1
|
Xin XY, Ruan CH, Liu YH, Jin HN, Park SK, Hur SJ, Li XZ, Choi SH. Identification of novel antioxidant and anti-inflammatory peptides from bovine hemoglobin by computer simulation of enzymolysis, molecular docking and molecular dynamics. Curr Res Food Sci 2024; 9:100931. [PMID: 39659946 PMCID: PMC11629252 DOI: 10.1016/j.crfs.2024.100931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/03/2024] [Accepted: 11/17/2024] [Indexed: 12/12/2024] Open
Abstract
Due to the structural diversity and complex mechanisms of action of bioactive peptides, screening for specific functional peptides is often challenging. To efficiently screen bioactive peptides with antioxidant and anti-inflammatory effects from bovine hemoglobin, we employed bioinformatics methods to perform virtual enzymatic hydrolysis using online tools and predicted the bioactivity, toxicity, and sensitization scores of the resulting peptides. Molecular docking and molecular dynamics simulations with Keap1 and TLR4 were subsequently conducted to screen for antioxidant and anti-inflammatory peptides. Finally, peptides ARRF and ARNF were synthesized using the Fmoc solid-phase method. The oxidative stress and inflammation model in RAW264.7 cells was induced using lipopolysaccharide (LPS), followed by treatment with peptides ARRF and ARNF to verify their antioxidant and anti-inflammatory activities. The results demonstrated that 529 bovine hemoglobin oligopeptides were produced following virtual enzymatic hydrolysis, of which nine were identified as eligible based on predictions of biological activity, toxicity, solubility, and sensitization. Molecular docking results indicated that the oligopeptides ARNF, QADF, and ARRF exhibited favorable interactions with Keap1, while ARNF, RRF, and ARRF showed strong interactions with TLR4. The primary active sites binding to the Keap1 receptor included Val465, Thr560, and Gly464. The main active sites binding to the TLR4 receptor were Asn309, Asn305, and Glu286. Hydrogen bonding, electrostatic interactions, and hydrophobic interactions were identified as the primary modes of interaction between the oligopeptides and the Keap1 and TLR4 receptors. Molecular dynamics simulations further confirmed that the selected bovine hemoglobin peptides could stably bind to Keap1 and TLR4 receptors. Cell experiments demonstrated that ARRF and ARNF effectively ameliorated LPS-induced oxidative stress and inflammation in RAW264.7 cells. Conclusion Compared to traditional methods, this study promptly screens bovine hemoglobin antioxidant and anti-inflammatory peptides, offering a novel approach for rapidly identifying food-derived bioactive peptides.
Collapse
Affiliation(s)
- Xuan-Ying Xin
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Department of Animal Science, Yanbian University, Yanji, 133002, China
| | - Chao-Hui Ruan
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Department of Animal Science, Yanbian University, Yanji, 133002, China
| | - Yi-Hui Liu
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Department of Animal Science, Yanbian University, Yanji, 133002, China
| | - Huai-Na Jin
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Department of Animal Science, Yanbian University, Yanji, 133002, China
| | - Sung-Kwon Park
- Department of Food Science and Biotechnology, Sejong University, Seoul, 05006, Republic of Korea
| | - Sun-Jin Hur
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Xiang-Zi Li
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Department of Animal Science, Yanbian University, Yanji, 133002, China
| | - Seong-Ho Choi
- Department of Animal Science, Chungbuk National University, Cheongju, 28644, Republic of Korea
| |
Collapse
|
2
|
Liu B, Qian D. Hsp90α and cell death in cancers: a review. Discov Oncol 2024; 15:151. [PMID: 38727789 PMCID: PMC11087423 DOI: 10.1007/s12672-024-01021-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/08/2024] [Indexed: 05/13/2024] Open
Abstract
Heat shock protein 90α (Hsp90α), an important molecular chaperone, plays a crucial role in regulating the activity of various intracellular signaling pathways and maintaining the stability of various signaling transduction proteins. In cancer, the expression level of Hsp90α is often significantly upregulated and is recognized as one of the key factors in cancer cell survival and proliferation. Cell death can help achieve numerous purposes, such as preventing aging, removing damaged or infected cells, facilitating embryonic development and tissue repair, and modulating immune response. The expression of Hsp90α is closely associated with specific modes of cell death including apoptosis, necrotic apoptosis, and autophagy-dependent cell death, etc. This review discusses the new results on the relationship between expression of Hsp90α and cell death in cancer. Hsp90α is frequently overexpressed in cancer and promotes cancer cell growth, survival, and resistance to treatment by regulating cell death, rendering it a promising target for cancer therapy.
Collapse
Affiliation(s)
- Bin Liu
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, 240001, Anhui, China
| | - Daohai Qian
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, 240001, Anhui, China.
| |
Collapse
|
3
|
Pourali G, Kazemi D, Pourali R, Rahmani N, Razzaghi E, Maftooh M, Fiuji H, Ghorbani E, Khazaei M, Ferns GA, Hassanian SM, Avan A. Bioactive Peptides: Potential Impact on the Treatment of Gastrointestinal Cancers. Curr Pharm Des 2023; 29:2450-2460. [PMID: 37877510 DOI: 10.2174/0113816128261378231019201709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/05/2023] [Accepted: 09/14/2023] [Indexed: 10/26/2023]
Abstract
We have reviewed the potential use of bioactive peptides in the treatment of gastrointestinal (GI) malignancies, which are a significant cause of morbidity and mortality globally. Conventional therapies, such as surgery, chemotherapy, and radiotherapy, are associated with numerous side effects that may lead to longterm complications. Bioactive peptides are short-chain amino acids that can be extracted from natural sources or synthesized, and they have various potential health benefits, including anti-inflammatory, anti-hypertensive, antioxidant, antimicrobial, and anti-cancer properties. Bioactive peptides can be acquired from animal or plant sources, and can be classified based on their function, such as ACE-inhibiting, antimicrobial, and electrolyte- regulating peptides. Recent studies have demonstrated the promising role of bioactive peptides in tumor suppression, especially when combined with conventional therapies. In this study, we have reviewed the beneficial properties of bioactive peptides and their role in suppressing tumor activity. The mechanisms of bioactive peptides in tumor suppression are discussed. We have further reviewed the findings of preclinical and clinical studies that have investigated the application of bioactive peptides in the treatment of GI cancers. This review highlights the potential use of bioactive peptides as a promising treatment method for GI malignancies to increase the quality of life of GI cancer patients.
Collapse
Affiliation(s)
- Ghazaleh Pourali
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Danial Kazemi
- School of Medicine, Isfahan University of Medical Sciences, Hezar Jerib Street, Isfahan, Iran
| | - Roozbeh Pourali
- Student Research Committee, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Nafise Rahmani
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Erfan Razzaghi
- School of Medicine, Isfahan University of Medical Sciences, Hezar Jerib Street, Isfahan, Iran
| | - Mina Maftooh
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Fiuji
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elnaz Ghorbani
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Modulation of Functional Characteristics of Mesenchymal Stromal Cells by Acellular Preparation of Porcine Hemoglobin. Processes (Basel) 2021. [DOI: 10.3390/pr10010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Exploring the potential usage of the acellular preparation of porcine hemoglobin (PHb) isolated from slaughterhouse blood as a cell culture media component, we have tested its effects on the functional characteristics of stromal cells of mesodermal origin. Human peripheral blood mesenchymal stromal cells (PB-MSCs) were used in this study as a primary cell model system, along with three mouse cell lines (ATDC5, MC3T3-E1, and 3T3-L1), which represent more uniform model systems. We investigated the effect of PHb at concentrations of 0.1, 1, and 10 μM on these cells’ proliferation, cycle, and clonogenic and migratory potential, and found that PHb’s effect depended on both the cell type and its concentration. At the lowest concentration used (0.1 μM), PHb showed the least evident impact on the cell growth and migration; hence, we analyzed its effect on mesenchymal cell multilineage differentiation capacity at this concentration. Even under conditions that induce a specific type of MSC differentiation (cultivation in particular differentiation media), PHb modulated chondrogenic, osteogenic, and adipogenic differentiation, making it a potential candidate for a supplement of MSC culture. Through a model of porcine hemoglobin, these findings also contribute to improving the knowledge of extracellular hemoglobin’s influence on MSCs >in vivo.
Collapse
|
5
|
Stančić AZ, Drvenica IT, Obradović HN, Bugarski BM, Ilić VL, Bugarski DS. Native bovine hemoglobin reduces differentiation capacity of mesenchymal stromal cells in vitro. Int J Biol Macromol 2020; 144:909-920. [PMID: 31669467 DOI: 10.1016/j.ijbiomac.2019.09.167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/17/2019] [Accepted: 09/17/2019] [Indexed: 10/25/2022]
Abstract
We have tested in vitro effects of hemoglobin from bovine slaughterhouse blood (BHb) on stromal cells of mesodermal origin, with an aim to explore its use as a component of cell culture media. Human peripheral blood mesenchymal stromal cells (PB-MSCs) and three mouse cell lines (ATDC5, MC3T3-E1 and 3T3-L1) were employed to study BHb effects on their growth and migration. The cells multilineage differentiation capacity in the presence of BHb was evaluated after induced differentiation, by histochemical staining and by RT-PCR analysis of the expression of genes specific for chondrogenic, adipogenic and osteogenic lineages. The effects of BHb on the cell proliferation and motility were dependent on both, cell type and BHb concentration (0.1 μM, 1 μM and 10 μM). In the lowest concentration (0.1 µM) BHb showed the least prominent effect on the cell proliferation and migration. In this concentration BHb reduced the differentiation capacity of all tested cells and its effect was dependent of composition of induction medium and the culture period. Obtained data suggest that BHb has the potential to be used as a component of cell culture media through maintaining proliferation and reducing differentiation capacity of mesenchymal stromal cells.
Collapse
Affiliation(s)
- Ana Z Stančić
- Laboratory for Immunology, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Ivana T Drvenica
- Laboratory for Immunology, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Hristina N Obradović
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Branko M Bugarski
- Department of Chemical Engineering, Faculty of Technology and Metallurgy, University of Belgrade, Serbia
| | - Vesna Lj Ilić
- Laboratory for Immunology, Institute for Medical Research, University of Belgrade, Belgrade, Serbia.
| | - Diana S Bugarski
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| |
Collapse
|