated from a diseased European Beech (Fagus sylvatica) in Malmö, Sweden in 2016. The draft genome of P. cactorum strain LV007 is 67.81 Mb. It contains 15,567 contigs and 21,876 predicted protein-coding genes. As reported for other phytopathogenic Phytophthora species, cytoplasmic effector proteins including RxLR and CRN families were identified. The genome sequence has been deposited at DDBJ/ENA/GenBank under the accession NBIJ00000000. The version described in this paper is version NBIJ01000000.
Collapse
Affiliation(s)
- Laura J Grenville-Briggs
- Department of Plant Protection biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Sandeep K Kushwaha
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden.,National Bioinformatics Infrastructure Sweden (NBIS), Department of Biology, Lund University, Lund, Sweden
| | - Michelle R Cleary
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Johanna Witzell
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Eugene I Savenkov
- Department of Plant Biology, Uppsala BioCenter, Linnean Centre of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Stephen C Whisson
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, United Kingdom
| | - Aakash Chawade
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Ramesh R Vetukuri
- Department of Plant Protection biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
17
|
Yin L, An Y, Qu J, Li X, Zhang Y, Dry I, Wu H, Lu J. Genome sequence of Plasmopara viticola and insight into the pathogenic mechanism. Sci Rep 2017; 7:46553. [PMID: 28417959 PMCID: PMC5394536 DOI: 10.1038/srep46553] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 03/22/2017] [Indexed: 12/17/2022] Open
Abstract
Plasmopara viticola causes downy mildew disease of grapevine which is one of the most devastating diseases of viticulture worldwide. Here we report a 101.3 Mb whole genome sequence of P. viticola isolate 'JL-7-2' obtained by a combination of Illumina and PacBio sequencing technologies. The P. viticola genome contains 17,014 putative protein-coding genes and has ~26% repetitive sequences. A total of 1,301 putative secreted proteins, including 100 putative RXLR effectors and 90 CRN effectors were identified in this genome. In the secretome, 261 potential pathogenicity genes and 95 carbohydrate-active enzymes were predicted. Transcriptional analysis revealed that most of the RXLR effectors, pathogenicity genes and carbohydrate-active enzymes were significantly up-regulated during infection. Comparative genomic analysis revealed that P. viticola evolved independently from the Arabidopsis downy mildew pathogen Hyaloperonospora arabidopsidis. The availability of the P. viticola genome provides a valuable resource not only for comparative genomic analysis and evolutionary studies among oomycetes, but also enhance our knowledge on the mechanism of interactions between this biotrophic pathogen and its host.
Collapse
Affiliation(s)
- Ling Yin
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Yunhe An
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Beijing Center for Physical and Chemical Analysis, Beijing 100089, China
| | - Junjie Qu
- Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Xinlong Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yali Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ian Dry
- CSIRO Agriculture & Food, Wine Innovation West Building, Hartley Grove, Urrbrae, SA 5064, Australia
| | - Huijuan Wu
- Beijing Center for Physical and Chemical Analysis, Beijing 100089, China
| | - Jiang Lu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200024, China
| |
Collapse
|
18
|
Phylogenomic Reconstruction of the Oomycete Phylogeny Derived from 37 Genomes. mSphere 2017; 2:mSphere00095-17. [PMID: 28435885 PMCID: PMC5390094 DOI: 10.1128/msphere.00095-17] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 03/24/2017] [Indexed: 12/17/2022] Open
Abstract
The oomycetes are a class of eukaryotes and include ecologically significant animal and plant pathogens. Single-gene and multigene phylogenetic studies of individual oomycete genera and of members of the larger classes have resulted in conflicting conclusions concerning interspecies relationships among these species, particularly for the Phytophthora genus. The onset of next-generation sequencing techniques now means that a wealth of oomycete genomic data is available. For the first time, we have used genome-scale phylogenetic methods to resolve oomycete phylogenetic relationships. We used supertree methods to generate single-gene and multigene species phylogenies. Overall, our supertree analyses utilized phylogenetic data from 8,355 oomycete gene families. We have also complemented our analyses with superalignment phylogenies derived from 131 single-copy ubiquitous gene families. Our results show that a genome-scale approach to oomycete phylogeny resolves oomycete classes and clades. Our analysis represents an important first step in large-scale phylogenomic analysis of the oomycetes. The oomycetes are a class of microscopic, filamentous eukaryotes within the Stramenopiles-Alveolata-Rhizaria (SAR) supergroup which includes ecologically significant animal and plant pathogens, most infamously the causative agent of potato blight Phytophthora infestans. Single-gene and concatenated phylogenetic studies both of individual oomycete genera and of members of the larger class have resulted in conflicting conclusions concerning species phylogenies within the oomycetes, particularly for the large Phytophthora genus. Genome-scale phylogenetic studies have successfully resolved many eukaryotic relationships by using supertree methods, which combine large numbers of potentially disparate trees to determine evolutionary relationships that cannot be inferred from individual phylogenies alone. With a sufficient amount of genomic data now available, we have undertaken the first whole-genome phylogenetic analysis of the oomycetes using data from 37 oomycete species and 6 SAR species. In our analysis, we used established supertree methods to generate phylogenies from 8,355 homologous oomycete and SAR gene families and have complemented those analyses with both phylogenomic network and concatenated supermatrix analyses. Our results show that a genome-scale approach to oomycete phylogeny resolves oomycete classes and individual clades within the problematic Phytophthora genus. Support for the resolution of the inferred relationships between individual Phytophthora clades varies depending on the methodology used. Our analysis represents an important first step in large-scale phylogenomic analysis of the oomycetes. IMPORTANCE The oomycetes are a class of eukaryotes and include ecologically significant animal and plant pathogens. Single-gene and multigene phylogenetic studies of individual oomycete genera and of members of the larger classes have resulted in conflicting conclusions concerning interspecies relationships among these species, particularly for the Phytophthora genus. The onset of next-generation sequencing techniques now means that a wealth of oomycete genomic data is available. For the first time, we have used genome-scale phylogenetic methods to resolve oomycete phylogenetic relationships. We used supertree methods to generate single-gene and multigene species phylogenies. Overall, our supertree analyses utilized phylogenetic data from 8,355 oomycete gene families. We have also complemented our analyses with superalignment phylogenies derived from 131 single-copy ubiquitous gene families. Our results show that a genome-scale approach to oomycete phylogeny resolves oomycete classes and clades. Our analysis represents an important first step in large-scale phylogenomic analysis of the oomycetes.
Collapse
|
19
|
Feau N, Taylor G, Dale AL, Dhillon B, Bilodeau GJ, Birol I, Jones SJ, Hamelin RC. Genome sequences of six Phytophthora species threatening forest ecosystems. GENOMICS DATA 2016; 10:85-88. [PMID: 27752469 PMCID: PMC5061060 DOI: 10.1016/j.gdata.2016.09.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 09/26/2016] [Accepted: 09/29/2016] [Indexed: 01/25/2023]
Abstract
The Phytophthora genus comprises of some of the most destructive plant pathogens and attack a wide range of hosts including economically valuable tree species, both angiosperm and gymnosperm. Many known species of Phytophthora are invasive and have been introduced through nursery and agricultural trade. As part of a larger project aimed at utilizing genomic data for forest disease diagnostics, pathogen detection and monitoring (The TAIGA project: Tree Aggressors Identification using Genomic Approaches; http://taigaforesthealth.com/), we sequenced the genomes of six important Phytophthora species that are important invasive pathogens of trees and a serious threat to the international trade of forest products. This genomic data was used to develop highly sensitive and specific detection assays and for genome comparisons and to make evolutionary inferences and will be useful to the broader plant and tree health community. These WGS data have been deposited in the International Nucleotide Sequence Database Collaboration (DDBJ/ENA/GenBank) under the accession numbers AUPN01000000, AUVH01000000, AUWJ02000000, AUUF02000000, AWVV02000000 and AWVW02000000.
Collapse
Affiliation(s)
- Nicolas Feau
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Greg Taylor
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Angela L. Dale
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- FPInnovations, Vancouver, British Columbia, Canada
| | - Braham Dhillon
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Inanç Birol
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Steven J.M. Jones
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Vancouver, BC, Canada
| | - Richard C. Hamelin
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Institut de Biologie Intégrative des Systèmes, Université Laval, Québec, Canada
| |
Collapse
|
20
|
Sharma R, Xia X, Cano LM, Evangelisti E, Kemen E, Judelson H, Oome S, Sambles C, van den Hoogen DJ, Kitner M, Klein J, Meijer HJG, Spring O, Win J, Zipper R, Bode HB, Govers F, Kamoun S, Schornack S, Studholme DJ, Van den Ackerveken G, Thines M. Genome analyses of the sunflower pathogen Plasmopara halstedii provide insights into effector evolution in downy mildews and Phytophthora. BMC Genomics 2015; 16:741. [PMID: 26438312 PMCID: PMC4594904 DOI: 10.1186/s12864-015-1904-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/27/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Downy mildews are the most speciose group of oomycetes and affect crops of great economic importance. So far, there is only a single deeply-sequenced downy mildew genome available, from Hyaloperonospora arabidopsidis. Further genomic resources for downy mildews are required to study their evolution, including pathogenicity effector proteins, such as RxLR effectors. Plasmopara halstedii is a devastating pathogen of sunflower and a potential pathosystem model to study downy mildews, as several Avr-genes and R-genes have been predicted and unlike Arabidopsis downy mildew, large quantities of almost contamination-free material can be obtained easily. RESULTS Here a high-quality draft genome of Plasmopara halstedii is reported and analysed with respect to various aspects, including genome organisation, secondary metabolism, effector proteins and comparative genomics with other sequenced oomycetes. Interestingly, the present analyses revealed further variation of the RxLR motif, suggesting an important role of the conservation of the dEER-motif. Orthology analyses revealed the conservation of 28 RxLR-like core effectors among Phytophthora species. Only six putative RxLR-like effectors were shared by the two sequenced downy mildews, highlighting the fast and largely independent evolution of two of the three major downy mildew lineages. This is seemingly supported by phylogenomic results, in which downy mildews did not appear to be monophyletic. CONCLUSIONS The genome resource will be useful for developing markers for monitoring the pathogen population and might provide the basis for new approaches to fight Phytophthora and downy mildew pathogens by targeting core pathogenicity effectors.
Collapse
Affiliation(s)
- Rahul Sharma
- Biodiversity and Climate Research Centre (BiK-F), Georg-Voigt-Str. 14-16, 60325, Frankfurt (Main), Germany. .,Institute of Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Str. 9, 60323, Frankfurt (Main), Germany. .,Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325, Frankfurt (Main), Germany. .,Center for Integrative Fungal Research (IPF), Georg-Voigt-Str. 14-16, 60325, Frankfurt (Main), Germany.
| | - Xiaojuan Xia
- Biodiversity and Climate Research Centre (BiK-F), Georg-Voigt-Str. 14-16, 60325, Frankfurt (Main), Germany. .,Institute of Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Str. 9, 60323, Frankfurt (Main), Germany. .,Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325, Frankfurt (Main), Germany.
| | - Liliana M Cano
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK. .,Present address: Department of Plant Pathology, North Carolina State University Raleigh, Raleigh, NC, 27695, USA.
| | | | - Eric Kemen
- Max Planck Institute for Plant Breeding Research, Carl von Linne´ Weg 10, Cologne, 50829, Germany.
| | - Howard Judelson
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA, 92521, USA.
| | - Stan Oome
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, NL-3584 CH, Utrecht, The Netherlands.
| | - Christine Sambles
- Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.
| | - D Johan van den Hoogen
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, NL-6708PB, Wageningen, The Netherlands.
| | - Miloslav Kitner
- Department of Botany, Faculty of Science, Palacký University Olomouc, Šlechtitelů 11, 78371, Olomouc, Czech Republic.
| | - Joël Klein
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, NL-3584 CH, Utrecht, The Netherlands.
| | - Harold J G Meijer
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, NL-6708PB, Wageningen, The Netherlands.
| | - Otmar Spring
- University of Hohenheim, Institute of Botany 210, D-70593, Stuttgart, Germany.
| | - Joe Win
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK.
| | - Reinhard Zipper
- University of Hohenheim, Institute of Botany 210, D-70593, Stuttgart, Germany.
| | - Helge B Bode
- Merck-Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften and Buchmann Institute for Molecular Life Sciences (BMLS), Goethe Universität Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany.
| | - Francine Govers
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, NL-6708PB, Wageningen, The Netherlands.
| | - Sophien Kamoun
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK.
| | | | - David J Studholme
- Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.
| | - Guido Van den Ackerveken
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, NL-3584 CH, Utrecht, The Netherlands.
| | - Marco Thines
- Biodiversity and Climate Research Centre (BiK-F), Georg-Voigt-Str. 14-16, 60325, Frankfurt (Main), Germany. .,Institute of Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Str. 9, 60323, Frankfurt (Main), Germany. .,Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325, Frankfurt (Main), Germany. .,Center for Integrative Fungal Research (IPF), Georg-Voigt-Str. 14-16, 60325, Frankfurt (Main), Germany. .,Integrative Fungal Research (IPF), Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, D-60325, Frankfurt am Main, Germany.
| |
Collapse
|
21
|
Sharma R, Xia X, Riess K, Bauer R, Thines M. Comparative Genomics Including the Early-Diverging Smut Fungus Ceraceosorus bombacis Reveals Signatures of Parallel Evolution within Plant and Animal Pathogens of Fungi and Oomycetes. Genome Biol Evol 2015; 7:2781-98. [PMID: 26314305 PMCID: PMC4607519 DOI: 10.1093/gbe/evv162] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Ceraceosorus bombacis is an early-diverging lineage of smut fungi and a pathogen of cotton trees (Bombax ceiba). To study the evolutionary genomics of smut fungi in comparison with other fungal and oomycete pathogens, the genome of C. bombacis was sequenced and comparative genomic analyses were performed. The genome of 26.09 Mb encodes for 8,024 proteins, of which 576 are putative-secreted effector proteins (PSEPs). Orthology analysis revealed 30 ortholog PSEPs among six Ustilaginomycotina genomes, the largest groups of which are lytic enzymes, such as aspartic peptidase and glycoside hydrolase. Positive selection analyses revealed the highest percentage of positively selected PSEPs in C. bombacis compared with other Ustilaginomycotina genomes. Metabolic pathway analyses revealed the absence of genes encoding for nitrite and nitrate reductase in the genome of the human skin pathogen Malassezia globosa, but these enzymes are present in the sequenced plant pathogens in smut fungi. Interestingly, these genes are also absent in cultivable oomycete animal pathogens, while nitrate reductase has been lost in cultivable oomycete plant pathogens. Similar patterns were also observed for obligate biotrophic and hemi-biotrophic fungal and oomycete pathogens. Furthermore, it was found that both fungal and oomycete animal pathogen genomes are lacking cutinases and pectinesterases. Overall, these findings highlight the parallel evolution of certain genomic traits, revealing potential common evolutionary trajectories among fungal and oomycete pathogens, shaping the pathogen genomes according to their lifestyle.
Collapse
Affiliation(s)
- Rahul Sharma
- Biodiversity and Climate Research Centre (BiK-F), Frankfurt (Main), Germany Department for Biological Sciences, Institute of Ecology, Evolution and Diversity, Goethe University, Frankfurt (Main), Germany Senckenberg Gesellschaft für Naturforschung, Frankfurt (Main), Germany Cluster for Integrative Fungal Research (IPF), Frankfurt (Main), Germany
| | - Xiaojuan Xia
- Biodiversity and Climate Research Centre (BiK-F), Frankfurt (Main), Germany Department for Biological Sciences, Institute of Ecology, Evolution and Diversity, Goethe University, Frankfurt (Main), Germany Senckenberg Gesellschaft für Naturforschung, Frankfurt (Main), Germany
| | - Kai Riess
- Plant Evolutionary Ecology, Institute of Evolution and Ecology, University of Tübingen, Germany
| | - Robert Bauer
- Plant Evolutionary Ecology, Institute of Evolution and Ecology, University of Tübingen, Germany
| | - Marco Thines
- Biodiversity and Climate Research Centre (BiK-F), Frankfurt (Main), Germany Department for Biological Sciences, Institute of Ecology, Evolution and Diversity, Goethe University, Frankfurt (Main), Germany Senckenberg Gesellschaft für Naturforschung, Frankfurt (Main), Germany Cluster for Integrative Fungal Research (IPF), Frankfurt (Main), Germany
| |
Collapse
|
22
|
FastQFS – A tool for evaluating and filtering paired-end sequencing data generated from high throughput sequencing. Mycol Prog 2015. [DOI: 10.1007/s11557-015-1077-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
23
|
Pautasso M, Schlegel M, Holdenrieder O. Forest health in a changing world. MICROBIAL ECOLOGY 2015; 69:826-842. [PMID: 25502075 DOI: 10.1007/s00248-014-0545-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 11/27/2014] [Indexed: 06/04/2023]
Abstract
Forest pathology, the science of forest health and tree diseases, is operating in a rapidly developing environment. Most importantly, global trade and climate change are increasing the threat to forest ecosystems posed by new diseases. Various studies relevant to forest pathology in a changing world are accumulating, thus making it necessary to provide an update of recent literature. In this contribution, we summarize research at the interface between forest pathology and landscape ecology, biogeography, global change science and research on tree endophytes. Regional outbreaks of tree diseases are requiring interdisciplinary collaboration, e.g. between forest pathologists and landscape ecologists. When tree pathogens are widely distributed, the factors determining their broad-scale distribution can be studied using a biogeographic approach. Global change, the combination of climate and land use change, increased pollution, trade and urbanization, as well as invasive species, will influence the effects of forest disturbances such as wildfires, droughts, storms, diseases and insect outbreaks, thus affecting the health and resilience of forest ecosystems worldwide. Tree endophytes can contribute to biological control of infectious diseases, enhance tolerance to environmental stress or behave as opportunistic weak pathogens potentially competing with more harmful ones. New molecular techniques are available for studying the complete tree endobiome under the influence of global change stressors from the landscape to the intercontinental level. Given that exotic tree diseases have both ecologic and economic consequences, we call for increased interdisciplinary collaboration in the coming decades between forest pathologists and researchers studying endophytes with tree geneticists, evolutionary and landscape ecologists, biogeographers, conservation biologists and global change scientists and outline interdisciplinary research gaps.
Collapse
Affiliation(s)
- Marco Pautasso
- Forest Pathology & Dendrology, Institute of Integrative Biology (IBZ), ETH Zurich, 8092, Zurich, Switzerland,
| | | | | |
Collapse
|
24
|
Vleeshouwers VGAA, Oliver RP. Effectors as Tools in Disease Resistance Breeding Against Biotrophic, Hemibiotrophic, and Necrotrophic Plant Pathogens. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 2015:40-50. [PMID: 27839074 DOI: 10.1094/mpmi-10-13-0313-ta.testissue] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
One of most important challenges in plant breeding is improving resistance to the plethora of pathogens that threaten our crops. The ever-growing world population, changing pathogen populations, and fungicide resistance issues have increased the urgency of this task. In addition to a vital inflow of novel resistance sources into breeding programs, the functional characterization and deployment of resistance also needs improvement. Therefore, plant breeders need to adopt new strategies and techniques. In modern resistance breeding, effectors are emerging as tools to accelerate and improve the identification, functional characterization, and deployment of resistance genes. Since genome-wide catalogues of effectors have become available for various pathogens, including biotrophs as well as necrotrophs, effector-assisted breeding has been shown to be successful for various crops. "Effectoromics" has contributed to classical resistance breeding as well as for genetically modified approaches. Here, we present an overview of how effector-assisted breeding and deployment is being exploited for various pathosystems.
Collapse
Affiliation(s)
- Vivianne G A A Vleeshouwers
- 1 Wageningen UR Plant Breeding, Wageningen University and Research Centre, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Richard P Oliver
- 2 Australian Centre for Necrotrophic Fungal Pathogens, Curtin University, Perth WA 6845, Australia
| |
Collapse
|
25
|
Vleeshouwers VGAA, Oliver RP. Effectors as Tools in Disease Resistance Breeding Against Biotrophic, Hemibiotrophic, and Necrotrophic Plant Pathogens. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 2015:17-27. [PMID: 27839075 DOI: 10.1094/mpmi-10-13-0313-cr.testissue] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
One of most important challenges in plant breeding is improving resistance to the plethora of pathogens that threaten our crops. The ever-growing world population, changing pathogen populations, and fungicide resistance issues have increased the urgency of this task. In addition to a vital inflow of novel resistance sources into breeding programs, the functional characterization and deployment of resistance also needs improvement. Therefore, plant breeders need to adopt new strategies and techniques. In modern resistance breeding, effectors are emerging as tools to accelerate and improve the identification, functional characterization, and deployment of resistance genes. Since genome-wide catalogues of effectors have become available for various pathogens, including biotrophs as well as necrotrophs, effector-assisted breeding has been shown to be successful for various crops. "Effectoromics" has contributed to classical resistance breeding as well as for genetically modified approaches. Here, we present an overview of how effector-assisted breeding and deployment is being exploited for various pathosystems.
Collapse
Affiliation(s)
- Vivianne G A A Vleeshouwers
- 1 Wageningen UR Plant Breeding, Wageningen University and Research Centre, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Richard P Oliver
- 2 Australian Centre for Necrotrophic Fungal Pathogens, Curtin University, Perth WA 6845, Australia
| |
Collapse
|
26
|
Brouwer H, Coutinho PM, Henrissat B, de Vries RP. Carbohydrate-related enzymes of important Phytophthora plant pathogens. Fungal Genet Biol 2014; 72:192-200. [PMID: 25192612 DOI: 10.1016/j.fgb.2014.08.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 08/15/2014] [Accepted: 08/25/2014] [Indexed: 11/24/2022]
Abstract
Carbohydrate-Active enZymes (CAZymes) form particularly interesting targets to study in plant pathogens. Despite the fact that many CAZymes are pathogenicity factors, oomycete CAZymes have received significantly less attention than effectors in the literature. Here we present an analysis of the CAZymes present in the Phytophthora infestans, Ph. ramorum, Ph. sojae and Pythium ultimum genomes compared to growth of these species on a range of different carbon sources. Growth on these carbon sources indicates that the size of enzyme families involved in degradation of cell-wall related substrates like cellulose, xylan and pectin is not always a good predictor of growth on these substrates. While a capacity to degrade xylan and cellulose exists the products are not fully saccharified and used as a carbon source. The Phytophthora genomes encode larger CAZyme sets when compared to Py. ultimum, and encode putative cutinases, GH12 xyloglucanases and GH10 xylanases that are missing in the Py. ultimum genome. Phytophthora spp. also encode a larger number of enzyme families and genes involved in pectin degradation. No loss or gain of complete enzyme families was found between the Phytophthora genomes, but there are some marked differences in the size of some enzyme families.
Collapse
Affiliation(s)
- Henk Brouwer
- CBS-KNAW, Fungal Biodiversity Centre, Uppsalalaan 8, Utrecht 3584 CT, The Netherlands
| | - Pedro M Coutinho
- Architecture et Fonction des Macromolecules Biologiques, UMR7257, CNRS, Univ. Aix-Marseille I & II, 163 Avenue de Luminy, 13288 Marseille, France
| | - Bernard Henrissat
- Architecture et Fonction des Macromolecules Biologiques, UMR7257, CNRS, Univ. Aix-Marseille I & II, 163 Avenue de Luminy, 13288 Marseille, France; Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ronald P de Vries
- CBS-KNAW, Fungal Biodiversity Centre, Uppsalalaan 8, Utrecht 3584 CT, The Netherlands; Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands.
| |
Collapse
|
27
|
Vleeshouwers VGAA, Oliver RP. Effectors as tools in disease resistance breeding against biotrophic, hemibiotrophic, and necrotrophic plant pathogens. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:196-206. [PMID: 24405032 DOI: 10.1094/mpmi-10-13-0313-ia] [Citation(s) in RCA: 227] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
One of most important challenges in plant breeding is improving resistance to the plethora of pathogens that threaten our crops. The ever-growing world population, changing pathogen populations, and fungicide resistance issues have increased the urgency of this task. In addition to a vital inflow of novel resistance sources into breeding programs, the functional characterization and deployment of resistance also needs improvement. Therefore, plant breeders need to adopt new strategies and techniques. In modern resistance breeding, effectors are emerging as tools to accelerate and improve the identification, functional characterization, and deployment of resistance genes. Since genome-wide catalogues of effectors have become available for various pathogens, including biotrophs as well as necrotrophs, effector-assisted breeding has been shown to be successful for various crops. "Effectoromics" has contributed to classical resistance breeding as well as for genetically modified approaches. Here, we present an overview of how effector-assisted breeding and deployment is being exploited for various pathosystems.
Collapse
|
28
|
Goss EM, Press CM, Grünwald NJ. Evolution of RXLR-class effectors in the oomycete plant pathogen Phytophthora ramorum. PLoS One 2013; 8:e79347. [PMID: 24244484 PMCID: PMC3820680 DOI: 10.1371/journal.pone.0079347] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 09/26/2013] [Indexed: 12/02/2022] Open
Abstract
Phytophthora plant pathogens contain many hundreds of effectors potentially involved in infection of host plants. Comparative genomic analyses have shown that these effectors evolve rapidly and have been subject to recent expansions. We examined the recent sequence evolution of RXLR-class effector gene families in the sudden oak death pathogen, P. ramorum. We found that P. ramorum RXLR effectors have taken multiple evolutionary paths, including loss or gain of repeated domains, recombination or gene conversion among paralogs, and selection on point mutations. Sequencing of homologs from two subfamilies in P. ramorum’s closest known relatives revealed repeated gene duplication and divergence since speciation with P. lateralis. One family showed strong signatures of recombination while the other family has evolved primarily by point mutation. Comparison of a small number of the hundreds of RXLR-class effectors across three clonal lineages of P. ramorum shows striking divergence in alleles among lineages, suggesting the potential for functional differences between lineages. Our results suggest future avenues for examination of rapidly evolving effectors in P. ramorum, including investigation of the functional and coevolutionary significance of the patterns of sequence evolution that we observed.
Collapse
Affiliation(s)
- Erica M. Goss
- Horticultural Crops Research Laboratory, Department of Agriculture Agricultural Research Service, Corvallis, Oregon, United States of America
- * E-mail:
| | - Caroline M. Press
- Horticultural Crops Research Laboratory, Department of Agriculture Agricultural Research Service, Corvallis, Oregon, United States of America
| | - Niklaus J. Grünwald
- Horticultural Crops Research Laboratory, Department of Agriculture Agricultural Research Service, Corvallis, Oregon, United States of America
| |
Collapse
|