1
|
Zhou Y, Bai L, Geng S, Liu B. Interaction of camellianin A and lysozyme: Binding mechanism and its application in nanoemulsions. Food Chem 2025; 475:143265. [PMID: 39954643 DOI: 10.1016/j.foodchem.2025.143265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/15/2025] [Accepted: 02/05/2025] [Indexed: 02/17/2025]
Abstract
The interaction of camellianin A (CA) and lysozyme (LYS) was analyzed by spectrofluorimetry and molecular docking methods. The nanoemulsions stabilized by CA and LYS were ultrasound-assisted constructed, and characterized. The fluorescence result indicated that CA and LYS could spontaneously form supramolecular complexes driven by van der Waals forces and hydrogen bonds, which coincided with molecular docking analysis. CA and LYS could synergistically reduce the O/W interfacial tension, and stabilize nanoemulsions. The CA-LYS nanoemulsion with the average droplet size of 212.91 ± 1.21 nm could be obtained at the following ultrasonic homogenization conditions: CA/LYS ratio, 1:2; CA-LYS concentration, 0.426 %; ultrasonic time, 5 min; ultrasonic power, 660 W. The obtained nanoemulsion could effectively protect lutein against UV, and inhibit lipid oxidation. It demonstrated strong stability in acidic, neutral, and high-temperature environments; however, its stability was compromised under alkaline and high ionic strength conditions. Our results can prompt the development of new food-graded nanoemulsions.
Collapse
Affiliation(s)
- Yingxuan Zhou
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Lu Bai
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Sheng Geng
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Benguo Liu
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China.
| |
Collapse
|
2
|
Harimana Y, Muhoza B, Munyandamutsa P, Gankhuyag J, Zhang S, Li Y. Unraveling the binding mechanism between soybean protein isolate and selected bioactive compounds. Food Chem 2024; 447:139031. [PMID: 38513491 DOI: 10.1016/j.foodchem.2024.139031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/20/2024] [Accepted: 03/11/2024] [Indexed: 03/23/2024]
Abstract
The present study was aimed to investigate the interactions between soybean protein isolate (SPI) with resveratrol (RESV) and lutein (LUT). The binding forces, molecular interactions and functional properties were explored by multi-spectroscopic analysis, molecular docking and functional property indexes between SPI and RESV/LUT. The RESV/LUT quenched SPI chromophore residues with static mechanism and the endothermic reaction. The SPI- RESV/LUT complexes were formed through hydrogen bond, electrostatic and hydrophobic interactions. Molecular docking confirmed van-der-Waals force as one of the important forces. The interaction of RESV/LUT led to SPI's secondary structure alterations with a decrease in α-helix and random coil and an increase in β-sheet and β-turns. RESV/LUT developed foaming and emulsifying properties of SPI and showed a significant decrease of the surface hydrophobicity with RESV/LUT concentrations increase attributed to SPI's partial unfolding. Our study exposed molecular mechanisms and confirmations to understand the interactions in protein- RESV/LUT complexes for protein industrial base promotion.
Collapse
Affiliation(s)
- Yves Harimana
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; School of Veterinary Medicine, University of Rwanda, Rwanda
| | - Bertrand Muhoza
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Research and Product Development Center, Shandong Guohong Biotechnology Company Limited, Liaocheng, Shandong 252899, China
| | | | - Javzan Gankhuyag
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Shuang Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Research and Product Development Center, Shandong Guohong Biotechnology Company Limited, Liaocheng, Shandong 252899, China.
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Research and Product Development Center, Shandong Guohong Biotechnology Company Limited, Liaocheng, Shandong 252899, China.
| |
Collapse
|
3
|
Liu K, Zhang X, Liu R, Su W, Song Y, Tan M. Preparation of Lutein Nanoparticles by Glycosylation of Saccharides and Casein for Protecting Retinal Pigment Epithelial Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6347-6359. [PMID: 38408187 DOI: 10.1021/acs.jafc.3c09054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Age-related macular degeneration (AMD), a leading cause of visual impairment in the aging population, lacks effective treatment options due to a limited understanding of its pathogenesis. Lutein, with its strong antioxidant properties and ability to mitigate AMD by absorbing ultraviolet (UV) rays, faces challenges related to its stability and bioavailability in functional foods. In this study, we aimed to develop delivery systems using protein-saccharide conjugates to enhance lutein delivery and protect adult retinal pigment epithelial (ARPE-19) cells against sodium iodate (NaIO3)-induced damage. Various saccharides, including mannose, galactose, lactose, maltose, dextran, and maltodextrin, were conjugated to casein via the Maillard reaction for lutein delivery. The resulting lutein-loaded nanoparticles exhibited small size and spherical characteristics and demonstrated improved thermal stability and antioxidant capacity compared to free lutein. Notably, these nanoparticles were found to be nontoxic, as evidenced by reduced levels of cellular reactive oxygen species production (167.50 ± 3.81, 119.57 ± 3.45, 195.15 ± 1.41, 183.96 ± 3.11, 254.21 ± 3.97, 283.56 ± 7.27%) and inhibition of the mitochondrial membrane potential decrease (58.60 ± 0.29, 65.05 ± 2.91, 38.88 ± 1.81, 42.95 ± 1.39, 23.52 ± 1.04, 25.24 ± 0.08%) caused by NaIO3, providing protection against cellular damage and death. Collectively, our findings suggest that lutein-loaded nanoparticles synthesized via the Maillard reaction hold promise for enhanced solubility, oral bioavailability, and biological efficacy in the treatment of AMD.
Collapse
Affiliation(s)
- Kangjing Liu
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Xiumin Zhang
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Ronggang Liu
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Wentao Su
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Yukun Song
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Mingqian Tan
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
4
|
Nooshkam M, Varidi M. Antioxidant and antibrowning properties of Maillard reaction products in food and biological systems. VITAMINS AND HORMONES 2024; 125:367-399. [PMID: 38997170 DOI: 10.1016/bs.vh.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Oxidative damage refers to the harm caused to biological systems by reactive oxygen species such as free radicals. This damage can contribute to a range of diseases and aging processes in organisms. Moreover, oxidative deterioration of lipids is a serious problem because it reduces the shelf life of food products, degrades their nutritional value, and produces reaction products that could be toxic. Antioxidants are effective compounds for preventing lipid oxidation, and synthetic antioxidants are frequently added to foods due to their high effectiveness and low cost. However, the safety of these antioxidants is a subject that is being discussed in the public more and more. Synthetic antioxidants have been found to have potential negative effects on health due to their ability to accumulate in tissues and disrupt natural antioxidant systems. During thermal processing and storage, foods containing reducing sugars and amino compounds frequently produce Maillard reaction products (MRPs). Through the chelation of metal ions, scavenging of reactive oxygen species, destruction of hydrogen peroxide, and suppression of radical chain reaction, MRPs exhibit excellent antioxidant properties in a variety of food products and biological systems. Also, the capacity of MRPs to chelate metals makes them as a potential inhibitor of the enzymatic browning in fruits and vegetables. In this book chapter, the methods used for the evaluation of antioxidant activity of MRPs are provided. Moreover, the antioxidant and antibrowning activities of MRPs in food and biological systems is discussed. MRPs can generally be isolated and used as commercial preparations of natural antioxidants.
Collapse
Affiliation(s)
- Majid Nooshkam
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mehdi Varidi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
5
|
Wang Y, Zhang X, Yan M, Zhao Q. Enhancing the stability of lutein emulsions with a water-soluble antioxidant and a oil-soluble antioxidant. Heliyon 2023; 9:e15459. [PMID: 37113795 PMCID: PMC10126903 DOI: 10.1016/j.heliyon.2023.e15459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/24/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Lutein is critical for protecting the eye against light damage. The low solubility and high sensitivity of lutein to environmental stresses prevent its further application. The hypothesis is that the combination of one water-soluble antioxidant and one oil-soluble antioxidant will be beneficial to improve the stability of lutein emulsions. A low-energy method was performed to prepare lutein emulsions. The combination of a lipid-soluble antioxidant (propyl gallate or ethylenediaminetetraacetic acid) and a water-soluble antioxidant (tea polyphenol or ascobic acid) were investigated for improving the lutein retention rates. It was shown that the highest lutein retention rate was achieved by using propyl gallate and tea polyphenol, 92.57%, at Day 7. It was proven that the lutein retention rates of emulsions with propyl gallate and tea polyphenol were 89.8%, 73.5% and 55.2% at 4 °C, 25 °C and 37 °C, respectively, at Day 28. The current study is helpful to prepare for the further application of lutein emulsions for ocular delivery.
Collapse
|
6
|
Frosi I, Ferron L, Colombo R, Papetti A. Natural carriers: Recent advances in their use to improve the stability and bioaccessibility of food active compounds. Crit Rev Food Sci Nutr 2022; 64:5700-5718. [PMID: 36533404 DOI: 10.1080/10408398.2022.2157371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In the last decades, the incorporation of bioactive compounds in food supplements aroused the attention of scientists. However, these ingredients often exhibit both low solubility and stability and their poor bioaccessibility within the gastrointestinal tract limits their effectiveness. To overcome these drawbacks, many carriers have been investigated for encapsulating nutraceuticals and enhancing their bioavailability. It is note that several different vegetable wall materials have been applied to build delivery systems. Considering their encapsulation mechanism, lipid and protein-based carriers display specific interaction patterns with bioactives, whereas polysaccharidic-based carriers can entrap them by creating porous highly stable networks. To maximize the encapsulation efficiency, mixed systems are very promising. Following the current goal of using natural and sustainable ingredients, only a limited number of studies about the isolation of new ingredients from agro-food waste are available. In this review, a comprehensive overview of the state of art in the development of innovative natural lipid-, protein- and polysaccharide-based plant carriers is presented, focusing on their application as food active compounds. Different aspects to be considered in the design of delivery systems are discussed, including the carrier structure and chemical features, the interaction between the encapsulating and the core material, and the parameters affecting bioactives entrapment.
Collapse
Affiliation(s)
- Ilaria Frosi
- Drug Sciences Department, University of Pavia, Pavia, Italy
| | - Lucia Ferron
- Drug Sciences Department, University of Pavia, Pavia, Italy
| | | | - Adele Papetti
- Drug Sciences Department, University of Pavia, Pavia, Italy
| |
Collapse
|
7
|
Pan LH, Wu CL, Luo SZ, Luo JP, Zheng Z, Jiang ST, Zhao YY, Zhong XY. Preparation and characteristics of sucrose-resistant emulsions and their application in soft candies with low sugar and high lutein contents and strong antioxidant activity. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Wang C, Li J, Sun Y, Wang C, Guo M. Fabrication and characterization of a cannabidiol-loaded emulsion stabilized by a whey protein-maltodextrin conjugate and rosmarinic acid complex. J Dairy Sci 2022; 105:6431-6446. [PMID: 35688741 DOI: 10.3168/jds.2022-21862] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/29/2022] [Indexed: 12/17/2023]
Abstract
A cannabidiol (CBD)-loaded oil-in-water emulsion stabilized by a whey protein (WP)-maltodextrin (MD) conjugate and rosmarinic acid (RA) complex was fabricated, and its stability characteristics were investigated under various environmental conditions. The WP-MD conjugates were formed via dry-heating. The interaction between WP and MD was assessed by browning intensity, reduced amount of free amino groups, the formation of high molecular weight components in sodium dodecyl sulfate-PAGE, and changes in secondary structure of whey proteins. The WP-MD-RA noncovalent complex was prepared and confirmed by fluorescence quenching and Fourier-transform infrared spectroscopy spectra. Emulsions stabilized by WP, WP-MD, and WP-RA were used as references to evaluate the effect of WP-MD-RA as a novel emulsifier. Results showed that WP-MD-RA was an effective emulsifier to produce fine droplets for a CBD-loaded emulsion and remarkably improved the pH and salt stabilities of emulsions in comparison with WP. An emulsion prepared with WP-MD-RA showed the highest protection of CBD against UV and heat-induced degradation among all emulsions. The ternary complex kept emulsions in small particle size during storage at 4°C. Data from the current study may offer useful information for designing emulsion-based delivery systems which can protect active substance against environmental stresses.
Collapse
Affiliation(s)
- Ce Wang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Ji Li
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Yonghai Sun
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Cuina Wang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| | - Mingruo Guo
- Department of Nutrition and Food Sciences, College of Agriculture and Life Sciences, University of Vermont, Burlington 05405; College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
9
|
Li Y, Hu K, Huang C, Hu Y, Ji H, Liu S, Gao J. Improvement of solubility, stability and antioxidant activity of carotenoids using deep eutectic solvent-based microemulsions. Colloids Surf B Biointerfaces 2022; 217:112591. [PMID: 35679734 DOI: 10.1016/j.colsurfb.2022.112591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/14/2022] [Accepted: 05/20/2022] [Indexed: 01/25/2023]
Abstract
Natural carotenoids have been widely used as colorants and antioxidants in process of food, medicine, and cosmetic. However, the carotenoids have low bioactivity in vivo due to poor water-solubility. To enhance the solubility, stability and antioxidant activity of carotenoids, novel microemulsions (MEs) composed with deep eutectic solvents (DESs), tween 80 and water were developed as alternatives to organic solvents. The phase diagrams and physicochemical properties (viscosity, pH, and diameter) of the DES-based MEs were investigated at different temperatures. Then the solubility distribution, storage stability and DPPH free radical-scavenging activity of three carotenoids (astaxanthin, astaxanthin ester and lutein) in the MEs were evaluated. Compared with ethanol, methanol, and acetone, all the DES-based MEs studied significantly enhanced the solubility of the carotenoids due to the stronger hydrogen bonding and Van der Waals interactions. The highest solubilities of 0.27, 473.63, and 12.50 mg/mL for astaxanthin, astaxanthin ester and lutein, respectively, were observed in the MEs containing DES (DL-menthol:acetic acid = 1:2) at 35 ℃. Moreover, astaxanthin ester can be well preserved in the MEs containing DES (DL-menthol:octanoic acid = 1:2) with a half-life of more than 69 days. In addition, the DPPH scavenging capacities of the three carotenoids in all the MEs were higher than the organic solvents. The results revealed that the DES-based MEs with low viscosity (<0.2 Pa•s) and mild acidic pH (4-5) are potential solvents for natural carotenoids in food processing and storage, medicine making, as well as biomaterials processing.
Collapse
Affiliation(s)
- Yan Li
- Collage of Food Science, Guangdong Pharmaceutical University, Zhongshan, PR China; Collage of Food Science and Technology, Guangdong Ocean University, Zhanjiang, PR China
| | - Kun Hu
- Collage of Food Science, Guangdong Pharmaceutical University, Zhongshan, PR China
| | - Chao Huang
- Collage of Food Science, Guangdong Pharmaceutical University, Zhongshan, PR China
| | - Yong Hu
- Collage of Food Science, Guangdong Pharmaceutical University, Zhongshan, PR China
| | - Hongwu Ji
- Collage of Food Science and Technology, Guangdong Ocean University, Zhanjiang, PR China
| | - Shucheng Liu
- Collage of Food Science and Technology, Guangdong Ocean University, Zhanjiang, PR China
| | - Jing Gao
- Collage of Food Science, Guangdong Pharmaceutical University, Zhongshan, PR China; Collage of Food Science and Technology, Guangdong Ocean University, Zhanjiang, PR China.
| |
Collapse
|
10
|
Zhu Y, Peng Z, Wu J, Zhang Y. Stability of oil‐in‐water emulsions with eggplant flesh pulp (
Solanum melongena
L.) emulsifier: Effects of storage time, pH, ionic strength, and temperature. J Food Sci 2022; 87:1119-1133. [DOI: 10.1111/1750-3841.16046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 10/24/2021] [Accepted: 12/21/2021] [Indexed: 12/01/2022]
Affiliation(s)
- Yuxia Zhu
- College of Food Science and Technology, National Center of Meat Quality and Safety Control, and Synergetic Innovation Center of Food Safety and Nutrition Nanjing University Nanjing 210095 China
- School of Biological Science and Food Engineering Chuzhou University Chuzhou 239004 China
| | - Zengqi Peng
- College of Food Science and Technology, National Center of Meat Quality and Safety Control, and Synergetic Innovation Center of Food Safety and Nutrition Nanjing University Nanjing 210095 China
| | - Junjun Wu
- College of Food Science and Technology, National Center of Meat Quality and Safety Control, and Synergetic Innovation Center of Food Safety and Nutrition Nanjing University Nanjing 210095 China
| | - Yawei Zhang
- College of Food Science and Technology, National Center of Meat Quality and Safety Control, and Synergetic Innovation Center of Food Safety and Nutrition Nanjing University Nanjing 210095 China
| |
Collapse
|
11
|
Xie Z, Chen X. Healthy benefits and edible delivery systems of resveratrol: a review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.2013873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Zhenfeng Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, 214122, Wuxi, Jiangsu, China
| | - Xing Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, 214122, Wuxi, Jiangsu, China
| |
Collapse
|
12
|
Manzoor M, Singh J, Gani A, Noor N. Valorization of natural colors as health-promoting bioactive compounds: Phytochemical profile, extraction techniques, and pharmacological perspectives. Food Chem 2021; 362:130141. [PMID: 34091168 DOI: 10.1016/j.foodchem.2021.130141] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 05/11/2021] [Accepted: 05/16/2021] [Indexed: 01/17/2023]
Abstract
Color is the prime attribute with a large impact on consumers' perception, selection, and acceptance of foods. However, the belief in bio-safety protocols, health benefits, and the nutritional importance of food colors had focused the attention of the scientific community across the globe towards natural colorants that serve to replace their synthetic toxic counterparts. Moreover, multi-disciplinary applications of greener extraction techniques and their hyphenated counterparts for selective extraction of bioactive compounds is a hot topic focusing on process intensification, waste valorization, and retention of highly stable bioactive pigments from natural sources. In this article, we have reviewed available literature to provide all possible information on various aspects of natural colorants, including their sources, photochemistry and associated biological activities explored under in-vitro and in-vivo animal and human studies. However a particular focus is given on innovative technological approaches for the effective extraction of natural colors for nutraceutical and pharmaceutical applications.
Collapse
Affiliation(s)
- Mehnaza Manzoor
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Jammu 180009, India.
| | - Jagmohan Singh
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Jammu 180009, India
| | - Adil Gani
- Department of Food Science and Technology, University of Kashmir, Srinagar 190006, India.
| | - Nairah Noor
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Jammu 180009, India
| |
Collapse
|
13
|
Sridhar K, Inbaraj BS, Chen BH. Recent Advances on Nanoparticle Based Strategies for Improving Carotenoid Stability and Biological Activity. Antioxidants (Basel) 2021; 10:713. [PMID: 33946470 PMCID: PMC8147144 DOI: 10.3390/antiox10050713] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 01/01/2023] Open
Abstract
Carotenoids are natural pigments widely used in food industries due to their health-promoting properties. However, the presence of long-chain conjugated double bonds are responsible for chemical instability, poor water solubility, low bioavailability and high susceptibility to oxidation. The application of a nanoencapsulation technique has thus become a vital means to enhance stability of carotenoids under physiological conditions due to their small particle size, high aqueous solubility and improved bioavailability. This review intends to overview the advances in preparation, characterization, biocompatibility and application of nanocarotenoids reported in research/review papers published in peer-reviewed journals over the last five years. More specifically, nanocarotenoids were prepared from both carotenoid extracts and standards by employing various preparation techniques to yield different nanostructures including nanoemulsions, nanoliposomes, polymeric/biopolymeric nanoparticles, solid lipid nanoparticles, nanostructured lipid nanoparticles, supercritical fluid-based nanoparticles and metal/metal oxide nanoparticles. Stability studies involved evaluation of physical stability and/or chemical stability under different storage conditions and heating temperatures for varied lengths of time, while the release behavior and bioaccessibility were determined by various in vitro digestion and absorption models as well as bioavailability through elucidating pharmacokinetics in an animal model. Moreover, application of nanocarotenoids for various biological applications including antioxidant, anticancer, antibacterial, antiaging, cosmetics, diabetic wound healing and hepatic steatosis were summarized.
Collapse
Affiliation(s)
| | | | - Bing-Huei Chen
- Department of Food Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan; (K.S.); or (B.S.I.)
| |
Collapse
|
14
|
Zhang Q, Zhou Y, Yue W, Qin W, Dong H, Vasanthan T. Nanostructures of protein-polysaccharide complexes or conjugates for encapsulation of bioactive compounds. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
15
|
Lopez C, Mériadec C, David-Briand E, Dupont A, Bizien T, Artzner F, Riaublanc A, Anton M. Loading of lutein in egg-sphingomyelin vesicles as lipid carriers: Thermotropic phase behaviour, structure of sphingosome membranes and lutein crystals. Food Res Int 2020; 138:109770. [PMID: 33292950 DOI: 10.1016/j.foodres.2020.109770] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/30/2020] [Accepted: 09/30/2020] [Indexed: 10/23/2022]
Abstract
Lutein is a xanthophyll carotenoid provided exclusively by the diet, that has protective functions and beneficial effects on human health. Supplementation in lutein is necessary to reach the recommended daily dietary intake. However, the introduction of lutein into foods and beverages is a real challenge since this lipophilic nutrient has a poor aqueous solubility and a low bioavailability. In this study, we investigated the capacity of egg-sphingomyelin (ESM) vesicles called sphingosomes to solubilise lutein into the bilayers. The thermal and structural properties of ESM bilayers were examined in presence of various amounts of lutein by differential scanning calorimetry (DSC) and temperature-controlled X-ray diffraction (XRD), the structures of sphingosomes and lutein crystals were observed by microscopic techniques. ESM bilayers were in the fluid Lα phase above the phase transition temperature Tm = 39.6 °C and in the lamellar ripple Pβ' phase below Tm where ESM sphingosomes exhibited ondulations and were facetted. Lutein molecules were successfully incorporated into the ESM bilayers where they induced a structural disorganisation. For ESM/lutein 90/10 %mol (91.8/8.2 %wt; 89 mg lutein / g ESM), lutein partitioning occured with the formation of lutein crystals in the aqueous phase together with lutein-loaded ESM vesicles. This study highlighted the capacity of new lipid carriers such as egg-sphingosomes to solubilise lutein and opens perspectives for the formulation of effective lutein-fortified functionnal foods and beverages providing health benefits.
Collapse
Affiliation(s)
- Christelle Lopez
- INRAE, BIA, 44316 Nantes, France; INRAE, STLO, 35000 Rennes, France.
| | | | | | - Aurélien Dupont
- Univ Rennes, CNRS, Inserm, BIOSIT - UMS 3480, US_S 018, 35000 Rennes, France
| | - Thomas Bizien
- Synchrotron Soleil, L'Orme des Merisiers, Saint-Aubin BP48, 91192 Gif-sur-Yvette, France
| | - Franck Artzner
- IPR, UMR 6251, CNRS, University of Rennes 1, 35042 Rennes, France
| | | | | |
Collapse
|
16
|
Mora-Gutierrez A, Attaie R, Núñez de González MT, Jung Y, Marquez SA. Interface Compositions as Determinants of Resveratrol Stability in Nanoemulsion Delivery Systems. Foods 2020; 9:foods9101394. [PMID: 33023075 PMCID: PMC7601424 DOI: 10.3390/foods9101394] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/25/2020] [Accepted: 09/30/2020] [Indexed: 01/07/2023] Open
Abstract
The incorporation of hydrophobic ingredients, such as resveratrol (a fat-soluble phytochemical), in nanoemulsions can increase the water solubility and stability of these hydrophobic ingredients. The nanodelivery of resveratrol can result in a marked improvement in the bioavailability of this health-promoting ingredient. The current study hypothesized that resveratrol can bind to caprine casein, which may result in the preservation of the biological properties of resveratrol. The fluorescence spectra provided proof of this complex formation by demonstrating that resveratrol binds to caprine casein in the vicinity of tryptophan amino acid residues. The caprine casein/resveratrol complex is stabilized by hydrophobic interactions and hydrogen bonds. Hence, to study the rate of resveratrol degradation during processing/storage, resveratrol losses were determined by reversed-phase high performance liquid chromatography (RP-HPLC) in nanoemulsions stabilized by bovine and caprine caseins individually and in combination with polysorbate-20. At 48 h oxidation, 88.33% and 89.08% was left of resveratrol in the nanoemulsions stabilized by caprine casein (αs1-I)/polysorbate-20 complex and caprine (αs1-II)/polysorbate-20 complex, while there was less resveratrol left in the nanoemulsions stabilized by bovine casein/polysorbate-20 complex, suggesting that oxygen degradation was involved. The findings of this study are crucial for the food industry since they imply the potential use of caprine casein/polysorbate-20 complex to preserve the biological properties of resveratrol.
Collapse
Affiliation(s)
- Adela Mora-Gutierrez
- Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX 77446, USA; (R.A.); (M.T.N.d.G.); (Y.J.)
- Correspondence: ; Fax: +1-936-261-9975
| | - Rahmat Attaie
- Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX 77446, USA; (R.A.); (M.T.N.d.G.); (Y.J.)
| | - Maryuri T. Núñez de González
- Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX 77446, USA; (R.A.); (M.T.N.d.G.); (Y.J.)
| | - Yoonsung Jung
- Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX 77446, USA; (R.A.); (M.T.N.d.G.); (Y.J.)
| | - Sixto A. Marquez
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA;
| |
Collapse
|
17
|
Caballero S, Davidov-Pardo G. Comparison of legume and dairy proteins for the impact of Maillard conjugation on nanoemulsion formation, stability, and lutein color retention. Food Chem 2020; 338:128083. [PMID: 33091984 DOI: 10.1016/j.foodchem.2020.128083] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/02/2020] [Accepted: 09/11/2020] [Indexed: 11/24/2022]
Abstract
While dairy proteins have traditionally been used to stabilize nanoemulsions, there is a trend towards plant-based formulations. Additionally, both types of protein are poorly soluble near their isoelectric point. The main goals of this research were to develop and characterize Maillard conjugates from pea protein (PPI) or caseinate and dextran, and to evaluate the physical stability of nanoemulsions made with such emulsifiers at various ionic strengths, pH = 4.6, and temperatures during storage, as well as lutein color retention over storage. Protein conjugates formed nanoemulsions with diameters of 125 ± 12 nm (PDI = 0.13 ± 0.00) and 269 ± 36 nm (PDI = 0.76 ± 0.42) (pH = 7) for caseinate and PPI, respectively. Conjugation improved the physical stability (droplet size) of emulsions at the isoelectric point, during storage at 4-55 °C, and in ionic solutions. Lutein color degradation was better associated with particle size than conjugation and was lowest for PPI-stabilized emulsions. This study suggests that Maillard conjugation could improve PPI emulsification properties.
Collapse
Affiliation(s)
- Sarah Caballero
- Nutrition and Food Science Dept., California State Polytechnic University, Pomona, 3801 West Temple Ave, Pomona, CA 91768, USA
| | - Gabriel Davidov-Pardo
- Nutrition and Food Science Dept., California State Polytechnic University, Pomona, 3801 West Temple Ave, Pomona, CA 91768, USA.
| |
Collapse
|