1
|
Uma GS, Saakre M, Singh J, Kalia VK. Double-stranded RNA mediated knockdown of sucrase gene induced mortality and reduced offspring production in Aphis gossypii. Funct Integr Genomics 2023; 23:305. [PMID: 37726585 DOI: 10.1007/s10142-023-01233-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/21/2023]
Abstract
The importance of gut sucrase in maintaining osmotic equilibrium and utilizing phloem contents as a carbon source has been widely investigated and proven in sap-sucking insects. In the present study, silencing of Aphis gossypii sucrase1 (Agsuc1) was carried out by double-stranded RNA (dsRNA), which would be lethal to it due to disruption of osmotic balance. The dsRNA corresponding to Agsuc1 was synthesized by two methods, i.e., in vitro synthesis using T7/SP6 RNA polymerase and in vivo synthesis by bacterial expression, i.e., Escherichia coli strain HT115 transformed with the L4440 vector system. Oral delivery of double-stranded Agsuc1 synthesized in vitro (dsAgsuc1) and in vivo (HT115Agsuc1) induced around 50% mortality in nymphs of A. gossypii. Moreover, the number of offspring produced by the survived aphids decreased by 39-43%. Parthenogenetic reproduction of the aphids is the critical factor for their fast population build-up, leading to yield losses of economic significance. Thus, the present study demonstrated that the silencing of the Agsuc1 gene reduced the aphid population by killing it and inhibited the population buildup by reducing the number of offspring produced by the survived aphids, likely to result in a significant reduction in crop damage. The production of dsRNA by bacterial expression is a cost-effective method. It has the potential to be used as a biopesticide. The sucrase gene is an excellent putative target gene for RNAi against A. gossypii. It could be used to develop a transgenic plant that produces dsAgsuc1 to keep A. gossypii populations below the economic threshold level.
Collapse
Affiliation(s)
- Gadigavarahalli Subbareddy Uma
- Division of Entomology, Indian Agricultural Research Institute, New Delhi, India
- Forest Protection Division, Forest Research Institute, Uttarakhand, India
| | - Manjesh Saakre
- Division of Molecular Biology and Biotechnology, National Institute for Plant Biotechnology, Delhi, India
| | - Jyoti Singh
- Division of Entomology, Indian Agricultural Research Institute, New Delhi, India
| | - Vinay K Kalia
- Division of Entomology, Indian Agricultural Research Institute, New Delhi, India.
| |
Collapse
|
2
|
Lu D, Yue H, Huang L, Zhang D, Zhang Z, Zhang Z, Zhang Y, Li F, Yan F, Zhou X, Shi X, Liu Y. Suppression of Bta11975, an α-glucosidase, by RNA interference reduces transmission of tomato chlorosis virus by Bemisia tabaci. PEST MANAGEMENT SCIENCE 2021; 77:5294-5303. [PMID: 34310017 DOI: 10.1002/ps.6572] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/18/2021] [Accepted: 07/26/2021] [Indexed: 05/27/2023]
Abstract
BACKGROUND Tomato chlorosis virus (ToCV) is mainly vectored by Bemisia tabaci in China, which has a worldwide distribution, and greatly reduces the yields of tomato and other vegetables. At present, control of ToCV has been focused mainly by the use of insecticides to control whitefly populations. Transcriptome sequencing showed high expression of the B. tabaci Bta11975 gene, an α-glucosidase (AGLU) during ToCV acquisition by whitefly Mediterranean (MED) species. To investigate the role of Bta11975 gene in ToCV acquisition and transmission by B. tabaci MED, we used RNA interference (RNAi) to reduce the expression of the Bta11975 gene. RESULTS The relative expression of the Bta11975 gene was correlated with the ToCV content in B. tabaci. The AGLU is highly expressed in primary salivary gland and gut. After the Bta11975 gene was silenced, the gene expression of B. tabaci was reduced and B. tabaci mortality was increased. Besides, ToCV acquisition by B. tabaci at 48 and 72 h AAP was reduced, and ToCV transmission was significantly reduced by 25 or 50 of B. tabaci. CONCLUSIONS These results indicate that suppression of expression of the Bta11975 gene in B. tabaci MED by RNAi can reduce acquisition and transmission of ToCV by B. tabaci MED.
Collapse
Affiliation(s)
- DingYiHui Lu
- Subcollege of Longping, Graduate School of Hunan University, Changsha, China
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Hao Yue
- Subcollege of Longping, Graduate School of Hunan University, Changsha, China
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - LiPing Huang
- Subcollege of Longping, Graduate School of Hunan University, Changsha, China
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - DeYong Zhang
- Subcollege of Longping, Graduate School of Hunan University, Changsha, China
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - ZhanHong Zhang
- Institute of Vegetable, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Zhuo Zhang
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Youjun Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fan Li
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Fei Yan
- Institute of Plant Virology, Ningbo University, Ningbo, China
| | - XuGuo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| | - XiaoBin Shi
- Subcollege of Longping, Graduate School of Hunan University, Changsha, China
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Yong Liu
- Subcollege of Longping, Graduate School of Hunan University, Changsha, China
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| |
Collapse
|
4
|
Santos-Ortega Y, Killiny N. Silencing of sucrose hydrolase causes nymph mortality and disturbs adult osmotic homeostasis in Diaphorina citri (Hemiptera: Liviidae). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 101:131-143. [PMID: 30205149 DOI: 10.1016/j.ibmb.2018.09.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 06/08/2023]
Abstract
Plant piercing sucking insects mainly feed on phloem sap containing a high amount of sucrose. To enhance the absorption of sucrose from the midgut, sucrose hydrolase digests sucrose into glucose and fructose. In this study, a sucrose hydrolase homolog (DcSuh) was identified and targeted in Diaphorina citri, the vector of huanglongbing (HLB), by RNA interference (RNAi). In silico analysis revealed the presence of an Aamy domain in the DcSUH protein, which is characteristic of the glycoside hydrolase family 13 (GH13). Phylogenetic analysis showed DcSuh was closely related to the sucrose hydrolase of other Hemiptera members. The highest gene expression levels of DcSuh was found in the 4th and 5th instar nymphs. dsRNA-mediated RNAi of DcSuh was achieved through topical feeding. Our results showed that application of 0.2 μL of 500 ng μL-1 (100 ng) dsRNA-DcSuh was sufficient to repress the expression of the targeted gene and cause nymph mortality and reduce adult lifespan. The reduction in gene expression, mortality, and lifespan was dose-dependent. In agreement with the gene expression results, treatment with dsRNA-DcSuh significantly reduced sucrose hydrolase activity in treated nymphs and emerged adults from treated nymphs. Interestingly, some emerged adults from treated nymphs showed a swollen abdomen phenotype, indicating that these insects were under osmotic stress. Although the percentage of swollen abdomens was low, their incidence was significantly correlated with the concentration of applied dsRNA-DcSuh. Metabolomic analyses using GC-MS showed an accumulation of sucrose and a reduction in fructose, glucose and trehalose in treated nymphs, confirming the inhibition of sucrose hydrolase activity. Additionally, most of the secondary metabolites were reduced in the treated nymphs, indicating a reduction in the biological activities in D. citri and that they are under stress. Our findings indicate that sucrose hydrolase might be a potential target for effective RNAi control of D. citri.
Collapse
Affiliation(s)
- Yulica Santos-Ortega
- Department of Plant Pathology, IFAS, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA
| | - Nabil Killiny
- Department of Plant Pathology, IFAS, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA.
| |
Collapse
|
5
|
Central Administration of 1-Deoxynojirimycin Attenuates Hypothalamic Endoplasmic Reticulum Stress and Regulates Food Intake and Body Weight in Mice with High-Fat Diet-Induced Obesity. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:3607089. [PMID: 28798799 PMCID: PMC5535735 DOI: 10.1155/2017/3607089] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 05/23/2017] [Accepted: 05/30/2017] [Indexed: 12/19/2022]
Abstract
The α-glucosidase inhibitor, 1-deoxynojirimycin (DNJ), is widely used for its antiobesity and antidiabetic effects. Researchers have demonstrated that DNJ regulates body weight by increasing adiponectin levels, which affects energy intake and prevents diet-induced obesity. However, the mechanism by which centrally administered DNJ exerts anorexigenic effects has not been studied until now. We investigated the effect of DNJ in the hypothalamus of mice with high-fat diet-induced obesity. Results showed that intracerebroventricular (ICV) administration of DNJ reduced hypothalamic ER stress, which activated the leptin-induced Janus-activated kinase 2 (JAK2)/signal transducers and activators of transcription 3 (STAT3) signaling pathway to cause appetite suppression. We conclude that DNJ may reduce obesity by moderating feeding behavior and ER stress in the hypothalamic portion of the central nervous system (CNS).
Collapse
|