1
|
Thiruppathy M, Teubner L, Roberts RR, Lasser MC, Moscatello A, Chen YW, Hochstim C, Ruffins S, Sarkar A, Tassey J, Evseenko D, Lozito TP, Willsey HR, Gillis JA, Crump JG. Repurposing of a gill gene regulatory program for outer-ear evolution. Nature 2025; 639:682-690. [PMID: 39788155 DOI: 10.1038/s41586-024-08577-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 12/24/2024] [Indexed: 01/12/2025]
Abstract
How new structures emerge during evolution has long fascinated biologists. An example is how the diminutive bones of the mammalian middle ear arose from ancestral fish jawbones1. By contrast, the evolutionary origin of the outer ear, another mammalian innovation, remains a mystery, partly because it is supported by non-mineralized elastic cartilage, which is rarely recovered in fossils. Whether the outer ear arose de novo or through the reuse of ancestral developmental programs has remained unknown. Here we show that the outer ear shares gene regulatory programs with the gills of fishes and amphibians for both its initial outgrowth and the later development of the elastic cartilage. Comparative single-nucleus multiomics of the human outer ear and zebrafish gills reveals conserved gene expression and putative enhancers enriched for common transcription factor binding motifs. This is reflected by the transgenic activity of human outer-ear enhancers in gills, and of fish gill enhancers in the outer ear. Furthermore, single-cell multiomics of the cartilaginous book gills of horseshoe crabs reveals a developmental program shared with the distal-less homeobox (DLX)-mediated gill program of vertebrates, with a book-gill distal-less enhancer driving expression in zebrafish gills. We propose that elements of an invertebrate gill program were reutilized in vertebrates to generate first gills and then the outer ear.
Collapse
Affiliation(s)
- Mathi Thiruppathy
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Lauren Teubner
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ryan R Roberts
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Micaela C Lasser
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Alessandra Moscatello
- School of Medicine, New York Medical College, Valhalla, NY, USA
- Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ya-Wen Chen
- Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Institute of Airway Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Institute of Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christian Hochstim
- Division of Otolaryngology, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Department of Clinical Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Seth Ruffins
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Arijita Sarkar
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jade Tassey
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Denis Evseenko
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Thomas P Lozito
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Helen Rankin Willsey
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - J Andrew Gillis
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA
| | - J Gage Crump
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Lu HN, Zhang P, Wang Y, Luo K, Yan Z, Zeng M, Lv YN, Bai S, Zeng J, Li S, Bai Y, Luan YX. The role of Hox genes in shaping embryonic external morphology of the primitive insect Thermobia domestica (Zygentoma). INSECT SCIENCE 2025. [PMID: 39973048 DOI: 10.1111/1744-7917.13504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 02/21/2025]
Abstract
Insects represent one of the most evolutionarily successful groups, with their diversity hypothesized to be related to the regulatory roles of Hox genes, a set of related genes encoding homeodomain transcription factors determining the identity of segments along the anterior-posterior axis of the embryo. However, functional insights into the roles of Hox genes in primitive ametabolous insects, which represent the critical transition from aquatic crustaceans to winged insects, have been limited. In this study, we identified complete protein-coding sequences of 10 Hox genes in the Zygentoma Thermobia domestica, and applied clustered regularly interspaced short palindromic repeats (CRISPR) / CRISPR-associated nuclease 9 (Cas 9) mediated gene knockout (KO) to decipher their functions. We found that the roles of pb, Dfd, and Scr are vital in specifying the appendages of the head in T. domestica, and these roles are relatively conserved in crustaceans and winged insects. Antp is essential for the development of the prothorax segment and the first pair of legs in T. domestica. Ubx and abd-A fully repress appendage development in the abdomen of T. domestica, which implies a functional switch from crustaceans to insects. Additionally, the role of ftz in segmenting the abdomen of T. domestica suggests it has acquired new functions in primitive insects, beyond its traditional Hox-like roles. Although KOs of lab, Hox3, and Abd-B did not result in obvious external phenotypic changes, they led to a significant decrease in hatching rates and substantial deviations in daily survival numbers compared to the negative control. These findings underscore the indispensable roles of all Hox genes during the embryonic development of T. domestica. Our study sheds new light on the functional evolution of Hox genes in ametabolous insects and enhances our understanding of the genetic underpinnings of insect development and diversification.
Collapse
Affiliation(s)
- Hu-Na Lu
- Guangdong Provincial Key Laboratory of Insect Development Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Peiyan Zhang
- Guangdong Provincial Key Laboratory of Insect Development Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yifan Wang
- Guangdong Provincial Key Laboratory of Insect Development Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Kai Luo
- Guangdong Provincial Key Laboratory of Insect Development Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Ziyu Yan
- Guangdong Provincial Key Laboratory of Insect Development Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Mei Zeng
- Guangdong Provincial Key Laboratory of Insect Development Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Ya-Nan Lv
- Guangdong Provincial Key Laboratory of Insect Development Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Shali Bai
- Guangdong Provincial Key Laboratory of Insect Development Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jiaming Zeng
- Guangdong Provincial Key Laboratory of Insect Development Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Development Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yu Bai
- Guangdong Provincial Key Laboratory of Insect Development Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yun-Xia Luan
- Guangdong Provincial Key Laboratory of Insect Development Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
3
|
Napiórkowska T, Templin J, Napiórkowski P, Townley MA. Appendage abnormalities in spiders induced by an alternating temperature protocol in the context of recent advances in molecular spider embryology. PeerJ 2023; 11:e16011. [PMID: 37701827 PMCID: PMC10493090 DOI: 10.7717/peerj.16011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 08/10/2023] [Indexed: 09/14/2023] Open
Abstract
In the literature there are numerous reports of developmental deformities in arthropods collected in their natural habitat. Since such teratogenically affected individuals are found purely by chance, the causes of their defects are unknown. Numerous potential physical, mechanical, chemical, and biological teratogens have been considered and tested in the laboratory. Thermal shocks, frequently used in teratological research on the spider Eratigena atrica, have led to deformities on both the prosoma and the opisthosoma. In the 2020/2021 breeding season, by applying alternating temperatures (14 °C and 32 °C, changed every 12 h) for the first 10 days of embryonic development, we obtained 212 postembryos (out of 3,007) with the following anomalies: oligomely, heterosymely, bicephaly, schistomely, symely, polymely, complex anomalies, and others. From these we selected six spiders with defects on the prosoma and two with short appendages on the pedicel for further consideration. The latter cases seem particularly interesting because appendages do not normally develop on this body part, viewed as the first segment of the opisthosoma, and appear to represent examples of atavism. In view of the ongoing development of molecular techniques and recent research on developmental mechanisms in spiders, we believe the observed phenotypes may result, at least in part, from the erroneous suppression or expression of segmentation or appendage patterning genes. We consider "knockdown" experiments described in the literature as a means for generating hypotheses about the sources of temperature-induced body abnormalities in E. atrica.
Collapse
Affiliation(s)
- Teresa Napiórkowska
- Department of Invertebrate Zoology and Parasitology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Julita Templin
- Faculty of Biological and Veterinary Sciences, Department of Invertebrate Zoology and Parasitology, Nicolaus Copernicus University in Torun, Toruń, Poland
| | - Paweł Napiórkowski
- Department of Hydrobiology, Faculty of Biological Sciences, Kazimierz Wielki University in Bydgoszcz, Bydgoszcz, Poland
| | - Mark A. Townley
- University Instrumentation Center, University of New Hampshire, Durham, New Hampshire, United States
| |
Collapse
|
4
|
Liu BP, Ding G, Miao Y, Hua BZ. The Hox gene Abdominal-B regulates the appendage development during the embryogenesis of scorpionflies. INSECT MOLECULAR BIOLOGY 2022; 31:609-619. [PMID: 35575115 DOI: 10.1111/imb.12790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
The Homeotic Complex (Hox) genes encode conserved homeodomain transcription factors that specify segment identity and appendage morphology along the antero-posterior axis in bilaterian animals. The Hox gene Abdominal-B (Abd-B) is mainly expressed in the posterior segments of the abdomen and plays an important role in insect organogenesis. In Mecoptera, the potential function of this gene remains unclear yet. Here, we performed a de novo transcriptome assembly and identified an Abd-B ortholog in the scorpionfly Panorpa liui. Quantitative real-time reverse transcription PCR showed that Abd-B expression increased gradually in embryos 76 h post oviposition, and was mainly present in the more posterior abdominal segments. Embryonic RNA interference of Abd-B resulted in a set of abnormalities, including developmental arrest, malformed suckers and misspecification of posterior segment identity. These results suggest that Abd-B is required for the proper development of the posterior abdomen. Furthermore, in Abd-B RNAi embryos, the expression of the appendage marker Distal-less (Dll) was up-regulated and was additionally present on abdominal segments IX and X compared with wild embryos, suggesting that scorpionfly Abd-B may act to suppress proleg development and has gained the ability to repress Dll expression on the more posterior abdominal segments. This study provides additional information on both the functional and evolutionary roles of Abd-B across different insects.
Collapse
Affiliation(s)
- Bing-Peng Liu
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Guo Ding
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Ying Miao
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Bao-Zhen Hua
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
5
|
Miura T, Maekawa K. The making of the defensive caste: Physiology, development, and evolution of the soldier differentiation in termites. Evol Dev 2020; 22:425-437. [PMID: 32291940 DOI: 10.1111/ede.12335] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 02/11/2020] [Accepted: 03/08/2020] [Indexed: 12/29/2022]
Abstract
Termites (Blattodea, Termitoidea, or Isoptera) constitute one of the major lineages of eusocial insects. In termite societies, multiple types of functional individuals, that is, castes, perform divisions of labors to coordinate social behaviors. Among other castes, the soldier caste is distinctive since it is sterile and exclusively specialized into defensive behavior with largely modified morphological features. Therefore, many of the previous studies have been focused on soldiers, in terms of ecology, behavior, and evolution as well as developmental and physiological mechanisms. This article overviews the accumulation of studies especially focusing on the developmental and physiological mechanisms underlying the soldier differentiation in termites. Furthermore, the evolutionary trajectories that have led the acquisition of soldier caste and have diversified the soldier characteristics in association with the social evolution are discussed.
Collapse
Affiliation(s)
- Toru Miura
- Department of Biological Sciences, Misaki Marine Biological Station, School of Science, The University of Tokyo, Japan
| | - Kiyoto Maekawa
- Department of Biology, Faculty of Science, Academic Assembly, University of Toyama, Toyama, Japan
| |
Collapse
|
6
|
Connahs H, Tlili S, van Creij J, Loo TYJ, Banerjee TD, Saunders TE, Monteiro A. Activation of butterfly eyespots by Distal-less is consistent with a reaction-diffusion process. Development 2019; 146:dev169367. [PMID: 30992277 PMCID: PMC6526720 DOI: 10.1242/dev.169367] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 04/05/2019] [Indexed: 01/08/2023]
Abstract
Eyespots on the wings of nymphalid butterflies represent colorful examples of pattern formation, yet the developmental origins and mechanisms underlying eyespot center differentiation are still poorly understood. Using CRISPR-Cas9 we re-examine the function of Distal-less (Dll) as an activator or repressor of eyespots, a topic that remains controversial. We show that the phenotypic outcome of CRISPR mutations depends upon which specific exon is targeted. In Bicyclus anynana, exon 2 mutations are associated with both missing and ectopic eyespots, and also exon skipping. Exon 3 mutations, which do not lead to exon skipping, produce only null phenotypes, including missing eyespots, lighter wing coloration and loss of scales. Reaction-diffusion modeling of Dll function, using Wnt and Dpp as candidate morphogens, accurately replicates these complex crispant phenotypes. These results provide new insight into the function of Dll as a potential activator of eyespot development, scale growth and melanization, and suggest that the tuning of Dll expression levels can generate a diversity of eyespot phenotypes, including their appearance on the wing.This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Heidi Connahs
- Department of Biological Sciences, National University of Singapore, Singapore 117558
| | - Sham Tlili
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Jelle van Creij
- Department of Biological Sciences, National University of Singapore, Singapore 117558
| | - Tricia Y J Loo
- Department of Biological Sciences, National University of Singapore, Singapore 117558
| | - Tirtha Das Banerjee
- Department of Biological Sciences, National University of Singapore, Singapore 117558
| | - Timothy E Saunders
- Department of Biological Sciences, National University of Singapore, Singapore 117558
- Mechanobiology Institute, National University of Singapore, Singapore 117411
- Institute of Molecular and Cell Biology, A*Star, Proteos, Singapore 138673
| | - Antónia Monteiro
- Department of Biological Sciences, National University of Singapore, Singapore 117558
- Yale-NUS College, Singapore 138527
| |
Collapse
|
7
|
Zhang H, Zhao M, Yi X, Ou Z, Li Y, Shi Y, He M. Characterization of the distal-less homologue gene, PfDlx, involved in regulating the expression of Pif in the pearl oyster, Pinctada fucata. Comp Biochem Physiol B Biochem Mol Biol 2017; 212:51-58. [PMID: 28652139 DOI: 10.1016/j.cbpb.2017.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 06/13/2017] [Accepted: 06/20/2017] [Indexed: 11/17/2022]
Abstract
Distal-less (Dlx) homeobox transcription factors play an important role in regulating various aspects of vertebrate biology. In vertebrates and invertebrates, distal-less is a highly conserved and well-studied transcription factor. In pearl oyster, we have identified a homologue of this gene, Dlx, and cloned the full-length cDNA. Genomic structure analysis revealed that PfDlx genomic DNA contained three exons and two introns. Their deduced amino acid sequences all showed the highest identity with homologues in Crassostrea gigas. Analyses of PfDlx mRNA in tissues and developmental stages showed high expressions in gonad, polar body stage, 2-4 cells and 32 cells. After shell notching, the changes in expression of Dlx shows that it reached a maximum at 24h. In co-transfection experiments, PfDlx significantly activates reporter constructs containing a Pif promoter. Through using RNAi techniques, we demonstrated that down-regulation of Dlx in P. fucata did not significantly disrupt the development of the nacreous layer in scanning electron microscopy, but it significantly down-regulated the expression of Pif gene. Thus, our work suggests that PfDlx might participate in regulating the expression of the Pif gene in the pearl oyster.
Collapse
Affiliation(s)
- Hua Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangdong, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mi Zhao
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangdong, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuejie Yi
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangdong, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zekui Ou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangdong, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaoguo Li
- College of Life Sciences and Ecology, Hainan Tropical Ocean University, 1 Yucai Road, Sanya 572022, China
| | - Yu Shi
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangdong, Guangzhou 510301, China.
| | - Maoxian He
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangdong, Guangzhou 510301, China.
| |
Collapse
|
8
|
Jaramillo ML, Ammar D, Quispe RL, Guzman F, Margis R, Nazari EM, Müller YMR. Identification and evaluation of reference genes for expression studies by RT-qPCR during embryonic development of the emerging model organism, Macrobrachium olfersii. Gene 2016; 598:97-106. [PMID: 27825774 DOI: 10.1016/j.gene.2016.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/25/2016] [Accepted: 11/02/2016] [Indexed: 11/28/2022]
Abstract
RT-qPCR is a sensitive and highly efficient technique that is widely used in gene expression analysis and to provide insight into the molecular mechanisms underlying embryonic development. The freshwater prawn, Macrobrachium olfersii is an emerging model organism, but, the stable reference genes of this species need to be identified and validated for RT-qPCR analysis. Thus, the aim of this study was to evaluate the expression stability of six genes (β-act, GAPDH, EF-1α, RpL8, RpS6, AK) in embryos and in adult tissues (cerebral ganglia, muscle and hepatopancreas) of M. olfersii. The expression stabilities of these genes were evaluated using geNorm, NormFinder, BestKeeper, ΔCt method and integrated tool RefFinder. In the general ranking, RpL8 and RpS6 were the most stable genes in embryos, while RpS6 and RpL8 were the most stable in a combined adult tissue analysis. Analysis of the adult tissues revealed that β-act and AK were the most stable genes in cerebral ganglia, RpL8 and AK in muscle, and RpS6 and β-act in hepatopancreas. EF-1α and GAPDH were the least stable genes and as normalizer genes in RT-qPCR affected expression of the Distal-less gene during M. olfersii development. This study provides suitable reference genes for RT-qPCR analysis and allows future studies of the gene expression in M. olfersii for understanding the molecular mechanisms of their development. To our knowledge, this is the first published study that identifies and evaluates reference genes for RT-qPCR analysis in M. olfersii and could be useful as basis for evaluations of reference genes in other prawns.
Collapse
Affiliation(s)
- Michael L Jaramillo
- Universidade Federal de Santa Catarina, Departamento de Biologia Celular, Embriologia e Genética, 88040-900 Florianópolis, Santa Catarina, Brazil
| | - Dib Ammar
- Universidade Federal de Santa Catarina, Departamento de Biologia Celular, Embriologia e Genética, 88040-900 Florianópolis, Santa Catarina, Brazil; Centro Universitário - Católica de Santa Catarina, 89203-005 Joinville, SC, Brazil
| | - Ruth L Quispe
- Universidade Federal de Santa Catarina, Programa de Pós-Graduação em Neurociências, Campus Universitário, 88040-900 Florianópolis, SC, Brazil
| | - Frank Guzman
- Universidade Federal do Rio Grande do Sul, PPGBCM, Centro de Biotecnologia, 91501-970 Porto Alegre, RS, Brazil
| | - Rogerio Margis
- Universidade Federal do Rio Grande do Sul, Departamento de Biofisica, 91501-970 Porto Alegre, RS, Brazil
| | - Evelise M Nazari
- Universidade Federal de Santa Catarina, Departamento de Biologia Celular, Embriologia e Genética, 88040-900 Florianópolis, Santa Catarina, Brazil.
| | - Yara M R Müller
- Universidade Federal de Santa Catarina, Departamento de Biologia Celular, Embriologia e Genética, 88040-900 Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
9
|
Chen B, Wang XH, Tu Z, Huang YP. Leap forward with insect genomics. INSECT SCIENCE 2016; 23:332-334. [PMID: 27145185 DOI: 10.1111/1744-7917.12355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/29/2016] [Indexed: 06/05/2023]
Affiliation(s)
- Bin Chen
- Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| | - Xian-Hui Wang
- State Key Laboratory of Integrated Management of Pest Insects & Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhijian Tu
- Department of Biochemistry, Fralin Life Science Institute, and Program in Genetics Bioinformatics and Computational Biology, Virginia Tech, Blacksburg, Virginia, USA
| | - Yong-Ping Huang
- Key Laboratory of Insect Development and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|