1
|
Lu HN, Zhang P, Wang Y, Luo K, Yan Z, Zeng M, Lv YN, Bai S, Zeng J, Li S, Bai Y, Luan YX. The role of Hox genes in shaping embryonic external morphology of the primitive insect Thermobia domestica (Zygentoma). INSECT SCIENCE 2025. [PMID: 39973048 DOI: 10.1111/1744-7917.13504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 02/21/2025]
Abstract
Insects represent one of the most evolutionarily successful groups, with their diversity hypothesized to be related to the regulatory roles of Hox genes, a set of related genes encoding homeodomain transcription factors determining the identity of segments along the anterior-posterior axis of the embryo. However, functional insights into the roles of Hox genes in primitive ametabolous insects, which represent the critical transition from aquatic crustaceans to winged insects, have been limited. In this study, we identified complete protein-coding sequences of 10 Hox genes in the Zygentoma Thermobia domestica, and applied clustered regularly interspaced short palindromic repeats (CRISPR) / CRISPR-associated nuclease 9 (Cas 9) mediated gene knockout (KO) to decipher their functions. We found that the roles of pb, Dfd, and Scr are vital in specifying the appendages of the head in T. domestica, and these roles are relatively conserved in crustaceans and winged insects. Antp is essential for the development of the prothorax segment and the first pair of legs in T. domestica. Ubx and abd-A fully repress appendage development in the abdomen of T. domestica, which implies a functional switch from crustaceans to insects. Additionally, the role of ftz in segmenting the abdomen of T. domestica suggests it has acquired new functions in primitive insects, beyond its traditional Hox-like roles. Although KOs of lab, Hox3, and Abd-B did not result in obvious external phenotypic changes, they led to a significant decrease in hatching rates and substantial deviations in daily survival numbers compared to the negative control. These findings underscore the indispensable roles of all Hox genes during the embryonic development of T. domestica. Our study sheds new light on the functional evolution of Hox genes in ametabolous insects and enhances our understanding of the genetic underpinnings of insect development and diversification.
Collapse
Affiliation(s)
- Hu-Na Lu
- Guangdong Provincial Key Laboratory of Insect Development Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Peiyan Zhang
- Guangdong Provincial Key Laboratory of Insect Development Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yifan Wang
- Guangdong Provincial Key Laboratory of Insect Development Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Kai Luo
- Guangdong Provincial Key Laboratory of Insect Development Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Ziyu Yan
- Guangdong Provincial Key Laboratory of Insect Development Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Mei Zeng
- Guangdong Provincial Key Laboratory of Insect Development Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Ya-Nan Lv
- Guangdong Provincial Key Laboratory of Insect Development Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Shali Bai
- Guangdong Provincial Key Laboratory of Insect Development Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jiaming Zeng
- Guangdong Provincial Key Laboratory of Insect Development Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Development Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yu Bai
- Guangdong Provincial Key Laboratory of Insect Development Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yun-Xia Luan
- Guangdong Provincial Key Laboratory of Insect Development Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
2
|
Liu L, Yan W, Liu B, Qin W. Molecular Insights into Red Palm Weevil Resistance Mechanisms of Coconut ( Cocos nucifera) Leaves. PLANTS (BASEL, SWITZERLAND) 2024; 13:1928. [PMID: 39065455 PMCID: PMC11280253 DOI: 10.3390/plants13141928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024]
Abstract
Red palm weevil (RPW) (Rhynchophorus ferrugineus) threatens most palm species worldwide. This study investigated the molecular responses of coconut (Cocos nucifera) leaves to RPW infestation through metabolomics and transcriptomics analysis. An RPW insect attack model was developed by placing different RPW larval densitiesin coconut plants and measuring the relative chlorophyll content of different leaf positions and physiological indicators of dysfunction after RPW infestation. The metabolomic changes were detected in the leaves of 10, 20, 30, 40, and 50 days after infestation (DAI) using GC-MS. Certain metabolites (glycine, D-pinitol, lauric acid, allylmalonic acid, D-glucaro-1, 4-lactone, protocatechuic acid, alpha, and alpha-trehalose) were found to be possible indicators for distinct stages of infestation using metabolomics analysis. The influence on ABC transporters, glutathione, galactose, and glycolipid metabolism was emphasized by pathway analysis. Differentially expressed genes (DEGs) were identified at 5, 10, 15, and 20 DAI through transcriptomics analysis of infested coconut leaves, with altered expression levels under RPW infestation. The KEGG pathway and GO analysis revealed enrichment in pathways related to metabolism, stress response, and plant-pathogen interactions, shedding light on the intricate mechanisms underlying coconut-RPW interactions. The identified genes may serve as potential markers for tracking RPW infestation progression and could inform strategies for pest control and management.
Collapse
Affiliation(s)
- Li Liu
- Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China; (W.Y.); (B.L.); (W.Q.)
| | | | | | | |
Collapse
|
3
|
Hoddle MS, Antony B, El-Shafie HAF, Chamorro ML, Milosavljević I, Löhr B, Faleiro JR. Taxonomy, Biology, Symbionts, Omics, and Management of Rhynchophorus Palm Weevils (Coleoptera: Curculionidae: Dryophthorinae). ANNUAL REVIEW OF ENTOMOLOGY 2024; 69:455-479. [PMID: 38270987 DOI: 10.1146/annurev-ento-013023-121139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Palm weevils, Rhynchophorus spp., are destructive pests of native, ornamental, and agricultural palm species. Of the 10 recognized species, two of the most injurious species, Rhynchophorus ferrugineus and Rhynchophorus palmarum, both of which have spread beyond their native range, are the best studied. Due to its greater global spread and damage to edible date industries in the Middle East, R. ferrugineus has received more research interest. Integrated pest management programs utilize traps baited with aggregation pheromone, removal of infested palms, and insecticides. However, weevil control is costly, development of resistance to insecticides is problematic, and program efficacy can be impaired because early detection of infestations is difficult. The genome of R. ferrugineus has been sequenced, and omics research is providing insight into pheromone communication and changes in volatile and metabolism profiles of weevil-infested palms. We outline how such developments could lead to new control strategies and early detection tools.
Collapse
Affiliation(s)
- Mark S Hoddle
- Department of Entomology, University of California, Riverside, California, USA; ,
| | - Binu Antony
- Chair of Date Palm Research, Department of Plant Protection, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia;
| | - Hamadttu A F El-Shafie
- Sustainable Date Palm Pest Management Research Program, Date Palm Research Center of Excellence, King Faisal University, Hofuf-Al-Ahsa, Saudi Arabia;
| | - M Lourdes Chamorro
- Systematic Entomology Laboratory, Agricultural Research Service, US Department of Agriculture, c/o National Museum of Natural History, Smithsonian Institution, Washington, DC, USA;
| | - Ivan Milosavljević
- Department of Entomology, University of California, Riverside, California, USA; ,
| | | | | |
Collapse
|
4
|
Sudalaimuthuasari N, Kundu B, Hazzouri KM, Amiri KMA. Near-chromosomal-level genome of the red palm weevil (Rhynchophorus ferrugineus), a potential resource for genome-based pest control. Sci Data 2024; 11:45. [PMID: 38184710 PMCID: PMC10771492 DOI: 10.1038/s41597-024-02910-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/29/2023] [Indexed: 01/08/2024] Open
Abstract
The red palm weevil (RPW) is a highly destructive pest that mainly affects palms, particularly date palms (Phoenix dactylifera), in the Arabian Gulf region. In this study, we present a near-chromosomal-level genome assembly of the RPW using a combination of PacBio HiFi and Dovetail Omini-C reads. The final genome assembly is around 779 Mb in size, with an N50 of ~43 Mb, consistent with our previous flow cytometry estimates. The completeness of the genome was confirmed through BUSCO analysis, which indicates the presence of 99.5% of BUSCO single copy orthologous genes. The genome annotation identified a total of 29,666 protein-coding, 1,091 tRNA and 543 rRNA genes. Overall, the proposed genome assembly is significantly superior to existing assemblies in terms of contiguity, integrity, and genome completeness.
Collapse
Affiliation(s)
| | - Biduth Kundu
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, UAE
| | - Khaled M Hazzouri
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, UAE.
| | - Khaled M A Amiri
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, UAE.
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, UAE.
| |
Collapse
|
5
|
Manee MM, Alqahtani FH, Al-Shomrani BM, El-Shafie HAF, Dias GB. Omics in the Red Palm Weevil Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae): A Bridge to the Pest. INSECTS 2023; 14:255. [PMID: 36975940 PMCID: PMC10054242 DOI: 10.3390/insects14030255] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
The red palm weevil (RPW), Rhynchophorus ferrugineus (Coleoptera: Curculionidae), is the most devastating pest of palm trees worldwide. Mitigation of the economic and biodiversity impact it causes is an international priority that could be greatly aided by a better understanding of its biology and genetics. Despite its relevance, the biology of the RPW remains poorly understood, and research on management strategies often focuses on outdated empirical methods that produce sub-optimal results. With the development of omics approaches in genetic research, new avenues for pest control are becoming increasingly feasible. For example, genetic engineering approaches become available once a species's target genes are well characterized in terms of their sequence, but also population variability, epistatic interactions, and more. In the last few years alone, there have been major advances in omics studies of the RPW. Multiple draft genomes are currently available, along with short and long-read transcriptomes, and metagenomes, which have facilitated the identification of genes of interest to the RPW scientific community. This review describes omics approaches previously applied to RPW research, highlights findings that could be impactful for pest management, and emphasizes future opportunities and challenges in this area of research.
Collapse
Affiliation(s)
- Manee M. Manee
- National Center for Bioinformatics, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
- Institute of Advanced Agricultural and Food Technologies, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - Fahad H. Alqahtani
- National Center for Bioinformatics, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
- Institute of Advanced Agricultural and Food Technologies, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - Badr M. Al-Shomrani
- National Center for Bioinformatics, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
- Institute of Advanced Agricultural and Food Technologies, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | | | | |
Collapse
|
6
|
Zeng T, Jaffar S, Xu Y, Qi Y. The Intestinal Immune Defense System in Insects. Int J Mol Sci 2022; 23:ijms232315132. [PMID: 36499457 PMCID: PMC9740067 DOI: 10.3390/ijms232315132] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Over a long period of evolution, insects have developed unique intestinal defenses against invasion by foreign microorganisms, including physical defenses and immune responses. The physical defenses of the insect gut consist mainly of the peritrophic matrix (PM) and mucus layer, which are the first barriers to pathogens. Gut microbes also prevent the colonization of pathogens. Importantly, the immune-deficiency (Imd) pathways produce antimicrobial peptides to eliminate pathogens; mechanisms related to reactive oxygen species are another important pathway for insect intestinal immunity. The janus kinase/STAT signaling pathway is involved in intestinal immunity by producing bactericidal substances and regulating tissue repair. Melanization can produce many bactericidal active substances into the intestine; meanwhile, there are multiple responses in the intestine to fight against viral and parasitic infections. Furthermore, intestinal stem cells (ISCs) are also indispensable in intestinal immunity. Only the coordinated combination of the intestinal immune defense system and intestinal tissue renewal can effectively defend against pathogenic microorganisms.
Collapse
|
7
|
Mundaca-Escobar M, Cepeda RE, Sarrazin AF. The organizing role of Wnt signaling pathway during arthropod posterior growth. Front Cell Dev Biol 2022; 10:944673. [PMID: 35990604 PMCID: PMC9389326 DOI: 10.3389/fcell.2022.944673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/11/2022] [Indexed: 11/28/2022] Open
Abstract
Wnt signaling pathways are recognized for having major roles in tissue patterning and cell proliferation. In the last years, remarkable progress has been made in elucidating the molecular and cellular mechanisms that underlie sequential segmentation and axial elongation in various arthropods, and the canonical Wnt pathway has emerged as an essential factor in these processes. Here we review, with a comparative perspective, the current evidence concerning the participation of this pathway during posterior growth, its degree of conservation among the different subphyla within Arthropoda and its relationship with the rest of the gene regulatory network involved. Furthermore, we discuss how this signaling pathway could regulate segmentation to establish this repetitive pattern and, at the same time, probably modulate different cellular processes precisely coupled to axial elongation. Based on the information collected, we suggest that this pathway plays an organizing role in the formation of the body segments through the regulation of the dynamic expression of segmentation genes, via controlling the caudal gene, at the posterior region of the embryo/larva, that is necessary for the correct sequential formation of body segments in most arthropods and possibly in their common segmented ancestor. On the other hand, there is insufficient evidence to link this pathway to axial elongation by controlling its main cellular processes, such as convergent extension and cell proliferation. However, conclusions are premature until more studies incorporating diverse arthropods are carried out.
Collapse
Affiliation(s)
| | | | - Andres F. Sarrazin
- CoDe-Lab, Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| |
Collapse
|
8
|
Dias GB, Altammami MA, El-Shafie HAF, Alhoshani FM, Al-Fageeh MB, Bergman CM, Manee MM. Haplotype-resolved genome assembly enables gene discovery in the red palm weevil Rhynchophorus ferrugineus. Sci Rep 2021; 11:9987. [PMID: 33976235 PMCID: PMC8113489 DOI: 10.1038/s41598-021-89091-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 04/08/2021] [Indexed: 01/22/2023] Open
Abstract
The red palm weevil Rhynchophorus ferrugineus (Coleoptera: Curculionidae) is an economically-important invasive species that attacks multiple species of palm trees around the world. A better understanding of gene content and function in R. ferrugineus has the potential to inform pest control strategies and thereby mitigate economic and biodiversity losses caused by this species. Using 10x Genomics linked-read sequencing, we produced a haplotype-resolved diploid genome assembly for R. ferrugineus from a single heterozygous individual with modest sequencing coverage (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\sim$$\end{document}∼ 62x). Benchmarking against conserved single-copy Arthropod orthologs suggests both pseudo-haplotypes in our R. ferrugineus genome assembly are highly complete with respect to gene content, and do not suffer from haplotype-induced duplication artifacts present in a recently published hybrid assembly for this species. Annotation of the larger pseudo-haplotype in our assembly provides evidence for 23,413 protein-coding loci in R. ferrugineus, including over 13,000 predicted proteins annotated with Gene Ontology terms and over 6000 loci independently supported by high-quality Iso-Seq transcriptomic data. Our assembly also includes 95% of R. ferrugineus chemosensory, detoxification and neuropeptide-related transcripts identified previously using RNA-seq transcriptomic data, and provides a platform for the molecular analysis of these and other functionally-relevant genes that can help guide management of this widespread insect pest.
Collapse
Affiliation(s)
- Guilherme B Dias
- Department of Genetics and Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA.
| | - Musaad A Altammami
- National Center for Biotechnology,, King Abdulaziz City for Science and Technology, Riyadh, 11442, Saudi Arabia
| | - Hamadttu A F El-Shafie
- Date Palm Research Center of Excellence, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Fahad M Alhoshani
- National Center for Biotechnology,, King Abdulaziz City for Science and Technology, Riyadh, 11442, Saudi Arabia
| | - Mohamed B Al-Fageeh
- Life Sciences and Environment Research Institute, King Abdulaziz City for Science and Technology, Riyadh, 11442, Saudi Arabia
| | - Casey M Bergman
- Department of Genetics and Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
| | - Manee M Manee
- National Center for Biotechnology,, King Abdulaziz City for Science and Technology, Riyadh, 11442, Saudi Arabia.
| |
Collapse
|
9
|
Hazzouri KM, Sudalaimuthuasari N, Kundu B, Nelson D, Al-Deeb MA, Le Mansour A, Spencer JJ, Desplan C, Amiri KMA. The genome of pest Rhynchophorus ferrugineus reveals gene families important at the plant-beetle interface. Commun Biol 2020; 3:323. [PMID: 32581279 PMCID: PMC7314810 DOI: 10.1038/s42003-020-1060-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/08/2020] [Indexed: 11/17/2022] Open
Abstract
The red palm weevil, Rhynchophorus ferrugineus, infests palm plantations, leading to large financial losses and soil erosion. Pest-host interactions are poorly understood in R. ferrugineus, but the analysis of genetic diversity and pest origins will help advance efforts to eradicate this pest. We sequenced the genome of R. ferrugineus using a combination of paired-end Illumina sequencing (150 bp), Oxford Nanopore long reads, 10X Genomics and synteny analysis to produce an assembly with a scaffold N50 of ~60 Mb. Structural variations showed duplication of detoxifying and insecticide resistance genes (e.g., glutathione S-transferase, P450, Rdl). Furthermore, the evolution of gene families identified those under positive selection including one glycosyl hydrolase (GH16) gene family, which appears to result from horizontal gene transfer. This genome will be a valuable resource to understand insect evolution and behavior and to allow the genetic modification of key genes that will help control this pest.
Collapse
Affiliation(s)
- Khaled Michel Hazzouri
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, PO Box 15551, Al Ain, UAE
| | | | - Biduth Kundu
- Department of Biology, United Arab Emirates University, PO Box 15551, Al Ain, UAE
| | - David Nelson
- Center for Genomics and Systems Biology, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE
| | - Mohammad Ali Al-Deeb
- Department of Biology, United Arab Emirates University, PO Box 15551, Al Ain, UAE
| | - Alain Le Mansour
- Date Palm Tissue Culture, United Arab Emirates University, PO Box 15551, Al Ain, UAE
| | - Johnston J Spencer
- Department of Entomology, Texas A&M University, TAMU 2475, College Station, TX, USA
| | - Claude Desplan
- Center for Genomics and Systems Biology, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE.
| | - Khaled M A Amiri
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, PO Box 15551, Al Ain, UAE.
- Department of Biology, United Arab Emirates University, PO Box 15551, Al Ain, UAE.
| |
Collapse
|
10
|
Wang Y, Wang B, Shao X, Liu M, Jiang K, Wang M, Wang L. A comparative transcriptomic analysis in late embryogenesis of the red claw crayfish Cherax quadricarinatus. Mol Genet Genomics 2019; 295:299-311. [DOI: 10.1007/s00438-019-01621-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/31/2019] [Indexed: 12/12/2022]
|
11
|
Zhao J, Yang F, Feng J, Wang Y, Lachenbruch B, Wang J, Wan X. Genome-Wide Constitutively Expressed Gene Analysis and New Reference Gene Selection Based on Transcriptome Data: A Case Study from Poplar/Canker Disease Interaction. FRONTIERS IN PLANT SCIENCE 2017; 8:1876. [PMID: 29163601 PMCID: PMC5671478 DOI: 10.3389/fpls.2017.01876] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 10/16/2017] [Indexed: 05/27/2023]
Abstract
A number of transcriptome datasets for differential expression (DE) genes have been widely used for understanding organismal biology, but these datasets also contain untapped information that can be used to develop more precise analytical tools. With the use of transcriptome data generated from poplar/canker disease interaction system, we describe a methodology to identify candidate reference genes from high-throughput sequencing data. This methodology will improve the accuracy of RT-qPCR and will lead to better standards for the normalization of expression data. Expression stability analysis from xylem and phloem of Populus bejingensis inoculated with the fungal canker pathogen Botryosphaeria dothidea revealed that 729 poplar transcripts (1.11%) were stably expressed, at a threshold level of coefficient of variance (CV) of FPKM < 20% and maximum fold change (MFC) of FPKM < 2.0. Expression stability and bioinformatics analysis suggested that commonly used house-keeping (HK) genes were not the most appropriate internal controls: 70 of the 72 commonly used HK genes were not stably expressed, 45 of the 72 produced multiple isoform transcripts, and some of their reported primers produced unspecific amplicons in PCR amplification. RT-qPCR analysis to compare and evaluate the expression stability of 10 commonly used poplar HK genes and 20 of the 729 newly-identified stably expressed transcripts showed that some of the newly-identified genes (such as SSU_S8e, LSU_L5e, and 20S_PSU) had higher stability ranking than most of commonly used HK genes. Based on these results, we recommend a pipeline for deriving reference genes from transcriptome data. An appropriate candidate gene should have a unique transcript, constitutive expression, CV value of expression < 20% (or possibly 30%) and MFC value of expression <2, and an expression level of 50-1,000 units. Lastly, when four of the newly identified HK genes were used in the normalization of expression data for 20 differential expressed genes, expression analysis gave similar values to Cufflinks output. The methods described here provide an alternative pathway for the normalization of transcriptome data, a process that is essential for integrating analyses of transcriptome data across environments, laboratories, sequencing platforms, and species.
Collapse
Affiliation(s)
- Jiaping Zhao
- State Key Laboratory of Tree Genetics and Breeding, Institute of New Forestry Technology, Chinese Academy of Forestry, Beijing, China
| | - Fan Yang
- State Key Laboratory of Tree Genetics and Breeding, Institute of New Forestry Technology, Chinese Academy of Forestry, Beijing, China
- Department of Forestry, College of Forestry, Jiangxi Agricultural University, Nanchang, China
| | - Jinxia Feng
- State Key Laboratory of Tree Genetics and Breeding, Institute of New Forestry Technology, Chinese Academy of Forestry, Beijing, China
| | - Yanli Wang
- Department of Horticulture, School of Horticulture Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
| | - Barbara Lachenbruch
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, United States
| | - Jiange Wang
- Department of Forestry, College of Forestry, Jiangxi Agricultural University, Nanchang, China
| | - Xianchong Wan
- State Key Laboratory of Tree Genetics and Breeding, Institute of New Forestry Technology, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
12
|
Segmental duplications: evolution and impact among the current Lepidoptera genomes. BMC Evol Biol 2017; 17:161. [PMID: 28683762 PMCID: PMC5499213 DOI: 10.1186/s12862-017-1007-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/23/2017] [Indexed: 11/10/2022] Open
Abstract
Background Structural variation among genomes is now viewed to be as important as single nucleoid polymorphisms in influencing the phenotype and evolution of a species. Segmental duplication (SD) is defined as segments of DNA with homologous sequence. Results Here, we performed a systematic analysis of segmental duplications (SDs) among five lepidopteran reference genomes (Plutella xylostella, Danaus plexippus, Bombyx mori, Manduca sexta and Heliconius melpomene) to understand their potential impact on the evolution of these species. We find that the SDs content differed substantially among species, ranging from 1.2% of the genome in B. mori to 15.2% in H. melpomene. Most SDs formed very high identity (similarity higher than 90%) blocks but had very few large blocks. Comparative analysis showed that most of the SDs arose after the divergence of each linage and we found that P. xylostella and H. melpomene showed more duplications than other species, suggesting they might be able to tolerate extensive levels of variation in their genomes. Conserved ancestral and species specific SD events were assessed, revealing multiple examples of the gain, loss or maintenance of SDs over time. SDs content analysis showed that most of the genes embedded in SDs regions belonged to species-specific SDs (“Unique” SDs). Functional analysis of these genes suggested their potential roles in the lineage-specific evolution. SDs and flanking regions often contained transposable elements (TEs) and this association suggested some involvement in SDs formation. Further studies on comparison of gene expression level between SDs and non-SDs showed that the expression level of genes embedded in SDs was significantly lower, suggesting that structure changes in the genomes are involved in gene expression differences in species. Conclusions The results showed that most of the SDs were “unique SDs”, which originated after species formation. Functional analysis suggested that SDs might play different roles in different species. Our results provide a valuable resource beyond the genetic mutation to explore the genome structure for future Lepidoptera research. Electronic supplementary material The online version of this article (doi:10.1186/s12862-017-1007-y) contains supplementary material, which is available to authorized users.
Collapse
|
13
|
Benton MA, Kenny NJ, Conrads KH, Roth S, Lynch JA. Deep, Staged Transcriptomic Resources for the Novel Coleopteran Models Atrachya menetriesi and Callosobruchus maculatus. PLoS One 2016; 11:e0167431. [PMID: 27907180 PMCID: PMC5132259 DOI: 10.1371/journal.pone.0167431] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 11/14/2016] [Indexed: 11/18/2022] Open
Abstract
Despite recent efforts to sample broadly across metazoan and insect diversity, current sequence resources in the Coleoptera do not adequately describe the diversity of the clade. Here we present deep, staged transcriptomic data for two coleopteran species, Atrachya menetriesi (Faldermann 1835) and Callosobruchus maculatus (Fabricius 1775). Our sampling covered key stages in ovary and early embryonic development in each species. We utilized this data to build combined assemblies for each species which were then analysed in detail. The combined A. menetriesi assembly consists of 228,096 contigs with an N50 of 1,598 bp, while the combined C. maculatus assembly consists of 128,837 contigs with an N50 of 2,263 bp. For these assemblies, 34.6% and 32.4% of contigs were identified using Blast2GO, and 97% and 98.3% of the BUSCO set of metazoan orthologs were present, respectively. We also carried out manual annotation of developmental signalling pathways and found that nearly all expected genes were present in each transcriptome. Our analyses show that both transcriptomes are of high quality. Lastly, we performed read mapping utilising our timed, stage specific RNA samples to identify differentially expressed contigs. The resources presented here will provide a firm basis for a variety of experimentation, both in developmental biology and in comparative genomic studies.
Collapse
Affiliation(s)
- Matthew A. Benton
- Institute for Developmental Biology, University of Cologne, Cologne, Germany
| | - Nathan J. Kenny
- Simon F.S. Li School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Kai H. Conrads
- Institute for Developmental Biology, University of Cologne, Cologne, Germany
| | - Siegfried Roth
- Institute for Developmental Biology, University of Cologne, Cologne, Germany
- * E-mail: (SR); (JAL)
| | - Jeremy A. Lynch
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail: (SR); (JAL)
| |
Collapse
|
14
|
Genomic Mining of Phylogenetically Informative Nuclear Markers in Bark and Ambrosia Beetles. PLoS One 2016; 11:e0163529. [PMID: 27668729 PMCID: PMC5036811 DOI: 10.1371/journal.pone.0163529] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 09/10/2016] [Indexed: 11/19/2022] Open
Abstract
Deep level insect relationships are generally difficult to resolve, especially within taxa of the most diverse and species rich holometabolous orders. In beetles, the major diversity occurs in the Phytophaga, including charismatic groups such as leaf beetles, longhorn beetles and weevils. Bark and ambrosia beetles are wood boring weevils that contribute 12 percent of the diversity encountered in Curculionidae, one of the largest families of beetles with more than 50000 described species. Phylogenetic resolution in groups of Cretaceous age has proven particularly difficult and requires large quantity of data. In this study, we investigated 100 nuclear genes in order to select a number of markers with low evolutionary rates and high phylogenetic signal. A PCR screening using degenerate primers was applied to 26 different weevil species. We obtained sequences from 57 of the 100 targeted genes. Sequences from each nuclear marker were aligned and examined for detecting multiple copies, pseudogenes and introns. Phylogenetic informativeness (PI) and the capacity for reconstruction of previously established phylogenetic relationships were used as proxies for selecting a subset of the 57 amplified genes. Finally, we selected 16 markers suitable for large-scale phylogenetics of Scolytinae and related weevil taxa.
Collapse
|