1
|
Chu X, Du P, Wang W, He H, Hu P, Liu Y, Li M, Jiang W, Abd El-Aty AM. L-cysteine modulates the Maillard reaction: Impacts on PhIP and pyrazine formation. Food Chem 2025; 472:142849. [PMID: 39842206 DOI: 10.1016/j.foodchem.2025.142849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 12/27/2024] [Accepted: 01/09/2025] [Indexed: 01/24/2025]
Abstract
L-Cysteine (L-Cys) serves as both an inhibitor of the carcinogen 1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and an enhancer of food flavor, supporting efforts to improve food safety and quality. Using a glucose/phenylalanine/creatinine model system, this study assessed the effects of varying L-Cys concentrations on PhIP inhibition and pyrazine flavor enhancement through UPLC-MS/MS and GC-MS analyses. The optimal PhIP reduction (82.8 %-83.1 %) was achieved with 20 mg and 100 mg of L-Cys, whereas the pyrazine enhancement peaked with 200 mg and 100 mg of L-Cys (50.54 %-99.16 % and 37.83 %-98.82 %, respectively). A partial least squares regression (PLS) model demonstrated strong predictive accuracy (R2c and R2p > 0.73), providing a robust framework for regulating PhIP and pyrazine levels. This study offers a theoretical basis for advancing food safety and flavor quality, contributing to the development of safer and more enjoyable food products while addressing health and sustainability considerations.
Collapse
Affiliation(s)
- Xiaoran Chu
- Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Jinan 250100, China; College of Life Sciences, Yantai University, Yantai 264005, China
| | - Pengfei Du
- Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Jinan 250100, China.
| | - Weiting Wang
- Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Jinan 250100, China
| | - Hongjun He
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Peng Hu
- Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Jinan 250100, China
| | - Yaobo Liu
- Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Jinan 250100, China
| | - Min Li
- Delisi Group Co.,Ltd., Weifang,Shandong 261000, China
| | | | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, 25240 Erzurum, Turkey.
| |
Collapse
|
2
|
Natali PG, Piantelli M, Sottini A, Eufemi M, Banfi C, Imberti L. A step forward in enhancing the health-promoting properties of whole tomato as a functional food to lower the impact of non-communicable diseases. Front Nutr 2025; 12:1519905. [PMID: 39980679 PMCID: PMC11841393 DOI: 10.3389/fnut.2025.1519905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/13/2025] [Indexed: 02/22/2025] Open
Abstract
Nutritional interventions facilitating the consumption of natural, affordable, and environment-compatible health-promoting functional foods are a promising strategy for controlling non-communicable diseases. Given that the complex of tomato micronutrients produces healthier outcomes than lycopene, its major antioxidant component, new strategies to improve the health-supporting properties of the berry are ongoing. In this context, a whole tomato food supplement (WTFS), enriched by 2% olive wastewater containing a complex of healthy nutrients with converging biologic activities, has recently been developed, which is superior to those present in tomato commodities or obtained with whole tomato conventional processing methods. WTFS equals the antioxidant activity of N-acetyl-cysteine and interferes with multiple inflammation and cellular transformation-sustaining metabolic pathways. In interventional studies, WTFS inhibits prostate experimental tumors and improves benign prostate hypertrophy-associated symptoms with no associated side-effects. Although WTFS may be susceptible to further improvements and clinical scrutiny, its composition embodies the features of advanced functional foods to ease adherence to dietary patterns, that is, the Mediterranean diet, aimed at contrasting and mitigating the low-grade inflammation, thus being interceptive or preventive of non-communicable diseases.
Collapse
Affiliation(s)
- Pier Giorgio Natali
- Mediterranean Task Force for Cancer Control, Rome, Italy
- Department of Medicine and Aging Sciences, Center for Advanced Studies and Technology (CAST), G. D'Annunzio University, Chieti, Italy
| | - Mauro Piantelli
- Department of Medicine and Aging Sciences, Center for Advanced Studies and Technology (CAST), G. D'Annunzio University, Chieti, Italy
| | - Alessandra Sottini
- Service Department, Highly Specialized Laboratory, Diagnostic Department, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Margherita Eufemi
- Department of Biochemical Science "A. Rossi Fanelli", Faculty of Pharmacy and Medicine, "La Sapienza" University of Rome, Rome, Italy
| | - Cristina Banfi
- Centro Cardiologico Monzino IRCCS, Unit of Functional Proteomics, Metabolomics, and Network Analysis, Milan, Italy
| | - Luisa Imberti
- Section of Microbiology, University of Brescia, P. le Spedali Civili, Brescia, Italy
| |
Collapse
|
3
|
Cao J, Tsao R, Yang C, Zhang L. Aqueous preparation of arginyl-fructosyl-glucose (a maltose-arginine AC) and determination of Amadori compounds (ACs) in red ginseng by ultra-high performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). Food Res Int 2024; 187:114436. [PMID: 38763683 DOI: 10.1016/j.foodres.2024.114436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/19/2024] [Accepted: 04/27/2024] [Indexed: 05/21/2024]
Abstract
Amadori compounds (ACs) are key Maillard intermediates in various foods after thermal processing, and are also important non-saponin components in red ginseng. Currently, due to the difficulty in obtaining AC standards, the determination of multiple ACs is limited and far from optimal. In this study, an ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed and validated. A green synthetic method was developed for arginyl-fructosyl-glucose (AFG), the major AC in red ginseng with potential health benefits. The UPLC-MS/MS method was then applied in identification and quantification of ACs in red ginseng samples, which showed for the first time that 12 other ACs also exist in red ginseng in addition to AFG and arginyl-fructose (total 98.88 % of all ACs). Contents of AFG and arginyl-fructose in whole red ginseng were 36.23 and 10.80 mg/g dry weight, respectively. Raw ginseng can be steamed and then dried whole to obtain whole red ginseng, or sliced before drying to obtain sliced red ginseng. Slicing before drying was found to reduce ACs content. Results of the present study will help to reveal the biological functions of red ginseng and related products associated with ACs and promote the standardization of red ginseng manufacture.
Collapse
Affiliation(s)
- Jialing Cao
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Rong Tsao
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario, N1G 5C9 Canada
| | - Cheng Yang
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Lianfu Zhang
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
4
|
Yang C, Li S, Li C, Li J, Shi R, Cao J, Zhang L. Preparation of red jujube powder with high content of Amadori compounds and higher antioxidant activity by controlling the Maillard reaction. J Food Sci 2024; 89:2218-2231. [PMID: 38372196 DOI: 10.1111/1750-3841.16985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/20/2024] [Accepted: 01/31/2024] [Indexed: 02/20/2024]
Abstract
Amadori compounds (ACs) are stable compounds produced in the early stage of the Maillard reaction (MR) with health benefits such as immunomodulatory, antithrombosis, and tumor-preventive effects. Jujube is a medicinal and edible fruit in China. It is rich in free amino acids and reducing sugar, but traditionally, little attention was paid to the formation of ACs when jujube was processed, neither the influence of ACs on health effects. In this paper, we aimed to increase ACs through controlling the MR during different heating processes of jujube powder with adjusted water content and find the most effective AC that contributed to the antioxidant effects of jujube powder. The optimal dry-heating conditions to produce ACs were as follows: The water activity was 0.294, the heating temperature was 90°C, and the time was 120 min. After processing, the ACs content of jujube powder was 18.55 ± 0.19 mg/g dry weight (DW), which was more than 100 times of those in the unheated jujube powder (0.153 ± 0.003 mg/g DW). Besides, the antioxidant activity of jujube powder after dry-heating process was higher than that of unheated one. As the most abundant AC in the dry-heated jujube powder (12.90 ± 0.75 mg/g DW), N-(1-deoxy-d-fructose-1-yl) proline (Fru-Pro) showed the highest antioxidant activity (62% of equivalent l-ascorbic acid) among 12 ACs in ferric reducing antioxidant power assay. This result provided a method to produce jujube product with high content of ACs and confirmed the positive contribution of Fru-Pro to the antioxidant activity of the jujube powder.
Collapse
Affiliation(s)
- Cheng Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Shuo Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Chenyan Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Jing Li
- Food Quality and Safety Department, School of Management, Sanda University, Shanghai, China
| | - Rundongdong Shi
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
| | - Jialing Cao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Lianfu Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|
5
|
Yu J, Renard CMGC, Zhang L, Gleize B. Fate of Amadori compounds in processing and digestion of multi-ingredients tomato based sauces and their effect on other microconstituents. Food Res Int 2023; 173:113381. [PMID: 37803719 DOI: 10.1016/j.foodres.2023.113381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 10/08/2023]
Abstract
Amadori compounds (ACs), the first stable products of Maillard reaction, are detected in various products of fruits and vegetables, and show an antioxidant activity which can be related to beneficial effects in human health. In order to optimize the nutritional quality of a multi-ingredient tomato sauce (tomato puree - onion - olive oil - dried pepper), the fate of ACs during processing (drying, heating) and gastrointestinal digestion of a model meal was assessed as well as that of other microconstituents, i.e. carotenoids, phenolic compounds and capsaicinoids. The drying at 50 °C of fresh pepper induced the formation and accumulation of ACs after 6 days. During the heat treatment by microwave of multi-ingredient tomato sauce, Maillard reaction occurs in presence of dried pepper and the content in ACs in the tomato-based sauces increased (+33% to + 53%) depending of quantities of dried pepper added. The bioaccessibility of total ACs was 24-31% in duodenal phase and 18-22% in jejunal phase. Individual ACs have shown variable bioaccessibility, e.g. very high for Fru-Arg (50.8% to 71.3%), and very low for Fru-Met (1.8% to 2.2%). The kinetic monitoring of ACs in digestion medium showed that ACs are not stable (-46% in gastric phase, -49 % in intestinal phase) which indicated their potential degradation in the digestive tract. The presence of ACs in the multi-ingredients tomato sauces had no effect on the content of the other bioactive compounds monitored in the study and even promoted the bioaccessibility of total lycopene (+30%) but decreased the bioaccessibility of total phenolic compounds.
Collapse
Affiliation(s)
- Jiahao Yu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang, China; State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China; INRAE, Avignon Université, UMR SQPOV, F-84000 Avignon, France
| | | | - Lianfu Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China.
| | - Béatrice Gleize
- INRAE, Avignon Université, UMR SQPOV, F-84000 Avignon, France.
| |
Collapse
|
6
|
Cao J, Yang C, Zhang J, Zhang L, Tsao R. Amadori compounds: analysis, composition in food and potential health beneficial functions. Crit Rev Food Sci Nutr 2023; 65:406-428. [PMID: 39722481 DOI: 10.1080/10408398.2023.2274949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Amadori compounds (ACs) are key intermediates of the Maillard reaction, and found in various thermally processed foods. Simultaneous analysis of multiple ACs is challenging due to the complex amino acid and carbohydrate compositions, and the different food matrices. Most studies focus on the effects of ACs on food flavor and related sensory properties, but not their biological functions. However, increasing evidence shows that ACs possess various beneficial effects on human health, thus a comprehensive review on the various biological activities is warranted. In this review, we summarized the composition and content of ACs in different foods, their formation and degradation reactions, and discussed the latest advances in analytical methods of ACs and their biological functions related to human health. Limitations and research gaps were identified and future perspectives on ACs research were proposed. This review points to the needs of systematic and comprehensive in vitro and in vivo studies on human health related biological functions of ACs and their mechanisms of action, particularly the synergistic effects with other food components and drugs, and roles in intestinal health and metabolic syndrome.
Collapse
Affiliation(s)
- Jialing Cao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Cheng Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jian Zhang
- College of Food, Shihezi University, Shihezi, China
| | - Lianfu Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- College of Food, Shihezi University, Shihezi, China
| | - Rong Tsao
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Canada
| |
Collapse
|
7
|
Yan S, Zhang M, Yuan Y, Mu G, Xu H, Zhao T, Wang Y, Xue X. Chaste honey in long term-storage: Occurrence and accumulation of Maillard reaction products, and safety assessment. Food Chem 2023; 424:136457. [PMID: 37247601 DOI: 10.1016/j.foodchem.2023.136457] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/09/2023] [Accepted: 05/22/2023] [Indexed: 05/31/2023]
Abstract
Honey, a natural sweetener that can be stored long-term, is prone to Maillard reactions. Maillard reaction products (MRPs), such as 5-hydroxymethylfurfural (5-HMF), α-dicarbonyl compounds (α-DCs), and advanced glycation end products (AGEs), negatively affect human health. We analyzed MRP accumulation in chaste honey over four years. In the first year, α-DCs were dominant with total contents of 509.7 mg/kg. In the second year, Amadori compounds increased, accounting for the largest percentage. Their formation at the initial stage showed inhibition of the Maillard reaction over time. AGE contents were approximately 1.00 mg/kg over four years, which is negligible compared to other foods. Increased 5-HMF was significantly correlated with storage time (p < 0.01), making it a suitable indicator of honey quality. Due to the lack of MRP risk assessments, we compared our findings with daily intake of MRPs from other foods, and the levels of MRPs in honey over four years are acceptable.
Collapse
Affiliation(s)
- Sha Yan
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; State Key Laboratory of Resource Insects, Institute of Apiculture Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Min Zhang
- State Key Laboratory of Resource Insects, Institute of Apiculture Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Yuzhe Yuan
- State Key Laboratory of Resource Insects, Institute of Apiculture Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Guodong Mu
- State Key Laboratory of Resource Insects, Institute of Apiculture Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Haitao Xu
- State Key Laboratory of Resource Insects, Institute of Apiculture Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Tian Zhao
- Animal Husbandry and Veterinary Medicine Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550005, China
| | - Yinchen Wang
- Animal Husbandry and Veterinary Medicine Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550005, China.
| | - Xiaofeng Xue
- State Key Laboratory of Resource Insects, Institute of Apiculture Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| |
Collapse
|
8
|
Cui F, Wang Q, Han L, Wang D, Li J, Li T, Li X. Effect of Maillard conjugates of peptides and polydextrose on Antarctic krill oil emulsion stability and digestibility. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
9
|
Li C, Yang C, Zhang J, Zhang L. Formation of Amadori compounds in LIGAO (concentrated pear juice) processing and the effects of Fru-Asp on cough relief and lung moisturization in mice. Food Funct 2022; 13:12787-12798. [PMID: 36421027 DOI: 10.1039/d2fo02903k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
LIGAO (concentrated pear juice) has been used for more than 1000 years to treat respiratory complaints such as cough and expectoration in China, but the study of the mechanism of its antitussive effects and ability to moisten the lungs is limited. This study found that the content of Amadori compounds (ACs) and other nutrients changed during LIGAO processing. Furthermore, N-(1-deoxy-D-fructos-1-yl)-aspartic acid (Fru-Asp), the most abundant and characteristic AC in LIGAO, was prepared and studied. The antitussive test revealed that Fru-Asp could significantly reduce the frequency of cough and prolong the cough latent period in mice. A high dose of Fru-Asp (250 mg kg-1) in mice provided better therapeutic activities than that of dextromethorphan hydrobromide tablets (30 mg kg-1). In the Fru-Asp pretreated group, Fru-Asp significantly alleviated inflammation in LPS-induced acute lung injury mice. Fru-Asp can significantly decrease the levels of TNF-α and IL-β in mice by 11%. Additionally, Fru-Asp exhibited angiotensin-converting enzyme (ACE) inhibitor activity (IC50 = 0.242 mM). The contribution and health benefits of Fru-Asp on cough relief were first reported in this study, which also substantiated it as a functional component of LIGAO. The results provided the basis for future research on the health effects of ACs and a method to improve the added value of LIGAO and other pear products.
Collapse
Affiliation(s)
- Chenyan Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China.
| | - Cheng Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China.
| | - Jian Zhang
- College of Food, Shihezi University, Beisi Road, Shihezi, Xinjiang 832003, P. R. China
| | - Lianfu Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China. .,College of Food, Shihezi University, Beisi Road, Shihezi, Xinjiang 832003, P. R. China
| |
Collapse
|
10
|
Xing H, Mu K, Kitts DD, Yaylayan VA. Molecular Basis for the Simultaneous Enhancement of the Aroma-Generating Capacity and Bioactivity of Maillard Reaction Precursors through Mechanochemistry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13637-13650. [PMID: 36226926 DOI: 10.1021/acs.jafc.2c05644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ball milling at ambient temperatures can accelerate the formation and accumulation of early-stage Maillard reaction intermediates considered important precursors of aromas and antioxidants. In this study, using chemical and biological assays, we explored the potential of sequential milling and heating to enhance the antioxidant and aroma-generating capacity of Maillard model systems. Milling (30 Hz/30 min) followed by dry heating (90 °C/30 min) of glycine or lysine with glucose significantly increased not only the intensity of their aroma-active compounds as analyzed by headspace-gas chromatography/mass spectrometry (HS-GC/MS) but also their free radical scavenging capacity as assessed by 2,2'-azino-bis-(3-ethylbenzothiazoneline-6-sulfonic acid) (ABTS) and oxygen radical absorbance capacity (ORAC) assays. This was attributed to the increased formation of redox-active endiol moieties and precursors of N,N-dialkyl-pyrazinium radical cation in the lysine system assessed by electrospray ionization-quadrupole time-of-flight/tandem mass spectrometry (ESI-QqTOF/MS/MS) analysis. The test samples also inhibited NO generation and cellular oxidative stress in RAW 264.7 murine macrophage cells, indicating size reduction induced by milling promoted paracellular absorption.
Collapse
Affiliation(s)
- Haoran Xing
- Department of Food Science & Agricultural Chemistry, McGill University, 21111 Lakeshore, Sainte Anne de Bellevue, Quebec, CanadaH9X 3V9
| | - Kaiwen Mu
- Food Science, Food, Nutrition, and Health Program, Faculty of Land and Food Systems, University of British Columbia, 2205 East Mall, Vancouver, British Columbia, CanadaV6T 1Z4
| | - David D Kitts
- Food Science, Food, Nutrition, and Health Program, Faculty of Land and Food Systems, University of British Columbia, 2205 East Mall, Vancouver, British Columbia, CanadaV6T 1Z4
| | - Varoujan A Yaylayan
- Department of Food Science & Agricultural Chemistry, McGill University, 21111 Lakeshore, Sainte Anne de Bellevue, Quebec, CanadaH9X 3V9
| |
Collapse
|
11
|
Li L, Yang C, Zhang J, Zhang L. Study on the Drying Technology of Tomato Pulp with Phytoene, Phytofluene and Lycopene Retention as Inspection Indexes. Foods 2022; 11:foods11213333. [PMID: 36359946 PMCID: PMC9655361 DOI: 10.3390/foods11213333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 11/29/2022] Open
Abstract
The objective was to design a feasible drying method to increase the retention rates of phytoene (PT), phytofluene (PTF) and lycopene (LYC) in tomato powder. The method was to compare the effects of vacuum freeze-drying (FD), vacuum drying (VD) and hot-air drying (HAD) technologies on tomato pulp rich in PT, PTF and LYC. When dried by HAD, the retention rates of PT, PTF and LYC decreased significantly (p < 0.05) only when the water content decreased from 30% to 3.5%. When dried by VD, the temperatures had no significant effect on the retention rates, and only alkaline conditions (pH = 9), Fe3+ and Al3+ could significantly reduce the retention rates (p < 0.05). Therefore, a combined drying process (CDP) was designed: before the water content decreased to 50%, HD (60 °C) technology was used; then, the paste was dried via VD (80 °C, 0.08 MPa) technology till the water content reached 5 ± 2%; loading weight was 40 g (thinkness 5.70 mm) for each batch. Compared with VD alone, the CDP technology improved the retention rates of PT and LYC by 12% and 36%, respectively, while PTF decreased by only 6%.
Collapse
Affiliation(s)
- Liying Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Cheng Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Jian Zhang
- College of Food, Shihezi University, Beisi Road, Shihezi 832003, China
| | - Lianfu Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- College of Food, Shihezi University, Beisi Road, Shihezi 832003, China
- Correspondence: ; Tel./Fax: +86-510-85917025
| |
Collapse
|
12
|
Yan S, Wang X, Wu Y, Wang K, Shan J, Xue X. A metabolomics approach revealed an Amadori compound distinguishes artificially heated and naturally matured acacia honey. Food Chem 2022; 385:132631. [DOI: 10.1016/j.foodchem.2022.132631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 02/04/2023]
|
13
|
Onyeaka DH, Nwaizu CC, Ekaette I. Mathematical modeling for thermally treated vacuum-packaged foods: A review on sous vide processing. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Maillard reaction chemistry in formation of critical intermediates and flavour compounds and their antioxidant properties. Food Chem 2022; 393:133416. [DOI: 10.1016/j.foodchem.2022.133416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 05/26/2022] [Accepted: 06/04/2022] [Indexed: 12/28/2022]
|
15
|
Zhou R, Yang C, Xie T, Zhang J, Wang C, Ma Z, Zhang L. Angiotensin-Converting Enzyme (ACE) Inhibitory Activity and Mechanism Analysis of N-(1-Deoxy-d-fructos-1-yl)-histidine (Fru-His), a Food-Derived Amadori Compound. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2179-2186. [PMID: 35148100 DOI: 10.1021/acs.jafc.1c05583] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
N-(1-Deoxy-d-fructos-1-yl)-histidine (Fru-His), one of the Amadori compounds, widely presents in processed foods, and its potential functional activities have attracted extensive attention in recent years. In this work, the angiotensin-converting enzyme (ACE) inhibitory activity and mechanism of Fru-His were investigated. The IC50 value of Fru-His was 0.150 ± 0.019 mM, and there was no obvious degradation of Fru-His after digestion simulation, showing that Fru-His has good ACE inhibition and digestive stability. Fru-His was a competitive inhibitor according to the enzyme inhibition kinetic analysis. The interaction between ACE and Fru-His occurred spontaneously mainly through hydrogen bonding, and the process was accompanied by fluorescence quenching and the alteration of the secondary structure of ACE. The molecular docking data supported the above results. Fru-His was attached to ACE's S1 active pocket through hydrogen bonds and interacted with zinc ions in active sites. The present study demonstrates that food-derived Fru-His has the potential to relieve hypertension.
Collapse
Affiliation(s)
- Renjie Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
| | - Cheng Yang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
| | - Ting Xie
- Technical Center of Hefei Customs, Hefei 230041, Anhui, P. R. China
| | - Jian Zhang
- College of Food, Shihezi University, Beisi Road, Shihezi 832003, Xinjiang, P. R. China
| | - Chenqiang Wang
- Technology Center, Xinjiang Guannong Fruit & Antler Group Co., Ltd., Korla City 841000, Xinjiang, P. R. China
| | - Ziqiang Ma
- Technology Center, Xinjiang Guannong Fruit & Antler Group Co., Ltd., Korla City 841000, Xinjiang, P. R. China
| | - Lianfu Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
- College of Food, Shihezi University, Beisi Road, Shihezi 832003, Xinjiang, P. R. China
| |
Collapse
|
16
|
Key Aspects of Amadori Rearrangement Products as Future Food Additives. Molecules 2021; 26:molecules26144314. [PMID: 34299589 PMCID: PMC8303902 DOI: 10.3390/molecules26144314] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/11/2021] [Accepted: 07/15/2021] [Indexed: 11/17/2022] Open
Abstract
Flavor is one of the most important factors in attracting consumers and maximizing food quality, and the Maillard reaction (MR) is highly-involved in flavor formation. However, Maillard reaction products have a big drawback in their relatively low stability in thermal treatment and storage. Amadori rearrangement products (ARPs), MR intermediates, can alternatively act as potential flavor additives for their better stability and fresh flavor formation ability. This review aims to elucidate key aspects of ARPs’ future application as flavorings. The development of current analytical technologies enables the precise characterization of ARPs, while advanced preparation methods such as synthesis, separation and drying processes can increase the yield of ARPs to up to 95%. The stability of ARPs is influenced by their chemical nature, pH value, temperature, water activity and food matrix. ARPs are associated with umami and kokumi taste enhancing effects, and the flavor formation is related to amino acids/peptides of the ARPs. Peptide-ARPs can generate peptide-specific flavors, such as: 1,6-dimethy-2(1H)-pyrazinone, 1,5-dimethy-2(1H)-pyrazinone, and 1,5,6-trimethy-2(1H)-pyrazinone. However, further research on systematic stability and toxicology are needed.
Collapse
|
17
|
Zhou R, Yu J, Li S, Zhang J, Wang C, Zhang L. Vacuum Dehydration: An Excellent Method to Promote the Formation of Amadori Compounds (ACs, N-(1-Deoxy-d-fructos-1-yl)-amino Acid) in Aqueous Models and Tomato Sauce. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14584-14593. [PMID: 33249841 DOI: 10.1021/acs.jafc.0c06066] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Amadori compounds (ACs; N-(1-deoxy-d-fructos-1-yl)-amino acid) are superior flavor precursors and potential functional ingredients in food processing. In this study, vacuum dehydration as an excellent and universal method for the formation of ACs in both simulation systems and food processing was revealed. In total, 12 amino acids referring to all six categories were selected to conduct simulated reactions with glucose in aqueous models. At 90 °C, yields of 11 ACs were significantly increased by vacuum dehydration, reaching 4-198 times compared to a heat sealing reaction in aqueous systems, and formation of 5-hydroxymethyl-2-furaldehyde (5-HMF) and browning were slower than that by a dry powder reaction. In particular, the yields of Fru-Arg, Fru-His, and Fru-Glu reached 87.03, 90.73, and 89.88 mol %, respectively. The order of promotion effect was acid ACs > basic ACs > unique ACs > polar neutral ACs > aliphatic ACs > aromatic ACs. The excellent effect was mainly attributed to the control of water activity (Aw) and pH, which enabled the models to reach the optimal reaction state quickly by adjusting the vacuum degree at mild temperatures. The method was also applied to AC enrichment in tomato sauce processing; the AC content could rise to 30.72 mg/g, which was more than 17 times than those in samples without vacuum dehydration and two commercial tomato sauces.
Collapse
Affiliation(s)
- Renjie Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China
| | - Jiahao Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China
| | - Shuo Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China
| | - Jian Zhang
- College of Food, Shihezi University, Beisi Road, Shihezi, Xinjiang 832003, P. R. China
| | - Chenqiang Wang
- Technology Center, Xinjiang Guannong Fruit & Antler Group Co., Ltd, No. 48 Tuanjie South Road, Korla City, Xinjiang 841000, P. R. China
| | - Lianfu Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China
- College of Food, Shihezi University, Beisi Road, Shihezi, Xinjiang 832003, P. R. China
| |
Collapse
|
18
|
Zavadlav S, Blažić M, Van de Velde F, Vignatti C, Fenoglio C, Piagentini AM, Pirovani ME, Perotti CM, Bursać Kovačević D, Putnik P. Sous-Vide as a Technique for Preparing Healthy and High-Quality Vegetable and Seafood Products. Foods 2020; 9:E1537. [PMID: 33113877 PMCID: PMC7693970 DOI: 10.3390/foods9111537] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/18/2022] Open
Abstract
Sous-vide is a technique of cooking foods in vacuum bags under strictly controlled temperature, offering improved taste, texture and nutritional values along with extended shelf life as compared to the traditional cooking methods. In addition to other constituents, vegetables and seafood represent important sources of phytochemicals. Thus, by applying sous-vide technology, preservation of such foods can be prolonged with almost full retention of native quality. In this way, sous-vide processing meets customers' growing demand for the production of safer and healthier foods. Considering the industrial points of view, sous-vide technology has proven to be an adequate substitute for traditional cooking methods. Therefore, its application in various aspects of food production has been increasingly researched. Although sous-vide cooking of meats and vegetables is well explored, the challenges remain with seafoods due to the large differences in structure and quality of marine organisms. Cephalopods (e.g., squid, octopus, etc.) are of particular interest, as the changes of their muscular physical structure during processing have to be carefully considered. Based on all the above, this study summarizes the literature review on the recent sous-vide application on vegetable and seafood products in view of production of high-quality and safe foodstuffs.
Collapse
Affiliation(s)
- Sandra Zavadlav
- Department of Food Technology, Karlovac University of Applied Sciences, Trg J. J. Strossmayera 9, 47 000 Karlovac, Croatia;
| | - Marijana Blažić
- Department of Food Technology, Karlovac University of Applied Sciences, Trg J. J. Strossmayera 9, 47 000 Karlovac, Croatia;
| | - Franco Van de Velde
- Facultad de Ingeniería Química, Instituto de Tecnología de Alimentos, Universidad Nacional del Litoral (FIQ, UNL), 1º de Mayo 3250, Santa Fe 3000, Argentina; (F.V.d.V.); (C.V.); (C.F.); (A.M.P.); (M.E.P.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santiago del Estero 2829, Santa Fe 3000, Argentina;
| | - Charito Vignatti
- Facultad de Ingeniería Química, Instituto de Tecnología de Alimentos, Universidad Nacional del Litoral (FIQ, UNL), 1º de Mayo 3250, Santa Fe 3000, Argentina; (F.V.d.V.); (C.V.); (C.F.); (A.M.P.); (M.E.P.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santiago del Estero 2829, Santa Fe 3000, Argentina;
| | - Cecilia Fenoglio
- Facultad de Ingeniería Química, Instituto de Tecnología de Alimentos, Universidad Nacional del Litoral (FIQ, UNL), 1º de Mayo 3250, Santa Fe 3000, Argentina; (F.V.d.V.); (C.V.); (C.F.); (A.M.P.); (M.E.P.)
| | - Andrea M. Piagentini
- Facultad de Ingeniería Química, Instituto de Tecnología de Alimentos, Universidad Nacional del Litoral (FIQ, UNL), 1º de Mayo 3250, Santa Fe 3000, Argentina; (F.V.d.V.); (C.V.); (C.F.); (A.M.P.); (M.E.P.)
| | - María Elida Pirovani
- Facultad de Ingeniería Química, Instituto de Tecnología de Alimentos, Universidad Nacional del Litoral (FIQ, UNL), 1º de Mayo 3250, Santa Fe 3000, Argentina; (F.V.d.V.); (C.V.); (C.F.); (A.M.P.); (M.E.P.)
| | - Cristina M. Perotti
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santiago del Estero 2829, Santa Fe 3000, Argentina;
- Facultad de Ingeniería Química, Instituto de Lactología Industrial (INLAIN), Universidad Nacional del Litoral (FIQ, UNL/CONICET), Santiago del Estero 2829, Santa Fe 3000, Argentina
| | - Danijela Bursać Kovačević
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia;
| | - Predrag Putnik
- Greenbird Medical Inc., Trg dr. Žarka Dolinara 18, 48 000 Koprivnica, Croatia
- Department of Food Technology, University North, Trg dr. Žarka Dolinara 1, 48000 Koprivnica, Croatia
| |
Collapse
|