1
|
Hu D, Xu F, Gao Z, Chen K, Guo W, Wang Z, Li S, Feng C. Pleiotropic immunoregulation by growth-blocking peptide in Ostrinia furnacalis. INSECT MOLECULAR BIOLOGY 2024; 33:270-282. [PMID: 38329162 DOI: 10.1111/imb.12898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/20/2024] [Indexed: 02/09/2024]
Abstract
Insects rely on their innate immune system to eliminate pathogenic microbes. As a system component, cytokines transmit intercellular signals to control immune responses. Growth-blocking peptide (GBP) is a member of the stress-responsive peptide family of cytokines found in several orders of insects, including Drosophila. However, the physiological role of GBP in defence against pathogens is not thoroughly understood. In this study, we explored the functions of GBP in a lepidopteran pest, Ostrinia furnacalis. Injection of recombinant O. furnacalis GBP (OfGBP) precursor (proGBP) and chemically synthesised GBP significantly induced the transcription of antimicrobial peptides (AMPs) and other immunity-related genes including immune deficiency (IMD) and Dorsal. The level of OfGBP mRNA was upregulated after bacterial infection. Knockdown of OfGBP expression led to a decrease in IMD, Relish, MyD88 and Dorsal mRNA levels. OfGBP induced phenoloxidase activity and affected hemocyte behaviours in O. furnacalis larvae. In summary, GBP is a potent cytokine, effectively regulating AMP synthesis, melanization response and cellular immunity to eliminate invading pathogens.
Collapse
Affiliation(s)
- Dongchun Hu
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Fuqiang Xu
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Zupeng Gao
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Kangkang Chen
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Wenlong Guo
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Zitian Wang
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Shuzhong Li
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Congjing Feng
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou, China
| |
Collapse
|
2
|
Yuan XN, Luo C, Zhao QF, Zhong SY, Hang Q, Dai TM, Pan ZH, Sima YH, Qiu JF, Xu SQ. The clock gene Cryptochrome 1 is involved in the photoresponse of embryonic hatching behavior in Bombyx mori. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 114:e22046. [PMID: 37583246 DOI: 10.1002/arch.22046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/17/2023]
Abstract
The hatching of insect eggs is a classic circadian behavior rhythm controlled by the biological clock. Its function is considered to impose a daily rhythm on the embryo, allowing it to hatch within a permissible time window. However, the molecular pathways through which the clock affects embryonic hatching behavior remain unclear. Here, we utilized a clock gene Cryptochrome1 (Cry1) knockout mutant to dissect the pathways by which the circadian clock affects embryonic hatching rhythm in the silkworm. In the Cry1 mutant, the embryo hatching rhythm was disrupted. Under the constant light or constant dark incubation conditions, mutant embryos lost their hatching rhythm, while wild-type embryos hatch exhibiting free-running rhythm. In the light-dark cycle (LD), the hatching rhythm of CRY1-deficient silkworms could not be entrained by the LD photoperiod during the incubation period. The messenger RNA levels and enzymatic activities of Cht and Hel in the mutant embryos were significantly reduced at circadian time 24 (CT24). Transcriptome analysis revealed significant differences in gene expression at CT24 between the Cry1 knockout mutant and the wild-type, with 2616 differentially expressed genes identified. The enriched Gene Ontology pathway includes enzyme activity, energy availability, and protein translation. Short neuropeptide F signaling was reduced in the CT24 embryonic brain of the mutant, the expression of the neuropeptide PTTH was also reduced and the rhythm was lost, which further affects ecdysteroid signaling. Our results suggested that the silkworm circadian clock affects neuropeptide-hormone signaling as well as physiological functions related to hatching, which may regulate the hatching rhythm.
Collapse
Affiliation(s)
- Xiao-Nan Yuan
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China
| | - Cheng Luo
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China
| | - Qi-Fan Zhao
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China
| | - Si-Yin Zhong
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China
| | - Qi Hang
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China
| | - Tai-Ming Dai
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China
| | - Zhong-Hua Pan
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China
| | - Yang-Hu Sima
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China
| | - Jian-Feng Qiu
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China
| | - Shi-Qing Xu
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China
| |
Collapse
|
3
|
Qiu J, Dai T, Luo C, Cui W, Liu K, Li J, Sima Y, Xu S. Circadian clock regulates developmental time through ecdysone and juvenile hormones in Bombyx mori. INSECT MOLECULAR BIOLOGY 2023. [PMID: 36815346 DOI: 10.1111/imb.12835] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
The circadian clock plays an integral role in hormone biosynthesis and secretion. However, how the circadian clock precisely coordinates hormonal homeostasis to maintain normal animal development remains unclear. Here, we show that knocking out the core clock gene Cryptochrome 1 (Cry1) significantly delays the developmental time in Bombyx mori. This study focuses on the ecdysone and juvenile hormone signalling pathways of fifth instar larvae with the longest developmental time delay. We found that the mutant reduced prothoracicotropic hormone synthesis in the brain, and could not produce sufficient ecdysone in the prothoracic gland, resulting in a delayed peak of 20-hydroxyecdysone titre in the hemolymph of fifth instar larvae, prolonging developmental time. Moreover, further investigation revealed that the mutant enhanced juvenile hormone biosynthesis and signalling pathway and that this higher juvenile hormone titre also resulted in prolonged developmental time in fifth instar larvae. Our results provide insights into the molecular mechanisms by which the circadian clock regulates animal development by maintaining hormonal homeostasis.
Collapse
Affiliation(s)
- Jianfeng Qiu
- School of Biology and Basic Medical Sciences, Suzhou Medical College Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China
| | - Taiming Dai
- School of Biology and Basic Medical Sciences, Suzhou Medical College Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China
| | - Cheng Luo
- School of Biology and Basic Medical Sciences, Suzhou Medical College Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China
| | - Wenzhao Cui
- School of Biology and Basic Medical Sciences, Suzhou Medical College Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China
| | - Kai Liu
- School of Biology and Basic Medical Sciences, Suzhou Medical College Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China
| | - Jianglan Li
- School of Biology and Basic Medical Sciences, Suzhou Medical College Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China
| | - Yanghu Sima
- School of Biology and Basic Medical Sciences, Suzhou Medical College Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China
| | - Shiqing Xu
- School of Biology and Basic Medical Sciences, Suzhou Medical College Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China
| |
Collapse
|