1
|
Li W, Pang L, Chatzisymeon E, Yang P. Effects of micron-scale zero valent iron on behaviors of antibiotic resistance genes and pathogens in thermophilic anaerobic digestion of waste activated sludge. BIORESOURCE TECHNOLOGY 2023; 376:128895. [PMID: 36931448 DOI: 10.1016/j.biortech.2023.128895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
This work investigated the metagenomics-based behavior and risk of antibiotic resistance genes (ARGs), and their potential hosts during thermophilic anaerobic digestion (TAD) of waste activated sludge, enhanced by micron-scale zero valent iron (mZVI). Tests were conducted with 0, 25, 100, and 250 mg mZVI/g total solids (TS). Results showed that up to 7.3% and 4.8% decrease in ARGs' abundance and diversity, respectively, were achieved with 100 mg mZVI/g TS. At these conditions, ARGs with health risk in abundance and human pathogenic bacteria (HPB) diversity were also decreased by 8.3% and 3.6%, respectively. Additionally, mZVI reduced abundance of 72 potential pathogenic supercarriers for ARGs with high health risk by 2.5%, 5.0%, and 6.1%, as its dosage increased. Overall, mZVI, especially at 100 mg/g TS, can mitigate antibiotic resistance risk in TAD. These findings are important for better understanding risks of ARGs and their pathogenic hosts in ZVI-enhanced TAD of solid wastes.
Collapse
Affiliation(s)
- Wenqian Li
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China
| | - Lina Pang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China.
| | - Efthalia Chatzisymeon
- School of Engineering, Institute for Infrastructure and Environment, The University of Edinburgh, Edinburgh EH9 3JL, United Kingdom
| | - Ping Yang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China
| |
Collapse
|
2
|
Matsuda S, Yamato T, Mochizuki Y, Sekiguchi Y, Ohtsuki T. Batch-Mode Analysis of Thermophilic Methanogenic Microbial Community Changes in the Overacidification Stage in Beverage Waste Treatment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E7514. [PMID: 33076472 PMCID: PMC7602568 DOI: 10.3390/ijerph17207514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 11/30/2022]
Abstract
Biogasification by methane fermentation is an important and effective way to utilize beverage wastes. Beverage wastes are good feedstocks for methane fermentation because of their richness in sugars and proteins, although overacidification and inhibition of methane production caused by high substrate loading often become problematic. This study investigated changes in microbial communities in the overacidification state of the thermophilic methane fermentation process with beverage waste by establishing a simulated batch culture. We assessed 20 mL-scale batch cultures using a simulant beverage waste mixture (SBWM) with different amounts of addition; high cumulative methane production was achieved by adding 5 mL of SBWM (11358 mg-chemical oxygen demand-COD/L of organic loading), and overacidification was observed by adding 10 mL of SBWM (22715 mg-COD/L of organic loading). The results of 16S rRNA amplicon sequence analysis using nanopore sequencer suggested that Coprothermobacter proteolyticus, Defluviitoga tunisiensis, Acetomicrobium mobile, and Thermosediminibacter oceani were predominantly involved in hydrolysis/acidogenesis/acetogenesis processes, whereas Methanothrix soehngenii was the major acetotrophic methane producer. A comparison of microbial population between the methane-producing cultures and overacidification cultures revealed characteristic population changes especially in some minor species under 0.2% of population. We concluded that careful monitoring of population changes of the minor species is a potential indicator for prediction of overacidification.
Collapse
Affiliation(s)
- Shuhei Matsuda
- Graduate School of Medicine, Engineering and Agricultural Sciences, University of Yamanashi, Kofu, Yamanashi 400-8510, Japan; (S.M.); (T.Y.)
| | - Takahiro Yamato
- Graduate School of Medicine, Engineering and Agricultural Sciences, University of Yamanashi, Kofu, Yamanashi 400-8510, Japan; (S.M.); (T.Y.)
| | | | | | - Takashi Ohtsuki
- Graduate School of Medicine, Engineering and Agricultural Sciences, University of Yamanashi, Kofu, Yamanashi 400-8510, Japan; (S.M.); (T.Y.)
| |
Collapse
|
3
|
Kumar G, Mathimani T, Sivaramakrishnan R, Shanmugam S, Bhatia SK, Pugazhendhi A. Application of molecular techniques in biohydrogen production as a clean fuel. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 722:137795. [PMID: 32208247 DOI: 10.1016/j.scitotenv.2020.137795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/06/2020] [Accepted: 03/06/2020] [Indexed: 06/10/2023]
Abstract
Considering the future energy demand and pollution to the environment, biohydrogen, a biofuel, produced from biological sources have garnered increased attention. The present review emphasis the various techniques and methods employed to enumerate the microbial community and enhancement of hydrogen production by dark fermentation. Notably, molecular techniques such as terminal restriction fragment length polymorphism (T-RFLP), quantitative real-time PCR (q-PCR), fluorescent in-situ hybridization (FISH), denaturing gradient gel electrophoresis (DGGE), ribosomal intergenic spacer analysis (RISA), and next generation sequencing (NGS) have been extensively discussed on identifying the microbial population in hydrogen production. Further, challenges and merits of the molecular techniques have been elaborated.
Collapse
Affiliation(s)
- Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea; Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Thangavel Mathimani
- Department of Energy and Environment, National Institute of Technology, Tiruchirappalli - 620015, Tamil Nadu, India
| | - Ramachandran Sivaramakrishnan
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sabarathinam Shanmugam
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044 China; Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China
| | - Shashi Kant Bhatia
- Department of Biological Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
4
|
Bu F, Dong N, Kumar Khanal S, Xie L, Zhou Q. Effects of CO on hydrogenotrophic methanogenesis under thermophilic and extreme-thermophilic conditions: Microbial community and biomethanation pathways. BIORESOURCE TECHNOLOGY 2018; 266:364-373. [PMID: 29982059 DOI: 10.1016/j.biortech.2018.03.092] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/16/2018] [Accepted: 03/18/2018] [Indexed: 06/08/2023]
Abstract
Coke oven gas is considered as a potential hydrogen source for biogas bio-upgrading. In this study, the effects of CO on biomethanation performance and microbial community structure of hydrogenotrophic mixed cultures were investigated under thermophilic (55 °C) and extreme-thermophilic (70 °C) conditions. 5% (v/v) CO did not inhibit hydrogenotrophic methanogenesis during semi-continuous operation, and 83-97% CO conversion to CH4 was achieved. Methanothermobacter thermoautotrophicus was the dominant methanogen at both temperatures and was the main functional archaea associated with CO biomethanation. Specific methanogenic activity test results showed that long-term 5% CO acclimation shortened the lag phase from 5 h to 1 h at 55 °C and 15 h to 3 h at 70 °C. CO2 was the preferred carbon source over CO for hydrogenotrophic methanogens and CO consumption only started when CO2 was completely depleted. M. thermoautotrophicus dominated mixed cultures showed a great potential in simultaneous hydrogenotrophic methanogenesis and CO biomethanation.
Collapse
Affiliation(s)
- Fan Bu
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Nanshi Dong
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering (MBBE), University of Hawai'i at Mānoa, 1955 East-West Road, Agricultural Science Building 218, Honolulu, HI 96822, USA
| | - Li Xie
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China.
| | - Qi Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| |
Collapse
|
5
|
Qin Y, Higashimori A, Wu LJ, Hojo T, Kubota K, Li YY. Phase separation and microbial distribution in the hyperthermophilic-mesophilic-type temperature-phased anaerobic digestion (TPAD) of waste activated sludge (WAS). BIORESOURCE TECHNOLOGY 2017; 245:401-410. [PMID: 28898837 DOI: 10.1016/j.biortech.2017.08.124] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/18/2017] [Accepted: 08/20/2017] [Indexed: 06/07/2023]
Abstract
In order to investigate the phase separation and microbial distribution in the TPAD, the conventional thermophilic-mesophilic type (TM-TPAD) and the hyperthermophilic-mesophilic type (HM-TPAD) were operated with a single-stage mesophilic anaerobic digestion (MAD) as control. HM-TPAD accomplished the volatile solids destruction 14.5% higher than MAD. Calculating conversion efficiencies distinguished the separation of acidogenic and methanogenic phases in HM-TPAD, which was not found in TM-TPAD. The differences on microbial distributions also reflected the phase separation in HM-TPAD. The protein degraders, Coprothermobacter had higher abundance in the first stage than the second stage of HM-TPAD but it had similar abundance between the two stages of TM-TPAD. Also, the archaeal communities from the two stages of HM-TPAD shared the least similarity but those from the two stages of TM-TPAD were closely similar.
Collapse
Affiliation(s)
- Yu Qin
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba 6-6-06, Aramakizi, Aoba-ku, Sendai 980-8579, Japan
| | - Atsushi Higashimori
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba 6-6-06, Aramakizi, Aoba-ku, Sendai 980-8579, Japan
| | - Li-Jie Wu
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba 6-6-06, Aramakizi, Aoba-ku, Sendai 980-8579, Japan
| | - Toshimasa Hojo
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba 6-6-06, Aramakizi, Aoba-ku, Sendai 980-8579, Japan
| | - Kengo Kubota
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba 6-6-06, Aramakizi, Aoba-ku, Sendai 980-8579, Japan
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba 6-6-06, Aramakizi, Aoba-ku, Sendai 980-8579, Japan; Department of Frontier Science for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Aoba 6-6-20, Aramakizi, Aoba-ku, Sendai 980-8579, Japan.
| |
Collapse
|
6
|
Matturro B, Ubaldi C, Rossetti S. Microbiome Dynamics of a Polychlorobiphenyl (PCB) Historically Contaminated Marine Sediment under Conditions Promoting Reductive Dechlorination. Front Microbiol 2016; 7:1502. [PMID: 27708637 PMCID: PMC5030254 DOI: 10.3389/fmicb.2016.01502] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/08/2016] [Indexed: 11/13/2022] Open
Abstract
The toxicity of polychlorinated biphenyls (PCB) can be efficiently reduced in contaminated marine sediments through the reductive dechlorination (RD) process lead by anaerobic organohalide bacteria. Although the process has been extensively investigated on PCB-spiked sediments, the knowledge on the identity and metabolic potential of PCB-dechlorinating microorganisms in real contaminated matrix is still limited. Aim of this study was to explore the composition and the dynamics of the microbial communities of the marine sediment collected from one of the largest Sites of National Interest (SIN) in Italy (Mar Piccolo, Taranto) under conditions promoting the PCBs RD. A long-term microcosm study revealed that autochthonous bacteria were able to sustain the PCB dechlorination at a high extent and the successive addition of an external fermentable organic substrate (lactate) caused the further depletion of the high-chlorinated PCBs (up to 70%). Next Generation Sequencing was used to describe the core microbiome of the marine sediment and to follow the changes caused by the treatments. OTUs affiliated to sulfur-oxidizing ε-proteobacteria, Sulfurovum, and Sulfurimonas, were predominant in the original sediment and increased up to 60% of total OTUs after lactate addition. Other OTUs detected in the sediment were affiliated to sulfate reducing (δ-proteobacteria) and to organohalide respiring bacteria within Chloroflexi phylum mainly belonging to Dehalococcoidia class. Among others, Dehalococcoides mccartyi was enriched during the treatments even though the screening of the specific reductive dehalogenase genes revealed the occurrence of undescribed strains, which deserve further investigations. Overall, this study highlighted the potential of members of Dehalococcoidia class in reducing the contamination level of the marine sediment from Mar Piccolo with relevant implications on the selection of sustainable bioremediation strategies to clean-up the site.
Collapse
Affiliation(s)
- Bruna Matturro
- Water Research Institute - National Research Council, Monterotondo Italy
| | - Carla Ubaldi
- ENEA, Technical Unit for Environmental Characterization, Prevention and Remediation, Centro Ricerche Casaccia, Rome Italy
| | - Simona Rossetti
- Water Research Institute - National Research Council, Monterotondo Italy
| |
Collapse
|
7
|
Gagliano M, Braguglia C, Petruccioli M, Rossetti S. Ecology and biotechnological potential of the thermophilic fermentative Coprothermobacter spp. FEMS Microbiol Ecol 2015; 91:fiv018. [DOI: 10.1093/femsec/fiv018] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2015] [Indexed: 12/29/2022] Open
|
8
|
Gagliano MC, Braguglia CM, Gianico A, Mininni G, Nakamura K, Rossetti S. Thermophilic anaerobic digestion of thermal pretreated sludge: role of microbial community structure and correlation with process performances. WATER RESEARCH 2015; 68:498-509. [PMID: 25462756 DOI: 10.1016/j.watres.2014.10.031] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 10/07/2014] [Accepted: 10/15/2014] [Indexed: 06/04/2023]
Abstract
Thermal hydrolysis pretreatment coupled with Thermophilic Anaerobic Digestion (TAD) for Waste Activated Sludge (WAS) treatment is a promising combination to improve biodegradation kinetics during stabilization. However, to date there is a limited knowledge of the anaerobic biomass composition and its impact on TAD process performances. In this study, the structure and dynamics of the microbial communities selected in two semi-continuous anaerobic digesters, fed with untreated and thermal pretreated sludge, were investigated. The systems were operated for 250 days at different organic loading rate. 16S rRNA gene clonal analysis and Fluorescence In Situ Hybridization (FISH) analyses allowed us to identify the majority of bacterial and archaeal populations. Proteolytic Coprothermobacter spp. and hydrogenotrophic Methanothermobacter spp. living in strict syntrophic association were found to dominate in TAD process. The establishment of a syntrophic proteolytic pathway was favoured by the high temperature of the process and enhanced by the thermal pretreatment of the feeding sludge. Proteolytic activity, alone or with thermal pretreatment, occurred during TAD as proven by increasing concentration of soluble ammonia and soluble COD (sCOD) during the process. However, the availability of a readily biodegradable substrate due to pretreatment allowed to significant sCOD removals (more than 55%) corresponding to higher biogas production in the reactor fed with thermal pretreated sludge. Microbial population dynamics analysed by FISH showed that Coprothermobacter and Methanothermobacter immediately established a stable syntrophic association in the reactor fed with pretreated sludge in line with the overall improved TAD performances observed under these conditions.
Collapse
Affiliation(s)
- M C Gagliano
- Water Research Institute, IRSA-CNR, Via Salaria km 29,300, 00015 Monterotondo (RM), Italy
| | | | | | | | | | | |
Collapse
|