1
|
Zwe YH, Mohan RD, Lim SJ, Lai WC, Sim KH, Leyau YL, Lew K, Chua JMC, Aung KT, Chng KR, Wu YS, Chan JSH, Tan LK. Occurrence & characterization of Staphylococcus aureus from ready-to-eat (RTE), and cooked food in Singapore: A retrospective analysis. Int J Food Microbiol 2025; 436:111213. [PMID: 40267621 DOI: 10.1016/j.ijfoodmicro.2025.111213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 04/12/2025] [Accepted: 04/14/2025] [Indexed: 04/25/2025]
Abstract
Staphylococcus aureus is one of the major foodborne pathogens that poses significant public health risk, particularly in ready-to-eat (RTE) food prepared under inadequate hygiene conditions. Staphylococcal food poisoning (SFP) is increasingly prevalent worldwide, yet it is not reportable in Singapore, leaving a knowledge gap regarding the clinical incidence and virulence of local strains. This study examined the genetic diversity, antimicrobial resistance (AMR), and virulence determinants of S. aureus in RTE, and cooked food using both conventional testing and whole-genome sequencing (WGS) tools. We retrospectively analyzed 12178 RTE, and cooked food samples collected in Singapore from 2020 to 2023, detecting S. aureus in 0.19 % (23/12178) of samples. Genotype t4171_ST1155 was most common (4/23), followed by t91_ST2990 (3/23). Immunoassays detected the production of classical staphylococcal enterotoxin (SE) A, B, and C types in 43.5 % (10/23) of the isolates. Additionally, genomic analysis identified three more isolates that contained only non-classical SE genes, which were not detectable through immunoassays. AMR occurrence was highest for tetracycline (21.7 %, 5/23), followed by erythromycin (8.7 %, 2/23), clindamycin, gentamicin, and sulfamethoxazole-trimethoprim (4.3 %, 1/23 each). A minority (30.4 %, 7/23) of isolates possessed the complete icaADBC operon, which is associated with the well-studied matrix component involved in biofilm formation. Our findings indicate a low occurrence of S. aureus in RTE, and cooked foods in Singapore, with a minority carrying AMR and biofilm formation features, though about half are enterotoxigenic. This investigation plays a crucial role in comprehending the food safety landscape in Singapore, enabling the development of effective risk mitigation strategies aimed at improving community food safety.
Collapse
Affiliation(s)
- Ye Htut Zwe
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, 609919, Singapore
| | - Roshini Devi Mohan
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, 609919, Singapore
| | - Si Jia Lim
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, 609919, Singapore
| | - Wai Ching Lai
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, 609919, Singapore
| | - Kae Hwan Sim
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, 609919, Singapore
| | - Yu Lee Leyau
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, 609919, Singapore
| | - Ker Lew
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, 609919, Singapore
| | - Joachim Mun Choy Chua
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, 609919, Singapore
| | - Kyaw Thu Aung
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, 609919, Singapore; Department of Food Science and Technology, 2 Science Drive 2, Faculty of Science, National University of Singapore, 117543, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Kern Rei Chng
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, 609919, Singapore
| | - Yuan Sheng Wu
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, 609919, Singapore
| | - Joanne Sheot Harn Chan
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, 609919, Singapore; Department of Food Science and Technology, 2 Science Drive 2, Faculty of Science, National University of Singapore, 117543, Singapore
| | - Li Kiang Tan
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, 609919, Singapore.
| |
Collapse
|
2
|
Chan YL, Chee CF, Tang SN, Tay ST. Unveilling genetic profiles and correlations of biofilm-associated genes, quorum sensing, and antibiotic resistance in Staphylococcus aureus isolated from a Malaysian Teaching Hospital. Eur J Med Res 2024; 29:246. [PMID: 38649897 PMCID: PMC11036768 DOI: 10.1186/s40001-024-01831-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 04/05/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Staphylococcus aureus is a notorious multidrug resistant pathogen prevalent in healthcare facilities worldwide. Unveiling the mechanisms underlying biofilm formation, quorum sensing and antibiotic resistance can help in developing more effective therapy for S. aureus infection. There is a scarcity of literature addressing the genetic profiles and correlations of biofilm-associated genes, quorum sensing, and antibiotic resistance among S. aureus isolates from Malaysia. METHODS Biofilm and slime production of 68 methicillin-susceptible S. aureus (MSSA) and 54 methicillin-resistant (MRSA) isolates were determined using a a plate-based crystal violet assay and Congo Red agar method, respectively. The minimum inhibitory concentration values against 14 antibiotics were determined using VITEK® AST-GP67 cards and interpreted according to CLSI-M100 guidelines. Genetic profiling of 11 S. aureus biofilm-associated genes and agr/sar quorum sensing genes was performed using single or multiplex polymerase chain reaction (PCR) assays. RESULTS In this study, 75.9% (n = 41) of MRSA and 83.8% (n = 57) of MSSA isolates showed strong biofilm-forming capabilities. Intermediate slime production was detected in approximately 70% of the isolates. Compared to MSSA, significantly higher resistance of clindamycin, erythromycin, and fluoroquinolones was noted among the MRSA isolates. The presence of intracellular adhesion A (icaA) gene was detected in all S. aureus isolates. All MSSA isolates harbored the laminin-binding protein (eno) gene, while all MRSA isolates harbored intracellular adhesion D (icaD), clumping factors A and B (clfA and clfB) genes. The presence of agrI and elastin-binding protein (ebpS) genes was significantly associated with biofilm production in MSSA and MRSA isolates, respectively. In addition, agrI gene was also significantly correlated with oxacillin, cefoxitin, and fluoroquinolone resistance. CONCLUSIONS The high prevalence of biofilm and slime production among MSSA and MRSA isolates correlates well with the detection of a high prevalence of biofilm-associated genes and agr quorum sensing system. A significant association of agrI gene was found with cefoxitin, oxacillin, and fluoroquinolone resistance. A more focused approach targeting biofilm-associated and quorum sensing genes is important in developing new surveillance and treatment strategies against S. aureus biofilm infection.
Collapse
Affiliation(s)
- Yun Li Chan
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Chin Fei Chee
- Nanotechnology and Catalysis Research Centre, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Soo Nee Tang
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Sun Tee Tay
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
3
|
Wang W, Zhong Q, Cheng K, Tan L, Huang X. Molecular Characteristics, Antimicrobial Susceptibility, Biofilm-Forming Ability of Clinically Invasive Staphylococcus aureus Isolates. Infect Drug Resist 2023; 16:7671-7681. [PMID: 38144224 PMCID: PMC10743705 DOI: 10.2147/idr.s441989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/07/2023] [Indexed: 12/26/2023] Open
Abstract
Purpose This study aimed to investigate the molecular characteristics, antimicrobial resistance, and biofilm-forming ability of Staphylococcus aureus isolates from invasive infections. Methods A total of 92 non-repetitive S. aureus isolates from invasive infections were analyzed by Multi-locus Sequence Typing (MLST), spa typing, and chromosomal cassette mec (SCCmec) typing. Antibiotic susceptibility testing was performed using the disk diffusion and agar dilution methods. Biofilm-forming ability was assessed using crystal violet assay. The presence and expression of biofilm-associated genes were examined using PCR and RT-qPCR. Results Among the 55 Methicillin-resistant S. aureus (MRSA) and 41 Methicillin-sensitive S. aureus (MSSA) isolates, ST59 (43.6%) predominated in MRSA, while ST7 (39.0%) was most common in MSSA. As expected, MRSA exhibited higher antibiotic resistance rates compared to MSSA isolates. Biofilm formation assays revealed that the majority of isolates (88.5%) produced biofilms, with 26.0% classified as strong producers (OD570 ≥ 1.0) and 62.5% as weak producers (0.2 ≤ OD570<1.0). MSSA exhibited a higher biofilm-forming ability than MRSA (P < 0.01), with variations across clones. Notably, ST7 isolates displayed greater biofilm-forming ability than other sequence types (ST59, ST5, and ST239). RT-qPCR results revealed that ST7 isolates exhibited higher expression levels of icaA compared to other sequence types. Conclusion This study revealed significant molecular heterogeneity among invasive S. aureus isolates, with ST59 and ST7 as dominant clones. The strong biofilm-forming capacity of ST7 merits concern given its rising prevalence regionally. Continuous surveillance of emerging successful lineages is critical to help guide infection control strategies against invasive S. aureus infections.
Collapse
Affiliation(s)
- Weiguo Wang
- Department of Clinical Laboratory, The First Hospital of Nanchang, Nanchang, Jiangxi, People’s Republic of China
| | - Qiuxaing Zhong
- Department of Clinical Laboratory, The First Hospital of Nanchang, Nanchang, Jiangxi, People’s Republic of China
| | - Ke Cheng
- Department of Clinical Laboratory, The First Hospital of Nanchang, Nanchang, Jiangxi, People’s Republic of China
| | - Lili Tan
- Department of Clinical Laboratory, The First Hospital of Nanchang, Nanchang, Jiangxi, People’s Republic of China
| | - Xincheng Huang
- Department of Clinical Laboratory, The First Hospital of Nanchang, Nanchang, Jiangxi, People’s Republic of China
| |
Collapse
|
4
|
Ng HK, Puah SM, Teh CSJ, Idris N, Chua KH. Characterisation of pellicle-forming ability in clinical carbapenem-resistant Acinetobacter baumannii. PeerJ 2023; 11:e15304. [PMID: 37214089 PMCID: PMC10194081 DOI: 10.7717/peerj.15304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 04/06/2023] [Indexed: 05/24/2023] Open
Abstract
Background Acinetobacter baumannii was reported to have resistance towards carbapenems and the ability to form an air-liquid biofilm (pellicle) which contributes to their virulence. The GacSA two-component system has been previously shown to play a role in pellicle formation. Therefore, this study aims to detect the presence of gacA and gacS genes in carbapenem-resistant Acinetobacter baumannii (CRAB) isolates recovered from patients in intensive care units and to investigate their pellicle forming ability. Methods The gacS and gacA genes were screened in 96 clinical CRAB isolates using PCR assay. Pellicle formation assay was performed in Mueller Hinton medium and Luria Bertani medium using borosilicate glass tubes and polypropylene plastic tubes. The biomass of the pellicle was quantitated using the crystal violet staining assay. The selected isolates were further assessed for their motility using semi-solid agar and monitored in real-time using real-time cell analyser (RTCA). Results All 96 clinical CRAB isolates carried the gacS and gacA genes, however, only four isolates (AB21, AB34, AB69 and AB97) displayed the ability of pellicle-formation phenotypically. These four pellicle-forming isolates produced robust pellicles in Mueller Hinton medium with better performance in borosilicate glass tubes in which biomass with OD570 ranging from 1.984 ± 0.383 to 2.272 ± 0.376 was recorded. The decrease in cell index starting from 13 hours obtained from the impedance-based RTCA showed that pellicle-forming isolates had entered the growth stage of pellicle development. Conclusion These four pellicle-forming clinical CRAB isolates could be potentially more virulent, therefore further investigation is warranted to provide insights into their pathogenic mechanisms.
Collapse
Affiliation(s)
- Heng Kang Ng
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Suat Moi Puah
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Cindy Shuan Ju Teh
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Nuryana Idris
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Kek Heng Chua
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Singh I, Roshan M, Vats A, Behera M, Gautam D, Rajput S, Rana C, De S. Evaluation of Virulence, Antimicrobial Resistance and Biofilm Forming Potential of Methicillin-Resistant Staphylococcus aureus (MRSA) Isolates from Bovine Suspected with Mastitis. Curr Microbiol 2023; 80:198. [PMID: 37120455 DOI: 10.1007/s00284-023-03303-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 04/15/2023] [Indexed: 05/01/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a pathogen that poses a significant threat in cases of chronic mastitis in dairy animals. The ability of MRSA to persist in the host is attributed to various virulence factors, genes encoding surface adhesins, and determinants of antibiotic resistance, which provide it a survival advantage. This investigation focused to determine the virulence factors, antimicrobial resistance (AMR) profile and biofilm production potential of 46 MRSA isolates from 300 bovine mastitis milk samples. The AMR profile revealed a high level of resistance, with 46 and 42 isolates resistant to cefoxitin and oxacillin, respectively, followed by 24 and 12 isolates resistant to lomefloxacin and erythromycin, respectively. Only 2 isolates resistant to tetracycline and none were resistant to chloramphenicol. The study also evaluated various virulence factors such as coa (n = 46), nuc (n = 35) hlg (n = 36), pvl (n = 14), tsst-1(n = 28) spa (n = 39) and enterotoxin genes sea (n = 12) and seg (n = 28) and identified antibiotic resistance determinants mecA and blaZ in 46 and 27 isolates, respectively. Intercellular adhesion genes icaA and icaD were present in 40 and 43 isolates, respectively and surface adhesion genes ebps, fnbpA, eno, sasG, cna, and bap were found in 43, 40, 38, 26, 21 and 1 isolates, respectively. Microtiter plate (MTP) assay revealed that 29 MRSA isolates were capable of producing biofilms, whereas 17 were not. Biofilms producing MRSA isolates possessed adhesion genes, virulence factors, toxin genes and AMR genes that may act synergistically towards a chronic disease progression, illness and severe damage to the udder, which generally last for several months and very challenging to cure.
Collapse
Affiliation(s)
- Ila Singh
- Animal Biotechnology Centre, Animal Genomics Lab, ICAR-National Dairy Research Institute (NDRI), Karnal, Haryana, 132001, India
| | - Mayank Roshan
- Animal Biotechnology Centre, Animal Genomics Lab, ICAR-National Dairy Research Institute (NDRI), Karnal, Haryana, 132001, India
| | - Ashutosh Vats
- Animal Biotechnology Centre, Animal Genomics Lab, ICAR-National Dairy Research Institute (NDRI), Karnal, Haryana, 132001, India
| | - Manisha Behera
- Animal Biotechnology Centre, Animal Genomics Lab, ICAR-National Dairy Research Institute (NDRI), Karnal, Haryana, 132001, India
| | - Devika Gautam
- Animal Biotechnology Centre, Animal Genomics Lab, ICAR-National Dairy Research Institute (NDRI), Karnal, Haryana, 132001, India
| | - Shiveeli Rajput
- Animal Biotechnology Centre, Animal Genomics Lab, ICAR-National Dairy Research Institute (NDRI), Karnal, Haryana, 132001, India
| | - Chanchal Rana
- Animal Biotechnology Centre, Animal Genomics Lab, ICAR-National Dairy Research Institute (NDRI), Karnal, Haryana, 132001, India
| | - Sachinandan De
- Animal Biotechnology Centre, Animal Genomics Lab, ICAR-National Dairy Research Institute (NDRI), Karnal, Haryana, 132001, India.
| |
Collapse
|
6
|
Multidrug-Resistant Methicillin-Resistant Staphylococcus aureus Associated with Hospitalized Newborn Infants. Diagnostics (Basel) 2023; 13:diagnostics13061050. [PMID: 36980357 PMCID: PMC10047632 DOI: 10.3390/diagnostics13061050] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/08/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Multidrug resistance (MDR) is a significant challenge in healthcare management, and addressing it requires a comprehensive approach. In this study, we employed a combination of phenotypic and genotypic approaches, along with whole genome sequencing (WGS) to investigate five hospital-associated MDR methicillin-resistant Staphylococcus aureus (MRSA) strains that were isolated from newborn infants. Our analysis revealed the following for the MDR-MRSA strains: SauR31 was resistant to three antimicrobial classes; SauR12, SauR91 and SauR110 were resistant to four antimicrobial classes; and SauR23 exhibited resistance to seven classes. All the MDR-MRSA strains were capable of producing slime and biofilms, harbored SCCmec type IV, and belonged to different spa types (t022, t032, and t548), with varying profiles for microbial surface components recognizing adhesive matrix molecules (MSCRAMMs) and virulence genes. The WGS data for the MDR SauR23 and SauR91 strains revealed that most of the antimicrobial resistance genes were present in the chromosomes, including blaZ, mecA, norA, lmrS, and sdrM, with only the ermC gene found in a small (<3 kb) plasmid. The presence of MDR-MRSA strains among neonates raises public concern, hence implementation of multifaceted interventions is recommended to address this issue. In addition, metadata is needed to improve the investigation of antimicrobial resistance genes in MDR isolates.
Collapse
|
7
|
Flagellar motility mediates biofilm formation in Aeromonas dhakensis. Microb Pathog 2023; 177:106059. [PMID: 36878334 DOI: 10.1016/j.micpath.2023.106059] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 11/27/2022] [Accepted: 03/03/2023] [Indexed: 03/07/2023]
Abstract
Aeromonas dhakensis possesses dual flagellar systems for motility under different environments. Flagella-mediated motility is necessary for biofilm formation through an initial attachment of bacteria to the surface, but this has not been elucidated in A. dhakensis. This study investigates the role of polar (flaH, maf1) and lateral (lafB, lafK and lafS) flagellar genes in the biofilm formation of a clinical A. dhakensis strain WT187 isolated from burn wound infection. Five deletion mutants and corresponding complemented strains were constructed using pDM4 and pBAD33 vectors, respectively, and analyzed for motility and biofilm formation using crystal violet staining and real-time impedance-based assays. All mutants were significantly reduced in swimming (p < 0.0001), swarming (p < 0.0001) and biofilm formation using crystal violet assay (p < 0.05). Real-time impedance-based analysis revealed WT187 biofilm was formed between 6 to 21 h, consisting of early (6-10 h), middle (11-18 h), and late (19-21 h) stages. The highest cell index of 0.0746 was recorded at 22-23 h and biofilms began to disperse starting from 24 h. Mutants Δmaf1, ΔlafB, ΔlafK and ΔlafS exhibited reduced cell index values at 6-48 h when compared to WT187 which indicates less biofilm formation. Two complemented strains cmaf1 and clafB exhibited full restoration to wild-type level in swimming, swarming, and biofilm formation using crystal violet assay, hence suggesting that both maf1 and lafB genes are involved in biofilm formation through flagella-mediated motility and surface attachment. Our study shows the role of flagella in A. dhakensis biofilm formation warrants further investigations.
Collapse
|
8
|
Chajęcka-Wierzchowska W, Gajewska J, Zakrzewski AJ, Caggia C, Zadernowska A. Molecular Analysis of Pathogenicity, Adhesive Matrix Molecules (MSCRAMMs) and Biofilm Genes of Coagulase-Negative Staphylococci Isolated from Ready-to-Eat Food. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1375. [PMID: 36674132 PMCID: PMC9859056 DOI: 10.3390/ijerph20021375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
This paper provides a snapshot on the pathogenic traits within CoNS isolated from ready-to-eat (RTE) food. Eighty-five strains were subjected to biofilm and slime production, as well as biofilm-associated genes (icaA, icaD, icaB, icaC, eno, bap, bhp, aap, fbe, embP and atlE), the insertion sequence elements IS256 and IS257 and hemolytic genes. The results showed that the most prevalent determinants responsible for the primary adherence were eno (57.6%) and aap (56.5%) genes. The icaADBC operon was detected in 45.9% of the tested strains and was correlated to slime production. Moreover, most strains carrying the icaADBC operon simultaneously carried the IS257 insertion sequence element. Among the genes encoding for surface proteins involved in the adhesion to abiotic surfaces process, atlE was the most commonly (31.8%) followed by bap (4.7%) and bhp (1.2%). The MSCRAMMs, including fbe and embp were detected in the 11.8% and 28.2% of strains, respectively. A high occurrence of genes involved in the hemolytic toxin production were detected, such as hla_yiD (50.6%), hlb (48.2%), hld (41.2%) and hla_haem (34.1%). The results of the present study revealed an unexpected occurrence of the genes involved in biofilm production and the high hemolytic activity among the CoNS strains, isolated from RTE food, highlighting that this group seems to be acquiring pathogenic traits similar to those of S. aureus, suggesting the need to be included in the routine microbiological analyses of food.
Collapse
Affiliation(s)
- Wioleta Chajęcka-Wierzchowska
- Department of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, 10-693 Olsztyn, Poland
| | - Joanna Gajewska
- Department of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, 10-693 Olsztyn, Poland
| | - Arkadiusz Józef Zakrzewski
- Department of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, 10-693 Olsztyn, Poland
| | - Cinzia Caggia
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Via Santa Sofia 100, 95123 Catania, Italy
| | - Anna Zadernowska
- Department of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, 10-693 Olsztyn, Poland
| |
Collapse
|
9
|
Use of nano titanium hydroxide and nano zirconium hydroxide fixed filter paper for rapid detection of Staphylococcus aureus in dairy products by PCR without pre-enrichment. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
10
|
Usun Jones S, Kee BP, Chew CH, Yeo CC, Abdullah FH, Othman N, Chua KH, Puah SM. Phenotypic and molecular detection of biofilm formation in clinical methicillin-resistant Staphylococcus aureus isolates from Malaysia. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2022; 16:1142-1150. [DOI: 10.1080/16583655.2022.2147387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 11/04/2022] [Accepted: 11/09/2022] [Indexed: 11/23/2022]
Affiliation(s)
- Sherry Usun Jones
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Boon Pin Kee
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ching Hoong Chew
- Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Terengganu, Malaysia
| | - Chew Chieng Yeo
- Centre for Research in Infectious Diseases and Biotechnology (CeRIDB), Faculty of Medicine, Universiti Sultan Zainal Abidin, Terengganu, Malaysia
| | | | - Norlela Othman
- Department of Pathology, Hospital Sultanah Nur Zahirah, Terengganu, Malaysia
| | - Kek Heng Chua
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Suat Moi Puah
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
11
|
Sharan M, Vijay D, Dhaka P, Bedi JS, Gill JPS. Biofilms as a microbial hazard in the food industry: A scoping review. J Appl Microbiol 2022; 133:2210-2234. [PMID: 35945912 DOI: 10.1111/jam.15766] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/06/2022] [Indexed: 11/29/2022]
Abstract
Biofilms pose a serious public health hazard with a significant economic impact on the food industry. The present scoping review is designed to analyse the literature published during 2001-2020 on biofilm formation of microbes, their detection methods, and association with antimicrobial resistance (if any). The peer-reviewed articles retrieved from 04 electronic databases were assessed using PRISMA-ScR guidelines. From the 978 preliminary search results, a total of 88 publications were included in the study. On analysis, the commonly isolated pathogens were Listeria monocytogenes, Staphylococcus aureus, Salmonella spp., Escherichia coli, Bacillus spp., Vibrio spp., Campylobacter jejuni and Clostridium perfringens. The biofilm-forming ability of microbes was found to be influenced by various factors such as attachment surfaces, temperature, presence of other species, nutrient availability etc. A total of 18 studies characterized the biofilm-forming genes, particularly for S. aureus, Salmonella spp., and E. coli. In most studies, polystyrene plate and/or stainless-steel coupons were used for biofilm formation, and the detection was carried out by crystal violet assays and/or by plate counting method. The strain-specific significant differences in biofilm formation were observed in many studies, and few studies carried out analysis of multi-species biofilms. The association between biofilm formation and antimicrobial resistance was not clearly defined. Further, viable but non-culturable form of the foodborne pathogens is posing an unseen (by conventional cultivation techniques) but potent threat to the food safety. The present review recommends the need for carrying out systematic surveys and risk analysis of biofilms in food chain to highlight the evidence-based public health concerns, especially in regions where microbiological food hazards are quite prevalent.
Collapse
Affiliation(s)
- Manjeet Sharan
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Deepthi Vijay
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Mannuthy, India
| | - Pankaj Dhaka
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Jasbir Singh Bedi
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Jatinder Paul Singh Gill
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| |
Collapse
|
12
|
Pereira GDN, Rosa RDS, Dias AA, Gonçalves DJS, Seribelli AA, Pinheiro-Hubinger L, Eller LKW, de Carvalho TB, Pereira VC. Characterization of the virulence, agr typing and antimicrobial resistance profile of Staphylococcus aureus strains isolated from food handlers in Brazil. Braz J Infect Dis 2022; 26:102698. [PMID: 36037845 PMCID: PMC9483590 DOI: 10.1016/j.bjid.2022.102698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/12/2022] [Accepted: 08/05/2022] [Indexed: 10/27/2022] Open
|
13
|
Puah SM, Khor WC, Aung KT, Lau TTV, Puthucheary SD, Chua KH. Aeromonas dhakensis: Clinical Isolates with High Carbapenem Resistance. Pathogens 2022; 11:833. [PMID: 35894056 PMCID: PMC9394330 DOI: 10.3390/pathogens11080833] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 02/01/2023] Open
Abstract
Aeromonas dhakensis is ubiquitous in aquatic habitats and can cause life-threatening septicaemia in humans. However, limited data are available on their antimicrobial susceptibility testing (AST) profiles. Hence, we aimed to examine their AST patterns using clinical (n = 94) and non-clinical (n = 23) isolates with dehydrated MicroScan microdilution. Carbapenem resistant isolates were further screened for genes related to carbapenem resistance using molecular assay. The isolates exhibited resistance to imipenem (76.9%), doripenem (62.4%), meropenem (41.9%), trimethoprim/sulfamethoxazole (11.1%), cefotaxime (8.5%), ceftazidime (6%), cefepime (1.7%) and aztreonam (0.9%), whereas all isolates were susceptible to amikacin. Clinical isolates showed significant association with resistance to doripenem, imipenem and meropenem compared to non-clinical isolates. These blacphA were detected in clinical isolates with resistance phenotypes: doripenem (67.2%, 45/67), imipenem (65.9%, 54/82) and meropenem (65.2%, 30/46). Our findings showed that the MicroScan microdilution method is suitable for the detection of carbapenem resistance in both clinical (48.9-87.2%) and non-clinical (4.3-13.0%) isolates. This study revealed that A. dhakensis isolates had relatively high carbapenem resistance, which may lead to potential treatment failure. Continued monitoring of aquatic sources with a larger sample size should be carried out to provide further insights.
Collapse
Affiliation(s)
- Suat Moi Puah
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (S.M.P.); (T.T.V.L.); (S.D.P.)
| | - Wei Ching Khor
- National Centre for Food Science, Singapore Food Agency, 52 Jurong Gateway Road, JEM Office Tower, 14-01, Singapore 608550, Singapore; (W.C.K.); (K.T.A.)
| | - Kyaw Thu Aung
- National Centre for Food Science, Singapore Food Agency, 52 Jurong Gateway Road, JEM Office Tower, 14-01, Singapore 608550, Singapore; (W.C.K.); (K.T.A.)
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Tien Tien Vicky Lau
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (S.M.P.); (T.T.V.L.); (S.D.P.)
| | - S. D. Puthucheary
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (S.M.P.); (T.T.V.L.); (S.D.P.)
| | - Kek Heng Chua
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (S.M.P.); (T.T.V.L.); (S.D.P.)
| |
Collapse
|
14
|
Tao Q, Wu Q, Zhang Z, Liu J, Tian C, Huang Z, Malakar PK, Pan Y, Zhao Y. Meta-Analysis for the Global Prevalence of Foodborne Pathogens Exhibiting Antibiotic Resistance and Biofilm Formation. Front Microbiol 2022; 13:906490. [PMID: 35774452 PMCID: PMC9239547 DOI: 10.3389/fmicb.2022.906490] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/27/2022] [Indexed: 11/30/2022] Open
Abstract
Antimicrobial-resistant (AMR) foodborne bacteria causing bacterial infections pose a serious threat to human health. In addition, the ability of some of these bacteria to form biofilms increases the threat level as treatment options may become compromised. The extent of antibiotic resistance and biofilm formation among foodborne pathogens remain uncertain globally due to the lack of systematic reviews. We performed a meta-analysis on the global prevalence of foodborne pathogens exhibiting antibiotic resistance and biofilm formation using the methodology of a Cochrane review by accessing data from the China National Knowledge Infrastructure (CNKI), PubMed, and Web of Science databases between 2010 and 2020. A random effects model of dichotomous variables consisting of antibiotic class, sample source, and foodborne pathogens was completed using data from 332 studies in 36 countries. The results indicated AMR foodborne pathogens has become a worrisome global issue. The prevalence of AMR foodborne pathogens in food samples was greater than 10% and these foodborne pathogens were most resistant to β-lactamase antibiotics with Bacillus cereus being most resistant (94%). The prevalence of AMR foodborne pathogens in human clinical specimens was greater than 19%, and the resistance of these pathogens to the antibiotic class used in this research was high. Independently, the overall biofilm formation rate of foodborne pathogenic bacteria was 90% (95% CI, 68%–96%) and a direct linear relationship between biofilm formation ability and antibiotic resistance was not established. Future investigations should document both AMR and biofilm formation of the foodborne pathogen isolated in samples. The additional information could lead to alternative strategies to reduce the burden cause by AMR foodborne pathogens.
Collapse
Affiliation(s)
- Qian Tao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Qian Wu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Zhaohuan Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- *Correspondence: Zhaohuan Zhang, ;
| | - Jing Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Cuifang Tian
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Zhenhua Huang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Pradeep K. Malakar
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yingjie Pan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, China
- Yong Zhao,
| |
Collapse
|
15
|
Synergistic antibacterial effects of low-intensity ultrasound and peptide LCMHC against Staphylococcus aureus. Int J Food Microbiol 2022; 373:109713. [DOI: 10.1016/j.ijfoodmicro.2022.109713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 11/20/2022]
|
16
|
Ali MM, Silva R, White D, Mohammadi S, Li Y, Capretta A, Brennan JD. A Lateral Flow Test for
Staphylococcus aureus
in Nasal Mucus Using a New DNAzyme as the Recognition Element. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- M. Monsur Ali
- Biointerfaces Institute McMaster University 1280 Main Street West Hamilton ON L8S 4K1 Canada
| | - Ryan Silva
- Biointerfaces Institute McMaster University 1280 Main Street West Hamilton ON L8S 4K1 Canada
| | - Dawn White
- Biointerfaces Institute McMaster University 1280 Main Street West Hamilton ON L8S 4K1 Canada
| | - Saeed Mohammadi
- Biointerfaces Institute McMaster University 1280 Main Street West Hamilton ON L8S 4K1 Canada
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences McMaster University 1280 Main Street West Hamilton ON L8S 4K1 Canada
| | - Alfredo Capretta
- Biointerfaces Institute McMaster University 1280 Main Street West Hamilton ON L8S 4K1 Canada
| | - John D. Brennan
- Biointerfaces Institute McMaster University 1280 Main Street West Hamilton ON L8S 4K1 Canada
| |
Collapse
|
17
|
Puah SM, Fong SP, Kee BP, Puthucheary SD, Chua KH. Molecular identification and biofilm-forming ability of Elizabethkingia species. Microb Pathog 2022; 162:105345. [PMID: 34896547 DOI: 10.1016/j.micpath.2021.105345] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 11/17/2022]
Abstract
Recently, Elizabethkingia species have gained attention as a cause of life-threatening infections. The identification via phenotypic methods of three important species- Elizabethkingia meningoseptica, E. anophelis and E. miricola is difficult. Our objectives were to re-assess 30 archived Flavobacterium meningosepticum isolates using 16S rRNA gene sequencing, ERIC-PCR, and biofilm formation assay. Twenty-four isolates were re-identified as E. anophelis and 6 as E. miricola. All of them had the ability to form biofilm as shown in microtiter plate assay based on crystal violet staining. Overall, E. anophelis had a higher specific biofilm formation index compared to E. miricola. A total of 42% (10 out of 24) of E. anophelis were classified as strong, 29% (7 out of 24) as moderate and 29% (7 out of 24) as weak biofilm producers. E. miricola, 17% (1 out of 6) isolates were strong biofilm producers, 50% (3 out of 6) moderate and 33% (2 out of 6) were weak producers. E. anophelis from tracheal secretions were significantly associated with (p = 0.0361) strong biofilm formation. In summary, this study showed that the isolates originally identified as F. meningosepticum were re-classified using the 16S rRNA gene as one of two Elizabethkingia species. The ability of E. anophelis to form strong biofilm in endotracheal tubes indicates their probable role in the pathogenesis of Elizabethkingia infections.
Collapse
Affiliation(s)
- Suat Moi Puah
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Sam Pei Fong
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Boon Pin Kee
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - S D Puthucheary
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Kek Heng Chua
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| |
Collapse
|
18
|
Ali MM, Silva R, White D, Mohammadi S, Li Y, Capretta A, Brennan JD. A Lateral Flow Test for Staphylococcus aureus in Nasal Mucus Using a New DNAzyme as the Recognition Element. Angew Chem Int Ed Engl 2021; 61:e202112346. [PMID: 34816559 DOI: 10.1002/anie.202112346] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Indexed: 12/14/2022]
Abstract
Detection of pathogenic bacteria in complex biological matrices remains a major challenge. Herein, we report the selection and optimization of a new DNAzyme for Staphylococcus aureus (SA) and the use of the DNAzyme to develop a simple lateral flow device (LFD) for detection of SA in nasal mucus. The DNAzyme was generated by in vitro selection using a crude extra/intracellular mixture derived from SA, which could be used directly for simple solution or paper-based fluorescence assays for SA. The DNAzyme was further modified to produce a DNA cleavage fragment that acted as a bridging element to bind DNA-modified gold nanoparticles to the test line of a LFD, producing a simple colorimetric dipstick test. The LFD was evaluated with nasal mucus samples spiked with SA, and demonstrated that SA detection was possible in minutes with minimal sample processing.
Collapse
Affiliation(s)
- M Monsur Ali
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Ryan Silva
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Dawn White
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Saeed Mohammadi
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Alfredo Capretta
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - John D Brennan
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
19
|
Kroning IS, Ramires T, Haubert L, Rizzi C, Fernandes MDS, Lopes GV, Dellagostin OA, Silva WPD. Biofilm formation of Staphylococcus aureus from milk and expression of the adhesion genes ebpS and cna at different temperatures. Can J Microbiol 2021; 67:677-685. [PMID: 33945694 DOI: 10.1139/cjm-2021-0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study investigated the ability of Staphylococcus aureus isolates from milk to form biofilm, through detection of adhesion genes, investigating exopolysaccharide (EPS) production and biofilm formation on polystyrene (PS) and stainless steel (SS) surfaces, and by quantifying the expression of ebpS and cna genes under different temperatures and culture media. Among the 31 isolates, the adhesion genes ebpS and cna were found in 81% and 61% of the isolates, respectively. The screening tests for phenotype revealed that 58% of the isolates were EPS producers, and 45% showed the ability to produce biofilm on PS. Nine of the 31 isolates were selected to verify their ability to form biofilm on SS, of which 3 were non-biofilm producers, 3 were poor biofilm producers, and 3 were moderate biofilm producers. However, all nine isolates produced biofilm on SS, regardless of their phenotypic profile on PS. Reverse-transcriptase quantitative PCR (RT-qPCR) revealed no variation in the expression levels of ebpS and cna genes at different temperatures, except for isolate S24 at 10 °C, for both genes tested. Moreover, RT-qPCR assays revealed that the expression levels of the adhesion genes ebpS and cna are isolate- and temperature-dependent; however, they are independent of the phenotypic biofilm-formation profile.
Collapse
Affiliation(s)
- Isabela Schneid Kroning
- Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu Maciel, Campus Universitário Capão do Leão s/nº, Universidade Federal de Pelotas (UFPel), Capão do Leão, Rio Grande do Sul, Caixa Postal 354, 96160-000 Brazil
| | - Tassiana Ramires
- Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu Maciel, Campus Universitário Capão do Leão s/nº, Universidade Federal de Pelotas (UFPel), Capão do Leão, Rio Grande do Sul, Caixa Postal 354, 96160-000 Brazil
| | - Louise Haubert
- Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu Maciel, Campus Universitário Capão do Leão s/nº, Universidade Federal de Pelotas (UFPel), Capão do Leão, Rio Grande do Sul, Caixa Postal 354, 96160-000 Brazil
| | - Caroline Rizzi
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas (UFPel), Pelotas, Rio Grande do Sul, Brazil
| | - Meg da Silva Fernandes
- Adere Treinamentos, Rua Pioneiro Nilso Costa 475A, Maringá, Paraná, CEP 87075850, Brazil
| | - Graciela Volz Lopes
- Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu Maciel, Campus Universitário Capão do Leão s/nº, Universidade Federal de Pelotas (UFPel), Capão do Leão, Rio Grande do Sul, Caixa Postal 354, 96160-000 Brazil
| | - Odir Antônio Dellagostin
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas (UFPel), Pelotas, Rio Grande do Sul, Brazil
| | - Wladimir Padilha da Silva
- Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu Maciel, Campus Universitário Capão do Leão s/nº, Universidade Federal de Pelotas (UFPel), Capão do Leão, Rio Grande do Sul, Caixa Postal 354, 96160-000 Brazil.,Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas (UFPel), Pelotas, Rio Grande do Sul, Brazil
| |
Collapse
|
20
|
Jones SU, Chua KH, Chew CH, Yeo CC, Abdullah FH, Othman N, Kee BP, Puah SM. spa diversity of methicillin-resistant and -susceptible Staphylococcus aureus in clinical strains from Malaysia: a high prevalence of invasive European spa-type t032. PeerJ 2021; 9:e11195. [PMID: 33889447 PMCID: PMC8038637 DOI: 10.7717/peerj.11195] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 03/09/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Staphylococcus aureus is one of the important pathogens causing nosocomial infection. spa typing allows identification of S. aureus clones in hospital isolates and is useful for epidemiological studies and nosocomial infection control. This study aims to investigate the spa types in Malaysian S. aureus isolates obtained from various clinical specimens. METHOD A total of 89 methicillin-resistant S. aureus (MRSA) [pus (n = 55), blood (n = 27), respiratory (n = 5), eye (n = 2)] isolates and 109 methicillin-susceptible S. aureus (MSSA) [pus (n = 79), blood (n = 24), respiratory (n = 3), eye (n = 2) and urine (n = 1)] isolates were subjected to spa typing with sequences analysed using BioNumerics version 7. RESULTS The spa sequence was successfully amplified from 77.8% of the strains (154/198) and 47 known spa types were detected. The distribution of known spa types in MRSA (36.2%, 17/47) was less diverse than in MSSA (70.2%, 33/47). The most predominant spa types were t032 (50%) in MRSA, and t127 (19%) and t091 (16.7%) in MSSA, respectively. spa type t091 in MSSA was significantly associated with skin and soft tissue infections (p = 0.0199). CONCLUSION The previously uncommon spa type t032 was detected in the Malaysian MRSA strains, which also corresponded to the most common spa type in Europe and Australia, and has replaced the dominant spa type t037 which was reported in Malaysia in 2010.
Collapse
Affiliation(s)
- Sherry Usun Jones
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kek Heng Chua
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ching Hoong Chew
- Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Kuala Nerus, Terengganu, Malaysia
| | - Chew Chieng Yeo
- Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu, Terengganu, Malaysia
| | | | - Norlela Othman
- Department of Pathology, Hospital Sultanah Nur Zahirah, Kuala Terengganu, Terengganu, Malaysia
| | - Boon Pin Kee
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Suat Moi Puah
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
21
|
Isolation and identification of novel antibacterial peptides produced by Lactobacillus fermentum SHY10 in Chinese pickles. Food Chem 2021; 348:129097. [PMID: 33515941 DOI: 10.1016/j.foodchem.2021.129097] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 11/23/2022]
Abstract
The aim of this study was to isolate and identify antibacterial peptides (ABPs) produced by lactic acid bacteria (LAB) in Chinese pickles. The cell-free supernatant collected from the culture of LAB with antibacterial activity against Staphylococcus aureus was used to purify ABPs. A total of 14 strains of LAB were found to have antibacterial activity. Among them, Lactobacillus fermentum (L. fermentum) SHY10 exhibited the most effective antibacterial activity. The antibacterial activity of cell-free supernatant reached the highest level after 20 h of L. fermentum SHY10 culture. Three novel ABPs were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). In particular, the NQGPLGNAHR peptide showed antibacterial activity with an IC50 value of 0.957 mg/mL. In addition, molecular docking analysis revealed that this peptide interacted with DNA gyrase and dihydrofolate reductase by salt bridge formation, hydrogen bond interactions, and metal contact.
Collapse
|
22
|
Gajewska J, Chajęcka-Wierzchowska W. Biofilm Formation Ability and Presence of Adhesion Genes among Coagulase-Negative and Coagulase-Positive Staphylococci Isolates from Raw Cow's Milk. Pathogens 2020; 9:pathogens9080654. [PMID: 32823918 PMCID: PMC7460418 DOI: 10.3390/pathogens9080654] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/01/2020] [Accepted: 08/12/2020] [Indexed: 11/16/2022] Open
Abstract
The capacity for biofilm formation is one of the crucial factors of staphylococcal virulence. The occurrence of biofilm-forming staphylococci in raw milk may result in disturbances in technological processes in dairy factories as well as the contamination of finished food products. Therefore, this study aimed to determine the prevalence and characteristics of staphylococcal biofilm formation in raw milk samples and to explore the genetic background associated with biofilm formation in those isolates. The material subjected to testing included 30 cow’s milk samples acquired from farms in the central part of Poland. A total of 54 staphylococcal strains were isolated from the samples, of which 42 were classified as coagulase-negative (CoNS) staphylococci belonging to the following species: S. haemolyticus, S. simulans, S. warneri, S. chromogenes, S. hominis, S. sciuri, S. capitis, S. xylosus and S. saprophyticus, while 12 were classified as S. aureus. The study examined the isolates’ capacity for biofilm formation and the staphylococcal capacity for slime production and determined the presence of genetic determinants responsible for biofilm formation, i.e., the icaA, icaD, bap and eno and, additionally, among coagulase-negative staphylococci, i.e., the aap, bhp, fbe, embP and atlE. Each tested isolate exhibited the capacity for biofilm formation, of which most of them (79.6%) were capable of forming a strong biofilm, while 5.6% formed a moderate biofilm, and 14.8% a weak biofilm. A capacity for slime production was demonstrated in 51.9% isolates. Most of the tested staphylococcal strains (90.7%) had at least one of the tested genes. Nearly half (47.6%) of the CoNS had the eno gene, while for S. aureus, the eno gene was demonstrated in 58.3% isolates. The frequency of the bap gene occurrence was 23.8% and 25% in CoNS strains and S. aureus, respectively. The fbe gene was demonstrated in only three CoNS isolates. The presence of the icaA was only demonstrated in CoNS strains (24.1%), while the icaD was found in both CoNS strains (21.4%) and S. aureus (100%). Among the CoNS, the presence of the embP (16.7%), aap (28.6%) and atlE (23.8%) was demonstrated as well. The obtained study results indicate that bacteria of the Staphylococcus spp. genus have a strong potential to form a biofilm, which may pose a hazard to consumer health.
Collapse
|
23
|
Chua KH, Tan EW, Chai HC, Puthucheary SD, Lee PC, Puah SM. Rapid identification of melioidosis agent by an insulated isothermal PCR on a field-deployable device. PeerJ 2020; 8:e9238. [PMID: 32518734 PMCID: PMC7261116 DOI: 10.7717/peerj.9238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/05/2020] [Indexed: 12/17/2022] Open
Abstract
Background Burkholderia pseudomallei causes melioidosis, a serious illness that can be fatal if untreated or misdiagnosed. Culture from clinical specimens remains the gold standard but has low diagnostic sensitivity. Method In this study, we developed a rapid, sensitive and specific insulated isothermal Polymerase Chain Reaction (iiPCR) targeting bimA gene (Burkholderia Intracellular Motility A; BPSS1492) for the identification of B. pseudomallei. A pair of novel primers: BimA(F) and BimA(R) together with a probe were designed and 121 clinical B. pseudomallei strains obtained from numerous clinical sources and 10 ATCC non-targeted strains were tested with iiPCR and qPCR in parallel. Results All 121 B. pseudomallei isolates were positive for qPCR while 118 isolates were positive for iiPCR, demonstrating satisfactory agreement (97.71%; 95% CI [93.45–99.53%]; k = 0.87). Sensitivity of the bimA iiPCR/POCKIT assay was 97.52% with the lower detection limit of 14 ng/µL of B. pseudomallei DNA. The developed iiPCR assay did not cross-react with 10 types of non-targeted strains, indicating good specificity. Conclusion This bimA iiPCR/POCKIT assay will undoubtedly complement other methodologies used in the clinical laboratory for the rapid identification of this pathogen.
Collapse
Affiliation(s)
- Kek Heng Chua
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - E Wei Tan
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Hwa Chia Chai
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - S D Puthucheary
- Faculty of Medicine, University of Malaya, University of Malaya, Kuala Lumpur, Malaysia
| | - Ping Chin Lee
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah, Malaysia
| | - Suat Moi Puah
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
24
|
Yu S, Jiang B, Jia C, Wu H, Shen J, Hu X, Xie Z. Investigation of biofilm production and its association with genetic and phenotypic characteristics of OM (osteomyelitis) and non-OM orthopedic Staphylococcus aureus. Ann Clin Microbiol Antimicrob 2020; 19:10. [PMID: 32220258 PMCID: PMC7099788 DOI: 10.1186/s12941-020-00352-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 03/13/2020] [Indexed: 11/25/2022] Open
Abstract
Background Staphylococcus aureus is a primary pathogen of orthopedic infections. By mediating antimicrobial resistance, S. aureus biofilm plays an important role in the recalcitrance of orthopedic infections, especially for the intractable osteomyelitis (OM). This study investigated the relationship between biofilm production and various genetic or phenotypic characteristics among orthopedic S. aureus strains. Methods A total of 137 orthopedic S. aureus isolates were enrolled and divided into OM and non-OM groups. Biofilm production was evaluated using the crystal violet assay. Genetic and phenotypic characteristics including MRSA identification, MLST and spa typing, carriage of virulence genes, drug resistance, and patients’ inflammatory responses indicators were characterized. The relationship between biofilm production and above-mentioned features was respectively analyzed among all isolates and compared between OM and non-OM isolates. Results Biofilm production presented no significant difference between OM (including 9 MRSA isolates) and non-OM (including 21 MRSA isolates) strains. We found that ST88, t377 and ST630-MSSA-t377 strains produced very strong biofilms, while MLST types of ST15, ST25, ST398, ST5, ST59 and spa types of t002, t2325, t437 tended to produce weaker biofilms. Strains with the following profiles produced stronger biofilms: fib(+)-hlgv(+)-lukED(+)-sei(-)-sem(-)-seo(-) for all isolates, sei(-)-sem(-)-seo(-) for OM isolates, and cna (+)-fib (+)-hlgv (+)-lukED (+)-seb(-)-sed(-) for non-OM isolates. In addition, not any single drug resistance was found to be related to biofilm production. We also observed that, among OM patients, strains with stronger biofilms caused weaker inflammatory responses. Conclusion Some genetic or phenotypic characteristics of orthopedic strains were associated with biofilm production, and this association could be different among OM and non-OM strains. The results are of great significance for better understanding, evaluating and managing different kinds of biofilm-associated orthopedic infections, and provide potential targets for biofilm clearance.
Collapse
Affiliation(s)
- Shengpeng Yu
- Department of Orthopedics, Southwest Hospital, Army Medical University, Gaotanyan Main Street 30#, District Shapingba, Chongqing, China.,Department of Orthopedics, Dujiangyan Medical Center, Dujiangyan, Sichuan, China
| | - Bei Jiang
- Department of Orthopedics, Southwest Hospital, Army Medical University, Gaotanyan Main Street 30#, District Shapingba, Chongqing, China.,Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Gaotanyan Main Street 30#, District Shapingba, Chongqing, China
| | - Chao Jia
- Department of Orthopedics, Southwest Hospital, Army Medical University, Gaotanyan Main Street 30#, District Shapingba, Chongqing, China
| | - Hongri Wu
- Department of Orthopedics, Southwest Hospital, Army Medical University, Gaotanyan Main Street 30#, District Shapingba, Chongqing, China
| | - Jie Shen
- Department of Orthopedics, Southwest Hospital, Army Medical University, Gaotanyan Main Street 30#, District Shapingba, Chongqing, China
| | - Xiaomei Hu
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Gaotanyan Main Street 30#, District Shapingba, Chongqing, China.
| | - Zhao Xie
- Department of Orthopedics, Southwest Hospital, Army Medical University, Gaotanyan Main Street 30#, District Shapingba, Chongqing, China.
| |
Collapse
|
25
|
Vaezi SS, Poorazizi E, Tahmourespour A, Aminsharei F. Application of artificial neural networks to describe the combined effect of pH, time, NaCl and ethanol concentrations on the biofilm formation of Staphylococcus aureus. Microb Pathog 2020; 141:103986. [PMID: 31972270 DOI: 10.1016/j.micpath.2020.103986] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/05/2020] [Accepted: 01/16/2020] [Indexed: 12/20/2022]
Abstract
Biofilms are organized communities, adherent to the surface and resistant to adverse environmental and antimicrobial agents. So, its control is very important. Staphylococcus aureus is an opportunistic pathogen with the biofilm-forming ability that causes numerous problems in the medicine and food industry. Therefore, this study aimed to investigate the effect of pH, ethanol and NaCl concentrations after 24 and 48 h incubation times at 37 °C, also modeling the results with artificial neural network (ANN). For this purpose, after both incubation times, the effect of each parameter was studied, separately and also in combination at the levels in which the highest biofilm was formed. All results were modeled using multiple ANN and compared in terms of R-value and MSE. The highest biofilm formation ability was in neutral pH. Adding the ethanol and NaCl stimulated biofilm formation, but the inhibitory effect was observed at high concentrations of ethanol and NaCl and very acidic or highly alkaline pH levels. The more incubation time also led to an increase in biofilm formation. Eventually, the Feed-Forward, Back-Propagation Neural Network model with the Levenberg-Marquardt training algorithm and 4-12-1 topology was chosen (R-value = 0.995 and validation MSE = 0.011467). This ANN had high modeling ability because there was a high correlation between experimental data and modeling data. Therefore, it was concluded that pH, ethanol, NaCl, and time are effective parameters in the biofilm formation and there is a nonlinear relationship between these factors that the ANN is capable of modeling them.
Collapse
Affiliation(s)
- Sayedeh Saleheh Vaezi
- Department of Food Science and Technology, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Elahe Poorazizi
- Department of Biochemistry, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Arezoo Tahmourespour
- Department of Food Science and Technology, Najafabad Branch, Islamic Azad University, Najafabad, Iran; Department of Basic Medical Science, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran.
| | - Farham Aminsharei
- Department of Chemical Engineering, Health, Safety & Environment, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| |
Collapse
|
26
|
Modeling Some Possible Handling Ways with Fish Raw Material in Home-Made Sushi Meal Preparation. Foods 2019; 8:foods8100459. [PMID: 31597398 PMCID: PMC6835863 DOI: 10.3390/foods8100459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/27/2019] [Accepted: 10/04/2019] [Indexed: 11/16/2022] Open
Abstract
The aim of this work was to simulate selected ways of handling with raw fish after its purchase. The experiment was designed as three partial simulations: a) trend in the biogenic amines formation in raw fish caused by breakage of cold chain during the transport after purchase, b) the use of a handheld gastronomic unit as an alternative method of smoking fish with cold smoke in the household with regard to a possible increase in polycyclic aromatic hydrocarbon content, and c) whether the cold smoked fish affects selected sensory parameters of nigiri sushi meal prepared by consumers. The material used in the research consisted of: yellowfin tuna (Thunnus albacares) sashimi fillets and the Atlantic salmon (Salmo salar) fillets with skin. The control (fresh/thawed tuna; without interrupting the cold chain) and experimental (fresh/thawed tuna; cold chain was interrupted by incubation at 35 °C/6 h) samples were stored at 2 ± 2 °C for 8 days and analyzed after 1st, 4th and 8th day of the cold storage. Histamine content was very low throughout the experiment, though one exception was found (thawed tuna without interrupting the cold chain: 272.05 ± 217.83 mg·kg-1/8th day). Tuna samples contained more PAH (4.22 µg·kg-1) than salmon samples (1.74 µg·kg-1). Alarming increases of benzo(a)anthracene (1.84 μg·k-1) and chrysene (1.10 μg·kg-1) contents in smoked tuna were detected.
Collapse
|