1
|
Konteles SJ, Strati IF, Giannakourou M, Batrinou A, Papadakis S, Ourailoglou D, Zoumpoulakis P, Sinanoglou VJ. Instant Herbal Powder: Functionality Assessment through Chemical, Microbiological and Shelf Life Kinetics. ANAL LETT 2021. [DOI: 10.1080/00032719.2021.2011897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Spyros J. Konteles
- Department of Food Science and Technology, University of West Attica, Egaleo, Greece
| | - Irini F. Strati
- Department of Food Science and Technology, University of West Attica, Egaleo, Greece
| | - Maria Giannakourou
- Department of Food Science and Technology, University of West Attica, Egaleo, Greece
| | - Anthimia Batrinou
- Department of Food Science and Technology, University of West Attica, Egaleo, Greece
| | - Spyros Papadakis
- Department of Food Science and Technology, University of West Attica, Egaleo, Greece
| | - Dimitrios Ourailoglou
- Department of Food Science and Technology, University of West Attica, Egaleo, Greece
| | | | | |
Collapse
|
2
|
Tong Y, Zhao S, Kang J, Shen J, Chen Z, Wang B, Bi L, Deng J. Preparation of small-sized BiVO4 particles with improved photocatalytic performance and its photocatalytic degradation of doxycycline in water. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
3
|
Granato D, Mocan A, Câmara JS. Is a higher ingestion of phenolic compounds the best dietary strategy? A scientific opinion on the deleterious effects of polyphenols in vivo. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.01.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
4
|
Wei L, Wang C, Chen X, Yang B, Shi K, Benington LR, Lim LY, Shi S, Mo J. Dual-responsive, Methotrexate-loaded, Ascorbic acid-derived Micelles Exert Anti-tumor and Anti-metastatic Effects by Inhibiting NF-κB Signaling in an Orthotopic Mouse Model of Human Choriocarcinoma. Theranostics 2019; 9:4354-4374. [PMID: 31285766 PMCID: PMC6599650 DOI: 10.7150/thno.35125] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/22/2019] [Indexed: 12/13/2022] Open
Abstract
Gestational trophoblastic neoplasia (GTN), the most aggressive form of which is choriocarcinoma, can result from over-proliferation of trophoblasts. Treating choriocarcinoma requires high doses of systemic chemotherapeutic agents, which result in nonspecific drug distribution and severe toxicity. To overcome these disadvantages and enhance chemotherapeutic efficacy, we synthesized redox- and pH-sensitive, self-assembling, ascorbic acid-derived (PEG-ss-aAPP) micelles to deliver the drug methotrexate (MTX). Methods: We developed and tested self-assembling PEG-ss-aAPP micelles, which release their drug cargo in response to an intracellular reducing environment and the acidity of the early lysosome or tumoral microenvironment. Uptake into JEG3 choriocarcinoma cancer cells was examined using confocal microscopy and transmission electron microscopy. We examined the ability of MTX-loaded PEG-ss-aAPP micelles to inhibit metastasis in an orthotopic mouse model of human choriocarcinoma. Results: Drug-loaded micelles had encapsulation efficiency above 95%. Particles were spherical based on transmission electron microscopy, with diameters of approximately 229.0 nm based on dynamic light scattering. The drug carrier responded sensitively to redox and pH changes, releasing its cargo in specific environments. PEG-ss-aAPP/MTX micelles efficiently escaped from lysosome/endosomes, and they were effective at producing reactive oxygen species, strongly inducing apoptosis and inhibiting invasion and migration. These effects correlated with the ability of PEG-ss-aAPP/MTX micelles to protect IκBα from degradation, which in turn inhibited translocation of NF-κB p65 to the nucleus. In an orthotopic mouse model of human choriocarcinoma, PEG-ss-aAPP/MTX micelles strongly inhibited primary tumor growth and significantly suppressed metastasis without obvious side effects. Conclusions: Our results highlight the potential of PEG-ss-aAPP micelles for targeted delivery of chemotherapeutic agents against choriocarcinoma.
Collapse
Affiliation(s)
- Lili Wei
- Department of Pharmacy, The Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| | - Chenyuan Wang
- Department of Reproductive Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510623, China
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510623, China
| | - Xianjue Chen
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Bing Yang
- Department of Gynecology, The Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| | - Kun Shi
- Department of Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou 510623, China
| | - Leah R. Benington
- Division of Pharmacy, School of Allied Health, University of Western Australia, Perth, WA 6009, Australia
| | - Lee Yong Lim
- Division of Pharmacy, School of Allied Health, University of Western Australia, Perth, WA 6009, Australia
| | - Sanjun Shi
- Department of Pharmacy, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Jingxin Mo
- Clinical Research Center for Neurological Diseases of Guangxi Province, The Affiliated Hospital of Guilin Medical University, Guilin 541001, China
- Department of Pharmacy, The Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| |
Collapse
|