1
|
Vincze C, Leelőssy Á, Zajácz E, Mészáros R. A review of short-term weather impacts on honey production. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2025; 69:303-317. [PMID: 39643781 PMCID: PMC11785677 DOI: 10.1007/s00484-024-02824-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 10/23/2024] [Accepted: 11/08/2024] [Indexed: 12/09/2024]
Abstract
Beekeeping is an exceptionally weather-sensitive agricultural field. Honey production and pollination services depend on the complex interaction of plants and bees, both of which are impacted by short-term weather changes. In this review, classical and recent research is collected to provide an overview on short-term atmospheric factors influencing honey production, and the optimal and critical weather conditions for bee activity. Bee flight can be directly obstructed by precipitation, wind, extreme temperatures and also air pollution. Bees generally fly within a temperature range of 10-40 °C, with optimal foraging efficiency occurring between 20 and 30 °C. Wind speeds exceeding 1.6-6.7 m/s can reduce foraging efficiency. Additionally, bee activity is significantly correlated with temperature, relative humidity and solar radiation, factors which influence nectar production. Optimal conditions for nectar collection typically occur in the morning and early afternoon hours with mild and moist weather. The diurnal nectar collection habit of bees adjusts to the nectar production of individual plant species. Extreme weather occurring in the sensitive hours is noticeable both in the nectar production of plants and in the activity of bees, thus in the honey yield. Understanding the impact of weather on honey bees is crucial in the management and planning of honey production. This review highlights the importance of studying these interactions to better adapt beekeeping practices to changing environmental conditions.
Collapse
Affiliation(s)
- Csilla Vincze
- Institute of Geography and Earth Sciences, Department of Meteorology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Ádám Leelőssy
- Institute of Geography and Earth Sciences, Department of Meteorology, ELTE Eötvös Loránd University, Budapest, Hungary.
| | - Edit Zajácz
- Institute for Farm Animal Gene Conservation, Department of Apiculture and Bee Biology, National Centre for Biodiversity and Gene Conservation, Gödöllő, Hungary
| | - Róbert Mészáros
- Institute of Geography and Earth Sciences, Department of Meteorology, ELTE Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
2
|
Wang H, Qu Y, He X, Xu XL, Wang R, Xue M, Zeng ZJ. Foraging behavior and work patterns of Bombus terrestris (Hymenoptera: Apidae) in response to tomato greenhouse microclimate. JOURNAL OF ECONOMIC ENTOMOLOGY 2024; 117:2219-2227. [PMID: 39504581 DOI: 10.1093/jee/toae205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/16/2024] [Accepted: 08/31/2024] [Indexed: 11/08/2024]
Abstract
Bumblebees play a significant role as pollinators for many wild plants and cultivated crops, owing to their elongated proboscis, resilience to diverse weather conditions, robustly furred bodies, and their unique capacity for buzz-pollination. To better understand the effect of greenhouse microclimates on bumblebee foraging behavior and working modes, a long-term record of foraging activity for each Bombus terrestris L. (Hymenoptera: Apidae) forager was monitored by the Radio-frequency identification system. The pattern of task performance, including constant housing, foraging, and day-off rotation, was examined under the microclimate. In addition, the correlation between foraging activity of bumblebees and temperature, relative humidity, illumination in the greenhouse, and pollen viability of tomato plants was further analyzed. Our findings revealed that B. terrestris can respond to microclimatic factors and plant resources while also exhibiting a suitable working pattern within the colony. Day-off rotation was observed as a strategy employed by foragers to prolong their survival time. This division of labor and task rotation may serve as strategies for the survival and development of the colony. Our research may contribute to fully understanding how microclimate and plants influence pollinator behavior within greenhouses, thereby optimizing the pollination management of bumblebees on greenhouse crops.
Collapse
Affiliation(s)
- Huan Wang
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, China
- Key Laboratory of Environment Friendly Management on Fruit and Vegetable Pests in North China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs; Institute of Plant Protection, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Yanyan Qu
- Key Laboratory of Environment Friendly Management on Fruit and Vegetable Pests in North China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs; Institute of Plant Protection, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Xujiang He
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, China
| | - Xi-Lian Xu
- Key Laboratory of Environment Friendly Management on Fruit and Vegetable Pests in North China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs; Institute of Plant Protection, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Rufang Wang
- Institute of Facility Agriculture, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Meijing Xue
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| | - Zhi-Jiang Zeng
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
3
|
Shi J, Liu C, Zhang Y, Wu X. Early larval exposure to flumethrin induces long-term impacts on survival and memory behaviors of adult worker bees Apis mellifera. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 201:105909. [PMID: 38685230 DOI: 10.1016/j.pestbp.2024.105909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 05/02/2024]
Abstract
Flumethrin has been supplied as an acaricide for Varroa mite control in world-wide apiculture due to its low lethal effects on honey bees. However, little is known about the effects of short-term flumethrin exposure in the larval stage on adult life stage of bees involving survival status, foraging and memory-related behaviors. Here, we found that exposure to flumethrin at 1 mg/L during larval stage reduced survival and altered foraging activities including induced precocious foraging activity, decreased foraging trips and time, and altered rotating day-off status of adult worker bees using the radio frequency identification system. Furthermore, larval exposure at 1 mg/L flumethrin influenced the correct proboscis extension responses of 7-day-old worker bees and decreased homing rates of 20-day-old worker bees, suggesting that 1 mg/L flumethrin exposure at larval stage could affect memory-related behaviors of adult bees; meanwhile, three genes related to memory (GluRA, Nmdar1 and Tyr1) were certainly down-regulated varying different flumethrin concentrations (0.01, 0.1, and 1 mg/L). Combined with transcriptomic sequencing, differentially expressed genes involved in olfactory memory of adult bees were completely down-regulated under flumethrin exposure. Our findings highlight the unprecedented impact of short-term exposure of insecticides on honey bees in long-term health monitoring under field conditions.
Collapse
Affiliation(s)
- Jingliang Shi
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China; College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300350, China
| | - Chen Liu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China
| | - Yonghong Zhang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China
| | - Xiaobo Wu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China.
| |
Collapse
|
4
|
Reeves LA, Jarvis EM, Lawson DA, Rands SA. The behavioural responses of bumblebees Bombus terrestris to simulated rain. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231882. [PMID: 39076813 PMCID: PMC11285764 DOI: 10.1098/rsos.231882] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/28/2024] [Accepted: 04/17/2024] [Indexed: 07/31/2024]
Abstract
Bumblebee activity typically decreases during rainfall, putting them under the threat of the increased frequency of precipitation due to climate change. A novel rain machine was used within a flight arena to observe the behavioural responses of bumblebees (Bombus terrestris) to simulated rain at both a colony and individual level. During rainfall, a greater proportion of workers left the arena than entered, the opposite of which was seen during dry periods, implying that they compensate for their lack of activity when conditions improve. The proportion of workers flying and foraging decreased while resting increased in rain. This pattern reversed during dry periods, providing further evidence for compensatory activity. The increase in resting behaviour during rain is thought to evade the high energetic costs of flying while wet without unnecessarily returning to the nest. This effect was not repeated in individual time budgets, measured with lone workers, suggesting that the presence of conspecifics accelerates the decision of their behavioural response, perhaps via local enhancement. Bumblebees probably use social cues to strategize their energetic expenditure during precipitation, allowing them to compensate for the reduced foraging activity during rainfall when conditions improve.
Collapse
Affiliation(s)
- Laura A. Reeves
- School of Biological Science, University of Bristol, BristolBS8 1TQ, UK
- Centre for Agri-Environmental Research, School of Agriculture, Policy and Development, University of Reading, ReadingRG6 6AJ, UK
| | - Ellie M. Jarvis
- School of Biological Science, University of Bristol, BristolBS8 1TQ, UK
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, BathBA2 7AY, UK
| | - David A. Lawson
- School of Biological Science, University of Bristol, BristolBS8 1TQ, UK
| | - Sean A. Rands
- School of Biological Science, University of Bristol, BristolBS8 1TQ, UK
| |
Collapse
|
5
|
Van Stan JT, Allen ST, Aubrey DP, Berry ZC, Biddick M, Coenders-Gerrits MAMJ, Giordani P, Gotsch SG, Gutmann ED, Kuzyakov Y, Magyar D, Mella VSA, Mueller KE, Ponette-González AG, Porada P, Rosenfeld CE, Simmons J, Sridhar KR, Stubbins A, Swanson T. Shower thoughts: why scientists should spend more time in the rain. Bioscience 2023; 73:441-452. [PMID: 37397836 PMCID: PMC10308363 DOI: 10.1093/biosci/biad044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/17/2023] [Accepted: 04/26/2023] [Indexed: 07/04/2023] Open
Abstract
Stormwater is a vital resource and dynamic driver of terrestrial ecosystem processes. However, processes controlling interactions during and shortly after storms are often poorly seen and poorly sensed when direct observations are substituted with technological ones. We discuss how human observations complement technological ones and the benefits of scientists spending more time in the storm. Human observation can reveal ephemeral storm-related phenomena such as biogeochemical hot moments, organismal responses, and sedimentary processes that can then be explored in greater resolution using sensors and virtual experiments. Storm-related phenomena trigger lasting, oversized impacts on hydrologic and biogeochemical processes, organismal traits or functions, and ecosystem services at all scales. We provide examples of phenomena in forests, across disciplines and scales, that have been overlooked in past research to inspire mindful, holistic observation of ecosystems during storms. We conclude that technological observations alone are insufficient to trace the process complexity and unpredictability of fleeting biogeochemical or ecological events without the shower thoughts produced by scientists' human sensory and cognitive systems during storms.
Collapse
Affiliation(s)
| | - Scott T Allen
- Department of Natural Resources and Environmental Science at the University of Nevada-Reno, Reno, Nevada, United States
| | - Douglas P Aubrey
- Savannah River Ecology Lab and with the Warnell School of Forestry at the University of Georgia, Athens, Georgia, United States
| | - Z Carter Berry
- Department of Biology at Wake Forest University, Winston-Salem, North Carolina, United States
| | - Matthew Biddick
- Terrestrial Ecology Research Group at the Technical University of Munich, Freising, Germany
| | | | - Paolo Giordani
- Dipartimento di Farmacia at the University of Genoa, Genoa, Italy
| | - Sybil G Gotsch
- Department of Forestry and Natural Resources at the University of Kentucky, Lexington, Kentucky, United States
| | - Ethan D Gutmann
- Research Applications Laboratory, at the National Center for Atmospheric Research, Boulder, Colorado, United States
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Systems, Agricultural Soil Science, at Georg-August-Universität, Göttingen, Germany
- Peoples Friendship University of Russia, Moscow, Russia
| | - Donát Magyar
- National Public Health Center, Budapest, Hungary
| | - Valentina S A Mella
- Sydney School of Veterinary Science, at the University of Sydney, Sydney, New South Wales, Australia
| | - Kevin E Mueller
- Department of Biological, Geological, and Environmental Sciences at Cleveland State University, Cleveland, Ohio, United States
| | - Alexandra G Ponette-González
- Department of City and Metropolitan Planning and with the Natural History Museum of Utah at the University of Utah, Salt Lake City, Utah, United States
| | - Philipp Porada
- Department of Biology at Universität Hamburg, Hamburg, Germany
| | - Carla E Rosenfeld
- Department of Minerals and Earth Sciences at the Carnegie Museum of Natural History, Pittsburgh, Pennsylvania, United States
| | - Jack Simmons
- Department of Philosophy and Religious Studies at Georgia Southern University, Statesboro, Georgia, United States
| | - Kandikere R Sridhar
- Department of Biosciences at Mangalore University, Konaje, Mangaluru, Karnataka, India
| | - Aron Stubbins
- Departments of Marine and Environmental Science, Civil and Environmental Engineering, and Chemistry and Chemical Biology at Northeastern University, Boston, Massachusetts, United States
| | | |
Collapse
|
6
|
Scarano F, Deivarajan Suresh M, Tiraboschi E, Cabirol A, Nouvian M, Nowotny T, Haase A. Geosmin suppresses defensive behaviour and elicits unusual neural responses in honey bees. Sci Rep 2023; 13:3851. [PMID: 36890201 PMCID: PMC9995521 DOI: 10.1038/s41598-023-30796-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/01/2023] [Indexed: 03/10/2023] Open
Abstract
Geosmin is an odorant produced by bacteria in moist soil. It has been found to be extraordinarily relevant to some insects, but the reasons for this are not yet fully understood. Here we report the first tests of the effect of geosmin on honey bees. A stinging assay showed that the defensive behaviour elicited by the bee's alarm pheromone component isoamyl acetate (IAA) is strongly suppressed by geosmin. Surprisingly, the suppression is, however, only present at very low geosmin concentrations, and disappears at higher concentrations. We investigated the underlying mechanisms at the level of the olfactory receptor neurons by means of electroantennography, finding the responses to mixtures of geosmin and IAA to be lower than to pure IAA, suggesting an interaction of both compounds at the olfactory receptor level. Calcium imaging of the antennal lobe (AL) revealed that neuronal responses to geosmin decreased with increasing concentration, correlating well with the observed behaviour. Computational modelling of odour transduction and coding in the AL suggests that a broader activation of olfactory receptor types by geosmin in combination with lateral inhibition could lead to the observed non-monotonic increasing-decreasing responses to geosmin and thus underlie the specificity of the behavioural response to low geosmin concentrations.
Collapse
Affiliation(s)
- Florencia Scarano
- Department of Physics, University of Trento, 38120, Trento, Italy.,Center for Mind/Brain Sciences (CIMeC), University of Trento, 38068, Rovereto, Italy
| | | | - Ettore Tiraboschi
- Center for Mind/Brain Sciences (CIMeC), University of Trento, 38068, Rovereto, Italy
| | - Amélie Cabirol
- Center for Mind/Brain Sciences (CIMeC), University of Trento, 38068, Rovereto, Italy.,Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Morgane Nouvian
- Department of Biology, University of Konstanz, 78457, Konstanz, Germany.,Zukunftskolleg, University of Konstanz, 78464, Konstanz, Germany
| | - Thomas Nowotny
- School of Engineering and Informatics, University of Sussex, Brighton, BN1 9QJ, UK.
| | - Albrecht Haase
- Department of Physics, University of Trento, 38120, Trento, Italy. .,Center for Mind/Brain Sciences (CIMeC), University of Trento, 38068, Rovereto, Italy.
| |
Collapse
|
7
|
Wu X, Li Z, Yang H, He X, Yan W, Zeng Z. The adverse impact on lifespan, immunity, and forage behavior of worker bees (Apis mellifera Linnaeus 1758) after exposure to flumethrin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160146. [PMID: 36375554 DOI: 10.1016/j.scitotenv.2022.160146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Several pyrethroids (such as flumethrin and fluvalinate) with low toxicity to honey bees and comparable high toxicity to mites are used worldwide as acaricides. However, flumethrin has been used for a long time in colonies to control Varroa destructor and the honey bees might be exposed to flumethrin cumulatively, which could affect the health of honey bee colonies. This study evaluated the potential adverse effects of direct flumethrin exposure on worker bees under laboratory and colony conditions. Under laboratory conditions, downregulation of genes related to immune was observed when worker bees were exposed to flumethrin above 1/16 LD50; at levels above 1/8 LD50, olfactory learning was impaired, and genes related to learning memory were downregulated; and at >1/4 LD50, their lifespan was shortened. Monitoring with radio frequency identification (RFID) revealed that worker bees in a colony exposed to flumethrin above 1/8 LD50 had a shortened lifespan and reduced foraging ability. When worker bees are exposed to >1/4 LD50 of flumethrin, it can lead to excessive rest day behavior. These results indicate that applying flumethrin in colonies may pose a severe health risk to honey bees and reveal the urgent need to develop non-toxic and highly effective acaricides.
Collapse
Affiliation(s)
- Xiaobo Wu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang, Jiangxi 330045, PR China.
| | - Zhen Li
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang, Jiangxi 330045, PR China
| | - Heyan Yang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang, Jiangxi 330045, PR China
| | - Xujiang He
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang, Jiangxi 330045, PR China
| | - Weiyu Yan
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang, Jiangxi 330045, PR China
| | - Zhijiang Zeng
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang, Jiangxi 330045, PR China
| |
Collapse
|
8
|
Colin T, Warren RJ, Quarrell SR, Allen GR, Barron AB. Evaluating the foraging performance of individual honey bees in different environments with automated field
RFID
systems. Ecosphere 2022. [DOI: 10.1002/ecs2.4088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Théotime Colin
- School of Life and Environmental Sciences The University of Sydney Sydney New South Wales Australia
- Department of Biological Sciences Macquarie University Sydney New South Wales Australia
| | - Ryan J. Warren
- Tasmanian Institute of Agriculture University of Tasmania Hobart Tasmania Australia
| | - Stephen R. Quarrell
- Tasmanian Institute of Agriculture University of Tasmania Hobart Tasmania Australia
| | - Geoff R. Allen
- Tasmanian Institute of Agriculture University of Tasmania Hobart Tasmania Australia
| | - Andrew B. Barron
- Department of Biological Sciences Macquarie University Sydney New South Wales Australia
| |
Collapse
|
9
|
Stefanec M, Hofstadler DN, Krajník T, Turgut AE, Alemdar H, Lennox B, Şahin E, Arvin F, Schmickl T. A Minimally Invasive Approach Towards “Ecosystem Hacking” With Honeybees. Front Robot AI 2022; 9:791921. [PMID: 35572369 PMCID: PMC9096355 DOI: 10.3389/frobt.2022.791921] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 03/02/2022] [Indexed: 11/13/2022] Open
Abstract
Honey bees live in colonies of thousands of individuals, that not only need to collaborate with each other but also to interact intensively with their ecosystem. A small group of robots operating in a honey bee colony and interacting with the queen bee, a central colony element, has the potential to change the collective behavior of the entire colony and thus also improve its interaction with the surrounding ecosystem. Such a system can be used to study and understand many elements of bee behavior within hives that have not been adequately researched. We discuss here the applicability of this technology for ecosystem protection: A novel paradigm of a minimally invasive form of conservation through “Ecosystem Hacking”. We discuss the necessary requirements for such technology and show experimental data on the dynamics of the natural queen’s court, initial designs of biomimetic robotic surrogates of court bees, and a multi-agent model of the queen bee court system. Our model is intended to serve as an AI-enhanceable coordination software for future robotic court bee surrogates and as a hardware controller for generating nature-like behavior patterns for such a robotic ensemble. It is the first step towards a team of robots working in a bio-compatible way to study honey bees and to increase their pollination performance, thus achieving a stabilizing effect at the ecosystem level.
Collapse
Affiliation(s)
- Martin Stefanec
- Artificial Life Lab, Institute of Biology, University of Graz, Graz, Austria
- *Correspondence: Martin Stefanec,
| | | | - Tomáš Krajník
- Artificial Intelligence Centre, Faculty of Electrical Engineering, Czech Technical University, Prague, Czechia
| | - Ali Emre Turgut
- Department of Mechanical Engineering, Middle East Technical University, Ankara, Türkiye
- ROMER-Center for Robotics and Artificial Intelligence, Middle East Technical University, Ankara, Türkiye
| | - Hande Alemdar
- ROMER-Center for Robotics and Artificial Intelligence, Middle East Technical University, Ankara, Türkiye
- Department of Computer Engineering, Middle East Technical University, Ankara, Türkiye
| | - Barry Lennox
- Department of Computer Engineering, Middle East Technical University, Ankara, Türkiye
| | - Erol Şahin
- ROMER-Center for Robotics and Artificial Intelligence, Middle East Technical University, Ankara, Türkiye
- Department of Computer Engineering, Middle East Technical University, Ankara, Türkiye
| | - Farshad Arvin
- Department of Computer Engineering, Middle East Technical University, Ankara, Türkiye
| | - Thomas Schmickl
- Artificial Life Lab, Institute of Biology, University of Graz, Graz, Austria
| |
Collapse
|
10
|
Correlation of Climatic Factors with the Weight of an Apis mellifera Beehive. SUSTAINABILITY 2022. [DOI: 10.3390/su14095302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The bee Apis mellifera plays an important role in the balance of the ecosystem. New technologies are used for the evaluation of hives, and to determine the quality of the honey and the productivity of the hive. Climatic factors, management, flowering, and other factors affect the weight of a hive. The objective of this research was to explain the interrelationship between climatic variables and the weight of an Apis mellifera beehive using a vector autoregressive (VAR) model. The adjustment of a VAR model was carried out with seven climatic variables, and hive weight and its lags, by adjusting an equation that represents the studied hive considering all interrelationships. It was proven that the VAR (1) model can effectively capture the interrelationship among variables. The impulse response function and the variance decomposition show that the variable that most influences the hive weight, during the initial period, is the minimum dew point, which represents 5.33% of the variance. Among the variables analyzed, the one that most impacted the hive weight, after 20 days, was the maximum temperature, representing 7.50% of the variance. This study proves that it is possible to apply econometric statistical models to bee data and to relate them to climatic data, contributing significantly to the area of applied and bee statistics.
Collapse
|
11
|
RFID Technology Serving Honey Bee Research: A Comprehensive Description of a 32-Antenna System to Study Honey Bee and Queen Behavior. APPLIED SYSTEM INNOVATION 2021. [DOI: 10.3390/asi4040088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The fields of electronics and information technology have witnessed rapid development during the last decades, providing significant technical support to the field of biological sciences. Radio-Frequency Identification (RFID) technology has been used to automate the monitoring of animal location and behaviors in a wide range of vertebrate and invertebrate species, including social insects such as ants and honey bees (Apis mellifera L.). This technology relies on electromagnetic fields to identify and track transponders attached to objects automatically. Implementing new technologies to serve research purposes could be time consuming and require technical expertise from entomologists and researchers. Herein, we present a detailed description on how to harness RFID technology to serve honey bee research effectively. We describe how to build and operate a 32-antenna RFID system used to monitor various honey bee behaviors such as foraging, robbing, and queen and drone mating, which can be used in other social insects as well. Preliminary data related to queen nuptial flights were obtained using this unit and presented in this study. Virgin queens labeled with ≈5 mg transponders performed multiple (one to four) nuptial/orientation flights a day (9 a.m. to 5 p.m.) ranging from 8 to 145 s each. Contrary to virgin queens, no hive exit was recorded for mated queens. At full capacity, this unit can monitor up to 32 honey bee colonies concurrently and is self-sustained by a solar panel to work in remote areas. All materials, hardware, and software needed to build and operate this unit are detailed in this study, offering researchers and beekeepers a practical solution and a comprehensive source of information enabling the implementation of RFID technology in their research perspective.
Collapse
|
12
|
Yorzinski JL. Blinking behavior in great‐tailed grackles (
Quiscalus mexicanus
) increases during simulated rainfall. Ethology 2020. [DOI: 10.1111/eth.13003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Jessica L. Yorzinski
- Department of Ecology and Conservation Biology Texas A&M University College Station TX USA
| |
Collapse
|
13
|
Jones LC, Foster BJ, Rafter MA, Walter GH. Tiny insects against the weather-flight and foraging patterns of Frankliniella schultzei (Thripidae) not altered by onset of rainfall. INSECT SCIENCE 2018; 25:1119-1127. [PMID: 28605128 DOI: 10.1111/1744-7917.12492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 03/26/2017] [Accepted: 05/12/2017] [Indexed: 06/07/2023]
Abstract
To survive in nature, organisms may need to take direct action to mitigate specific dangers from their environmental surroundings. Tiny flying insects are thought to be at particular risk from rainfall that would be of negligible concern to larger animals. The study species Frankliniella schultzei is a thrips that inhabits flowers and feeds mostly on petal tissue and pollen. While found to respond in the laboratory to decreases in atmospheric pressure associated with cyclonic conditions (rather than merely heavy rainfall), their responses to conditions preceding rainfall have not been tested in the field. Initial field sampling investigated the relationship between floral development and sites at which male, female, and larval thrips were generally present on sunny days. We then designed a sampling strategy to test if these thrips can anticipate imminent rainfall or storms and so seek shelter deep within flowers, by sampling host flowers (in sections) on multiple days with different weather conditions. Sticky traps were used to intercept thrips in flight, thus providing a measure of flight behavior across different days. The initial sampling found adult thrips primarily at the petal apex of anthesis-stage flowers where pollen is distributed. We subsequently found that rainfall, atmospheric pressure change, temperature, humidity and wind had no effect on flight behavior of F. schultzei, or on their positions within flowers. These findings suggest rainfall is not a serious hazard for them. Perhaps thrips can survive raindrop collisions during flight, as impacts with water droplets are not expected to break the surface tension.
Collapse
Affiliation(s)
- Lachlan C Jones
- School of Biological Sciences, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Brodie J Foster
- School of Biological Sciences, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Michelle A Rafter
- School of Biological Sciences, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Gimme H Walter
- School of Biological Sciences, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| |
Collapse
|
14
|
Liao CH, He XJ, Wang ZL, Barron AB, Zhang B, Zeng ZJ, Wu XB. Short-Term Exposure to Lambda-Cyhalothrin Negatively Affects the Survival and Memory-Related Characteristics of Worker Bees Apis mellifera. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2018; 75:59-65. [PMID: 29423537 DOI: 10.1007/s00244-018-0514-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 01/30/2018] [Indexed: 06/08/2023]
Abstract
Pesticides are considered one of the major contemporary stressors of honey bee health. In this study, the effects of short-term exposure to lambda-cyhalothrin on lifespan, learning, and memory-related characteristics of Apis mellifera were systematically examined. Short-term exposure to lambda-cyhalothrin in worker bees reduced lifespan, affected learning and memory performance, reduced the homing ability, and influenced the expression levels of two learning and memory-related genes of A. mellifera. This research identifies the nature of the sublethal effects of lambda-cyhalothrin on bees and the level of exposure that can be harmful to bee health. This new information will assist in establishing guidelines for the safe use of lambda-cyhalothrin in the field.
Collapse
Affiliation(s)
- Chun-Hua Liao
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xu-Jiang He
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zi-Long Wang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Andrew B Barron
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Bo Zhang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zhi-Jiang Zeng
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xiao-Bo Wu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|