1
|
Shahmohammadi N, Esmaeily M, Abdisa E, Mandal E, Kim Y. Enhanced baculoviral virulence by suppressing the degradation of an insect immune resolvin, epoxyoctadecamonoenoic acid, in three lepidopteran insects. J Invertebr Pathol 2024; 204:108095. [PMID: 38499284 DOI: 10.1016/j.jip.2024.108095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/17/2024] [Accepted: 03/10/2024] [Indexed: 03/20/2024]
Abstract
Epoxyoctadecamonoenoic acids (EpOMEs) are produced from linoleic acid by a cytochrome P450 monooxygenase (CYP) and play a crucial role in terminating excessive and unnecessary immune responses during the late infection stage in insects. This suggests that an increase in the EpOME level may enhance the virulence of insect pathogens against pests. This study tested this hypothesis using a specific inhibitor against soluble epoxide hydrolase (sEH) to degrade EpOMEs, which leads to elevated endogenous EpOME levels. A baculovirus, Autographa californica multiple nucleopolyhedrovirus (AcMNPV), was used to infect three different lepidopteran insects (Spodoptera exigua, Maruca vitrata, and Plutella xylostella) by oral feeding or hemocoelic injection treatments. Within one hour, the viral infection induced the expression of three different phospholipase A2 (PLA2) genes and, after 12 h, up-regulated the expressions of CYP and sEH genes in Spodopera exigua. As expected, AcMNPV virulence was suppressed by the addition of arachidonic acid (a catalytic product of PLA2) but was enhanced by the addition of either of the EpOME regioisomers. In addition, treatment with a specific sEH inhibitor (AUDA) increased AcMNPV virulence against three different lepidopteran insects, presumably by increasing endogenous EpOME levels. This enhanced effect of EpOMEs on virulence was further supported by specific RNA interference (RNAi), in which RNAi specific to CYP expression decreased AcMNPV virulence while a specific RNAi against sEH expression significantly enhanced virulence. In response to AcMNPV infection, TUNEL assay results showed that S. exigua larvae exhibited apoptosis in the midgut, fat body, and epidermis. Inhibition of apoptosis by a pan-caspase inhibitor, Z-VAD-FMK, significantly increased virulence. Similarly, the addition of AUDA to the viral treatment suppressed the gene expression of five inducible caspases and cytochrome C to suppress apoptosis, which led to a significant increase in the tissue viral titers. These results indicate that EpOMEs play a role in terminating excessive and unnecessary immune responses against viral infection during the late stage by down-regulating antiviral apoptosis in lepidopteran insects.
Collapse
Affiliation(s)
| | - Mojtaba Esmaeily
- Department of Plant Medicals, Andong National University, Andong, 36720, Korea
| | - Eticha Abdisa
- Department of Plant Medicals, Andong National University, Andong, 36720, Korea
| | - Eeshita Mandal
- Department of Plant Medicals, Andong National University, Andong, 36720, Korea
| | - Yonggyun Kim
- Department of Plant Medicals, Andong National University, Andong, 36720, Korea.
| |
Collapse
|
2
|
Yu Q, Wang M, Ding X, Han J, Ma H, Li J, Zheng G, Zhang B, Li C. The Expression of P35 Plays a Key Role in the Difference in Apoptosis Induced by AcMNPV Infection in Different Spodoptera exigua Cell Lines. Int J Mol Sci 2023; 24:13228. [PMID: 37686033 PMCID: PMC10487845 DOI: 10.3390/ijms241713228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/12/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Baculovirus infection induces apoptosis in host cells, and apoptosis significantly affects virus production. Autographa californica multiple nucleopolyhedrovirus (AcMNPV) can regulate apoptosis, but the regulatory mechanism is unclear. Here, we found that AcMNPV infection induced different apoptosis responses in different Spodoptera exigua cell lines. In the early stages of viral infection (1-6 h), Se-1 cells underwent severe apoptosis, while Se-3 cells underwent very slight apoptosis. In the late stages of viral infection (12-72 h), Se-1 cells continued to undergo apoptosis and formed a large number of apoptotic bodies, while the apoptosis of Se-3 cells was inhibited and no apoptotic bodies were formed. To determine the reasons for the apoptosis differences in the two cell lines, we measured the expression of the six S. exigua cysteine-dependent aspartate specific protease genes (SeCaspase-1 to -6) and the three AcMNPV antiapoptotic protein genes (iap1, iap2 and p35) during viral infection. We found that SeCaspase-1 to -6 were all activated in Se-1 cells and inhibited in Se-3 cells, whereas iap1, iap2 and p35 were all inhibited in Se-1 cells and normally expressed in Se-3 cells. And p35 was expressed earlier than iap1 and iap2 in Se-3 cells. Otherwise, Se-1 and Se-3 cells would all be apoptotic when infected with the recombinant p35 knockout AcMNPV, whereas only Se-1 cells were apoptotic, but Se-3 cells were not apoptotic when infected with the recombinant p35 repair AcMNPV. Combined with the fact that the expression of P35 protein is inhibited in Se-1 cells but normally expressed in Se-3 cells during the infection of recombinant p35 repair AcMNPV, we proposed that the different expression of P35 is an important reason for the apoptosis differences between the two cell lines. We also found that some genes associated with apoptosis can probably regulate the expression of P35. However, the major upstream regulators of P35 and their mechanisms are still unclear and will be studied in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Changyou Li
- Shangdong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Qingdao Agricultural University, Qingdao 266109, China; (Q.Y.); (M.W.); (X.D.); (J.H.); (H.M.); (J.L.); (G.Z.); (B.Z.)
| |
Collapse
|
3
|
Apoptosis or Antiapoptosis? Interrupted Regulated Cell Death of Host Cells by Ascovirus Infection In Vitro. mBio 2023; 14:e0311922. [PMID: 36744941 PMCID: PMC9973268 DOI: 10.1128/mbio.03119-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Ascoviruses are insect-specific viruses thought to utilize the cellular apoptotic processes of host larvae to produce numerous virion-containing vesicles. In this study, we first determined the biochemical characteristics of ascovirus-infected, in vitro-cultured insect cells and the possible antiapoptotic capacity of ascovirus-infected insect cells. The results indicated that the ascovirus infection in the first 24 h was different from the infection from 48 h to the later infection stages. In the early infection stage, the Spodoptera exigua host cells had high membrane permeability and cleaved gasdermin D (GSDMD) but uncleaved Casp-6 (SeCasp-6). In contrast, the later infection stage had no such increased membrane permeability and had cleaved SeCasp-6. Four different chemicals were used to induce apoptosis at different stages of ascovirus infection: hydrogen peroxide (H2O2) and actinomycin D (ActD) had similar effects on the ascovirus-infected cells, whereas cMYC inhibitors and tumor necrosis factor alpha (TNF-α) plus SM-164 apoptosis inducers (T/S) had similar effects on infected cells. The former two inducers inhibited viral DNA replication in most situations, while the latter two inducers inhibited viral DNA replication in the early stage of infection but promoted viral DNA replication in the later infection stage. Furthermore, immunoblotting assays verified that T/S treatment could increase the expression levels of viral major capsid protein (MCP) and the host inhibitor of apoptosis protein (SeIAP). Coimmunoprecipitation assays revealed interaction between SeIAP and SeCasps, but this interaction was disturbed in ascovirus-infected cells. This study details the in vitro infection process of ascovirus, indicating the utilization of pyroptosis for antiapoptosis cytopathology. IMPORTANCE Clarifying the relationship between different types of viral infections and host regulation of cell death (RCD) can provide insights into the interaction between viruses and host cells. Ascoviruses are insect-specific viruses with apoptosis-utilizing-like infection cytopathology. However, RCD does not only include apoptosis, and while in our previous transmission electron microscopic observations, ascovirus-infected cells did not show typical apoptotic characteristics (unpublished data), in this study, they did show increased membrane permeability. These results indicate that the cytopathology of ascovirus infection is a complex process in which the virus manipulates host RCD. The RCD of insect cells is quite different from that of mammals, and studies on the former are many fewer than those on the latter, especially in the case of RCD in lepidopteran insects. Our results will lay a foundation for understanding the RCD of lepidopteran insects and its function in the process of insect virus infection.
Collapse
|
4
|
Zhang Y, Xu G, Jiang Y, Ma C, Yang G. Sublethal Effects of Imidacloprid on Fecundity, Apoptosis and Virus Transmission in the Small Brown Planthopper Laodelphax striatellus. INSECTS 2021; 12:insects12121131. [PMID: 34940219 PMCID: PMC8706141 DOI: 10.3390/insects12121131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022]
Abstract
Laodelphax striatellus damages plants directly through sucking plant sap and indirectly as a vector of rice stripe virus (RSV), resulting in serious losses of rice yield. It is one of the most destructive insects of rice in East Asia. Insecticides are primarily used for pest management, but the sublethal concentrations of insecticides may benefit several insects. The present research attempted to explore the effects of sublethal concentrations of imidacloprid on the fecundity, apoptosis and RSV transmission in the viruliferous SBPH. The results showed that the fecundity of SBPH was significantly increased after treatment with the LC10 dose of imidacloprid, while the LC30 dose of imidacloprid reduced the fecundity compared with the control. To further investigate the underlying mechanism of increased fecundity after exposure to the LC10 dose of imidacloprid, we examined the expression levels of vitellogenin (Vg), Vg receptor (VgR) and caspases in the ovaries of SBPH, and observed the apoptosis by terminal deoxynucleotidyl transferase (TDT)-mediated dUTP-digoxigenin nick end labeling (TUNEL). qRT-PCR results indicated that the expression levels of Vg, VgR and four caspase genes were all significantly increased by the LC10 dose of imidacloprid, and TUNEL assays suggested that the frequency of apoptosis was significantly higher in the SBPH treated by the LC10 dose of imidacloprid, suggesting a potential correlation between the increased fecundity and the apoptosis of SBPH ovarioles. Additionally, the expression levels of RNA3 and capsid protein (CP) were both increased significantly by the LC10 dose of imidacloprid, whereas were decreased by the LC30 dose of imidacloprid compared to the control. Therefore, this study clarifies the mechanisms of sublethal effects of imidacloprid on viruliferous SBPH and could be used to optimize pest control strategies.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Y.Z.); (Y.J.); (C.M.)
| | - Gang Xu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Y.Z.); (Y.J.); (C.M.)
- Correspondence: (G.X.); (G.Y.)
| | - Yu Jiang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Y.Z.); (Y.J.); (C.M.)
| | - Chao Ma
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Y.Z.); (Y.J.); (C.M.)
| | - Guoqing Yang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Y.Z.); (Y.J.); (C.M.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence: (G.X.); (G.Y.)
| |
Collapse
|
5
|
Wang Y, Goodman CL, Ringbauer J, Li Y, Stanley D. Prostaglandin A 2 induces apoptosis in three cell lines derived from the fall armyworm, Spodoptera frugiperda. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 108:e21844. [PMID: 34519097 DOI: 10.1002/arch.21844] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Animals maintain homeostasis of cell numbers, constantly creating new cells and eliminating others. Programmed cell death, apoptosis, is a mechanism of cell elimination and it acts in many aspects of animal biology. Drawing on the biomedical background, several signals launch the apoptosis mechanisms, including prostaglandins (PGs). Based on this information, we posed the hypothesis that PGs similarly induce apoptosis in insect cell lines. We used three Spodoptera frugiperda cell lines, including two newly established, BCIRL-SfNS-0518B-YL derived from the central nervous system and BCIRL-Sf4FB-0614-SGS derived from fat body, and the commercially available Sf9 cells. Using a kinetic apoptosis kit, we found treating SfNS cells for 18 h with 15 or 20 μM PGA2 led to decreases in cell numbers, coupled with increased numbers of apoptotic and dead cells. Similar exposures to 10 μM PGA2 (24 h) led to substantial increases in apoptotic cells, confirmed by a terminal deoxynucleotidyl transferase dUTP nick end labeling assay on a flow cytometer. The influence of PGA2 treatments increased with dosage, as we recorded about 20% apoptosis at 24 h post-PGA2 treatments (10 μM) and about 34% apoptosis at 24 h post-30 μM treatments. PGA2 treatments led to 10- to 30-fold increases in messenger RNAs (mRNAs) encoding apoptosis-specific caspases-1, -2, -3, and -5 at 12 h and 40- to 60-fold increases in mRNAs encoding caspases-1 and -2, 10-fold increases for caspases-3 and -5 at 24 h. These findings strongly support our hypothesis that PGs induce apoptosis in an insect cell line and confirm an additional PG action in insect biology.
Collapse
Affiliation(s)
- Yong Wang
- College of Bioscience and Biotechnology, Insect Resource Research Center for Engineering and Technology of Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Cynthia L Goodman
- USDA/Agricultural Research Service, Biological Control of Insects Research Laboratory, Columbia, Missouri, USA
| | - Joseph Ringbauer
- USDA/Agricultural Research Service, Biological Control of Insects Research Laboratory, Columbia, Missouri, USA
| | - Yaofa Li
- Plant Protection Institute, Hebei Academy of Agricultural and Forestry Sciences, Baoding, China
| | - David Stanley
- USDA/Agricultural Research Service, Biological Control of Insects Research Laboratory, Columbia, Missouri, USA
| |
Collapse
|
6
|
Yu H, Ou-Yang YY, Yang CJ, Li N, Nakai M, Huang GH. 3H-31, A Non-structural Protein of Heliothis virescens ascovirus 3h, Inhibits the Host Larval Cathepsin and Chitinase Activities. Virol Sin 2021; 36:1036-1051. [PMID: 33830433 DOI: 10.1007/s12250-021-00374-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/16/2020] [Indexed: 11/29/2022] Open
Abstract
3h-31 of Heliothis virescens ascovirus 3h (HvAV-3h) is a highly conserved gene of ascoviruses. As an early gene of HvAV-3h, 3h-31 codes for a non-structural protein (3H-31) of HvAV-3h. In the study, 3h-31 was initially transcribed and expressed at 3 h post-infection (hpi) in the infected Spodoptera exigua fat body cells (SeFB). 3h-31 was further inserted into the bacmid of Autographa californica nucleopolyhedrovirus (AcMNPV) to generate an infectious baculovirus (AcMNPV-31). In vivo experiments showed that budded virus production and viral DNA replication decreased with the expression of 3H-31, and lucent tubular structures were found around the virogenic stroma in the AcMNPV-31-infected SeFB cells. In vivo, both LD50 and LD90 values of AcMNPV-31 were significantly higher than those of the wild-type AcMNPV (AcMNPV-wt) in third instar S. exigua larvae. An interesting finding was that the liquefaction of the larvae killed by the infection of AcMNPV-31 was delayed. Chitinase and cathepsin activities of AcMNPV-31-infected larvae were significantly lower than those of AcMNPV-wt-infected larvae. The possible regulatory function of the chitinase and cathepsin for 3H-31 was further confirmed by RNAi, which showed that larval cathepsin activity was significantly upregulated, but chitinase activity was not significantly changed due to the RNAi of 3h-31. Based on the obtained results, we assumed that the function of 3H-31 was associated with the inhibition of host larval chitinase and cathepsin activities, so as to restrain the hosts in their larval stages.
Collapse
Affiliation(s)
- Huan Yu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, 410128, China.,College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China
| | - Yi-Yi Ou-Yang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, 410128, China.,College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China
| | - Chang-Jin Yang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, 410128, China.,College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China
| | - Ni Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, 410128, China.,College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China
| | - Madoka Nakai
- Tokyo University of Agriculture and Technology, Saiwai, Fuchu, Tokyo, 183-8509, Japan
| | - Guo-Hua Huang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, 410128, China. .,College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
7
|
Li ZQ, Song XH, Wang M, Wang S, Huang GH. Melanization induced by Heliothis virescens ascovirus 3h promotes viral replication. INSECT SCIENCE 2021; 28:472-484. [PMID: 32243720 DOI: 10.1111/1744-7917.12786] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/19/2020] [Accepted: 03/22/2020] [Indexed: 06/11/2023]
Abstract
Melanization is an important innate immune defense mechanism of insects, which can kill invading pathogens. Most pathogens, for their survival and reproduction, inhibit the melanization of the host. Interestingly, our results suggested that after infection with Heliothis virescens ascovirus 3h (HvAV-3h), the speed of melanization in infected Spodoptera exigua larval hemolymph was accelerated and that the phenoloxidase (PO) activity of hemolymph in larvae infected with HvAV-3h increased significantly (1.20-fold at 96 hpi, 1.52-fold at 120 hpi, 1.23-fold at 144 hpi, 1.12-fold at 168 hpi). The transcription level of the gene encoding S. exigua prophenoloxidase-1 (SePPO-1 gene) was upregulated dramatically in the fat body during the middle stage of infection. In addition, when melanization was inhibited or promoted, the replication of HvAV-3h was inhibited or promoted, respectively. In conclusion, infection with HvAV-3h can markedly induce melanization in the middle stage of infection, and melanization is helpful for HvAV-3h viral replication.
Collapse
Affiliation(s)
- Zi-Qi Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Xiao-Hui Song
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Min Wang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Shu Wang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Guo-Hua Huang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| |
Collapse
|
8
|
Zhang ZY, Ren J, Chu F, Guan JX, Yang GY, Liu YT, Zhang XY, Ge SQ, Huang QY. Biochemical, molecular, and morphological variations of flight muscles before and after dispersal flight in a eusocial termite, Reticulitermes chinensis. INSECT SCIENCE 2021; 28:77-92. [PMID: 32039551 DOI: 10.1111/1744-7917.12763] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 01/28/2020] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
Swarming behavior facilitates pair formation, and therefore mating, in many eusocial termites. However, the physiological adjustments and morphological transformations of the flight muscles involved in flying and flightless insect forms are still unclear. Here, we found that the dispersal flight of the eusocial termite Reticulitermes chinensis Snyder led to a gradual decrease in adenosine triphosphate supply from oxidative phosphorylation, as well as a reduction in the activities of critical mitochondrial respiratory enzymes from preflight to dealation. Correspondingly, using three-dimensional reconstruction and transmission electron microscopy (TEM), the flight muscles were found to be gradually deteriorated during this process. In particular, two tergo-pleural muscles (IItpm5 and III-tpm5) necessary to adjust the rotation of wings for wing shedding behavior were present only in flying alates. These findings suggest that flight muscle systems vary in function and morphology to facilitate the swarming flight procedure, which sheds light on the important role of swarming in successful extension and fecundity of eusocial termites.
Collapse
Affiliation(s)
- Zhen-Yu Zhang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jing Ren
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Fei Chu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jun-Xia Guan
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Guang-Yu Yang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yu-Tong Liu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xin-Ying Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Si-Qin Ge
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qiu-Ying Huang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
9
|
Liu G, Lv Z, Wu Q, Zhou Z, Zhang G, Wan F, Yan Y. The Bactrocera dorsalis caspase-1 gene is expressed throughout development and required for female fertility. PEST MANAGEMENT SCIENCE 2020; 76:4104-4111. [PMID: 32578366 DOI: 10.1002/ps.5966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/12/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The oriental fruit fly Bactrocera dorsalis is one of the most destructive pests of fruits and vegetables. The sterile insect technique (SIT) is an effective and environmentally friendly approach to the control of tephritid fruit flies. The pro-apoptotic gene head involution defective (hid) has been used as an effective lethal effector in SIT. It initiates an interaction cascade including activation of caspase-like proteases. However, the biological role of caspase activity in tephritid fruit flies has yet to be explored. RESULTS In this study, the B. dorsalis caspase-1 gene (Bdcp-1) was cloned and characterized. Sequence comparison showed that Bdcp-1 protein shared highly homology with Drosophila effector caspases Drice and Dcp-1. It is predicted to contain a short pro-domain because two proteolytic cleavage sites (Asp16 and Asp223 ) are present. Expression patterns indicated that Bdcp-1 is highly transcribed in embryos and expression was upregulated during metamorphosis and upon ultraviolet irradiation. RNA interference showed that Bdcp-1 is essential for ovarian development and female fertility. For example, knockdown of Bdcp-1 caused transcriptional downregulation of expression of the yolk protein-1 gene (Bdyp-1) and delayed ovarian development. The percentage of spawning females and female fecundity were significantly reduced. CONCLUSION This study illustrates the function of the Bdcp-1 gene and provides an attractive method to develop a biological way to control the oriental fruit fly through the control of caspases. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Guiqing Liu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangdong Academy of Sciences, Guangzhou, P. R. China
- Department of Biological Invasions, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Zhichuang Lv
- Department of Biological Invasions, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Qiang Wu
- Department of Biological Invasions, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, P. R. China
| | - Zhongshi Zhou
- Department of Biological Invasions, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Guifen Zhang
- Department of Biological Invasions, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Fanghao Wan
- Department of Biological Invasions, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, P. R. China
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, P. R. China
| | - Ying Yan
- Institute for Insect Biotechnology, Justus-Liebig University of Giessen, Giessen, Germany
| |
Collapse
|
10
|
A Novel Insecticidal Molecule Extracted from Alpinia galanga with Potential to Control the Pest Insect Spodoptera frugiperda. INSECTS 2020; 11:insects11100686. [PMID: 33050622 PMCID: PMC7601874 DOI: 10.3390/insects11100686] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 11/17/2022]
Abstract
Simple Summary The fall armyworm is an insect pest that feeds on many plants, including plants of agronomic importance, such as corn and rice. In addition, it has developed resistance to the main families of synthetic insecticides. There is, therefore, a need to find new, more environmentally friendly molecules to control this pest. We have extracted a molecule from greater galangal and tested its activity as an insecticide on the fall armyworm. This natural molecule causes larval growth inhibition and larval developmental abnormalities. To understand its action, a cell model with Sf9 cells was used. The molecule is much more toxic to insect cells than to human cells. It affects cell proliferation and induces cell death. This study demonstrates that a molecule extracted from an edible plant may have potential in the future development of botanical insecticides for the control of insect pests. Abstract Spodoptera frugiperda, a highly polyphagous insect pest from America, has recently invaded and widely spread throughout Africa and Asia. Effective and environmentally safe tools are needed for successful pest management of this invasive species. Natural molecules extracted from plants offer this possibility. Our study aimed to determine the insecticidal efficacy of a new molecule extracted from Alpinia galanga rhizome, the 1′S-1′-acetoxychavicol acetate (ACA). The toxicity of ACA was assessed by topical application on early third-instar larvae of S. frugiperda. Results showed that ACA caused significant larval growth inhibition and larval developmental abnormalities. In order to further explore the effects of this molecule, experiments have been performed at the cellular level using Sf9 model cells. ACA exhibited higher toxicity on Sf9 cells as compared to azadirachtin and was 38-fold less toxic on HepG2 cells. Inhibition of cell proliferation was observed at sublethal concentrations of ACA and was associated with cellular morphological changes and nuclear condensation. In addition, ACA induced caspase-3 activity. RT-qPCR experiments reveal that ACA induces the expression of several caspase genes. This first study on the effects of ACA on S. frugiperda larvae and cells provides evidence that ACA may have potential as a botanical insecticide for the control of S. frugiperda.
Collapse
|
11
|
Shu B, Zhang J, Veeran S, Zhong G. Pro-Apoptotic Function Analysis of the Reaper Homologue IBM1 in Spodoptera frugiperda. Int J Mol Sci 2020; 21:ijms21082729. [PMID: 32326478 PMCID: PMC7215429 DOI: 10.3390/ijms21082729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 12/26/2022] Open
Abstract
As an important type of programmed cell death, apoptosis plays a critical role in lepidopteran insects in response to various internal and external stresses. It is controlled by a network of genes such as those encoding the inhibitor of apoptosis proteins. However, there are few studies on apoptosis-related genes in Spodoptera frugiperda. In this study, an orthologue to the Drosophila reaper gene, named Sf-IBM1, was identified from S. frugiperda, and a full-length sequence was obtained by reverse transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends PCR (RACE-PCR). The expression pattern of Sf-IBM1 was determined in different developmental stages and various tissues. Apoptotic stimuli including azadirachtin, camptothecin, and ultraviolet radiation (UV) induced the expression of Sf-IBM1 at both transcript and protein levels. Overexpression of Sf-IBM1 induced apoptosis in Sf9 cells, and the Sf-IBM1 protein was localized in mitochondria. The apoptosis induced by Sf-IBM1 could be blocked by the caspase universal inhibitor carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]-fluoromethylketone (Z-VAD-FMK) and Sf-IAP1. Our results provide valuable information that should contribute to a better understanding of the molecular events that lead to apoptosis in lepidopterans.
Collapse
Affiliation(s)
- Benshui Shu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China;
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (S.V.)
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Jingjing Zhang
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (S.V.)
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Sethuraman Veeran
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (S.V.)
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Guohua Zhong
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (S.V.)
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
- Correspondence: ; Tel.: +86-20-8528-0308; Fax: +86-20-8528-0203
| |
Collapse
|
12
|
He L, Ou-Yang YY, Li N, Chen Y, Liu SQ, Huang GH. Regulation of Chitinase in Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae) During Infection by Heliothis virescens ascovirus 3h (HvAV-3h). Front Physiol 2020; 11:166. [PMID: 32210833 PMCID: PMC7077506 DOI: 10.3389/fphys.2020.00166] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/12/2020] [Indexed: 11/13/2022] Open
Abstract
Insect chitinases play essential roles in the molting and metamorphosis of insects. The virus Heliothis virescens ascovirus 3h (HvAV-3h) can prolong the total duration of the larval stage in its host larvae. In this study, the molecular character and function of chitinase and chitin-binding domain (CBD) were analyzed in larvae of Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae). In detecting the chitinase activity of mock-infected and HvAV-3h-infected larval whole bodies and four different larval tissues, the results showed that larval chitinase activity was significantly decreased at 48 h post infection (hpi) and that the chitinase activity of HvAV-3h-infected larval fat body and cuticle was notably decreased at 144 and 168 hpi. The transcription level of S. exigua chitinase 7 (SeCHIT7) was down-regulated at the 6, 9, 12, 48, 72, and 96 hpi sample times, the S. exigua chitinase 11 (SeCHIT11) was down-regulated at 3-96 hpi, while both S. exigua chitinases (SeCHITs) were up-regulated at 120-168 hpi. Further tissue-specific detection of SeCHIT7 and SeCHIT11 transcription showed that SeCHIT7 was down-regulated at 144 and 168 hpi in the fat body and cuticle. SeCHIT11 was down-regulated at 168 hpi in the fat body, midgut, and cuticle. Additionally, the transcription and expression of S. exigua chitin-binding domain (SeCBD) could not be detected in HvAV-3h-infected larvae. The in vitro analyses of SeCHIT7N, SeCHIT11, and SeCBD showed that SeCHIT7N and SeCHIT11 were typical chitinases. Conversely, no chitinase activity was detected with SeCBD. SeCBD, however, could significantly increase the activity of SeCHIT7N and SeCHIT11. In conclusion, HvAV-3h not only interfered with the transcription and expression of SeCHITs but also affected the normal transcription and expression of SeCBD and, in doing so, influenced the host larval chitinase activity. These results will aid in providing a foundation for further studies on the pathogenesis of HvAV-3h.
Collapse
Affiliation(s)
- Lei He
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China.,College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Yi-Yi Ou-Yang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China.,College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Ni Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China.,College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Ying Chen
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China.,College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Shuang-Qing Liu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China.,College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Guo-Hua Huang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China.,College of Plant Protection, Hunan Agricultural University, Changsha, China
| |
Collapse
|