1
|
Wu W, Jiang X, Zhu Q, Yuan Y, Chen R, Wang W, Liu A, Wu C, Ma C, Li J, Zhang J, Peng Z. Metabonomics analysis of the flavor characteristics of Wuyi Rock Tea (Rougui) with "rock flavor" and microbial contributions to the flavor. Food Chem 2024; 450:139376. [PMID: 38648695 DOI: 10.1016/j.foodchem.2024.139376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/03/2024] [Accepted: 04/13/2024] [Indexed: 04/25/2024]
Abstract
Wuyi Rock Tea (WRT) has different characteristics of "rock flavor" due to different production areas. In this study, we investigated the flavor characteristics and key components of "rock flavor" and the influence of microorganisms on the substances by combining metabolomics and microbiomics with the Rougui WRTs from the Zhengyan, Banyan, and Waishan production areas. The results showed that Rougui has a strong floral and fruity aroma, which is mainly brought by hotrienol, and the sweet, smooth, and fresh taste is composed of epicatechin gallate, epigallocatechin, epigallocatechin gallate, caffeine, theanine, soluble sugar, and sweet and bitter amino acids. Bacteria Chryseobacterium, Pedobacter, Bosea, Agrobacterium, Stenotrophomonas, and Actinoplanes mainly influence the production of hotrienol, epicatechin gallate, and theanine. Fungi Pestalotiopsis, Fusarium, Elsinoe, Teichospora and Tetracladium mainly influence the production of non-volatile compounds. This study provides a reference for the biological formation mechanism of the characteristic aroma of WRT's "rock falvor".
Collapse
Affiliation(s)
- Wenmiao Wu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Xinyi Jiang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Qi Zhu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Yang Yuan
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Rongping Chen
- H.K.I.(Wuyishan) Tea Company Limited, Nanping 353000, China
| | - Wenzhen Wang
- H.K.I.(Wuyishan) Tea Company Limited, Nanping 353000, China
| | - Anxing Liu
- H.K.I.(Wuyishan) Tea Company Limited, Nanping 353000, China
| | - Chengjian Wu
- Wuyishan Kaijie Rock Tea City Co., LTD, Nanping 353000, China; Fujian Vocational College of Agriculture, Fuzhou 350119, China
| | | | - Jianghua Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Juan Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Zheng Peng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| |
Collapse
|
2
|
Ramírez-Ordorica A, Adame-Garnica SG, Ramos-Aboites HE, Winkler R, Macías-Rodríguez L. Volatile Semiochemicals Emitted by Beauveria bassiana Modulate Larval Feeding Behavior and Food Choice Preference in Spodoptera frugiperda (Lepidoptera: Noctuidae). J Fungi (Basel) 2024; 10:438. [PMID: 38921424 PMCID: PMC11204931 DOI: 10.3390/jof10060438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024] Open
Abstract
Beauveria bassiana is an entomopathogenic fungus that parasitizes and kills insects. The role of volatile organic compounds (VOCs) emitted by B. bassiana acting as semiochemicals during its interaction with lepidopterans is poorly explored. Here, we studied the effect of VOCs from B. bassiana and 3-methylbutanol (as a single compound) on the feeding behavior of L2 larvae of Spodoptera frugiperda in sorghum plants. Additionally, we assessed whether fungal VOCs induce chemical modifications in the plants that affect larval food preferences. Metabolomic profiling of plant tissues was performed by mass spectrometry and bioassays in a dual-choice olfactometer. The results showed that the larval feeding behavior was affected by the B. bassiana strain AI2, showing that the insect response is strain-specific. Furthermore, 80 µg of 3-methylbutanol affected the number of bites. The larval feeding choice was dependent on the background context. Fragment spectra and a matching precursor ion mass of 165.882 m/z enabled the putative identification of 4-coumaric acid in sorghum leaves exposed to fungal VOCs, which may be associated with larval deterrent responses. These results provide valuable insights into the bipartite interaction of B. bassiana with lepidopterans through VOC emission, with the plant as a mediator of the interaction.
Collapse
Affiliation(s)
- Arturo Ramírez-Ordorica
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, Morelia C.P. 58030, Mexico;
| | - Sandra Goretti Adame-Garnica
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, Morelia C.P. 58030, Mexico;
| | - Hilda Eréndira Ramos-Aboites
- Laboratorio de Análisis Bioquímico e Instrumental, Unidad de Genómica Avanzada, Cinvestav, Km 9.6, Libramiento Norte, Carretera Irapuato-León, Irapuato C.P. 36824, Mexico; (H.E.R.-A.); (R.W.)
| | - Robert Winkler
- Laboratorio de Análisis Bioquímico e Instrumental, Unidad de Genómica Avanzada, Cinvestav, Km 9.6, Libramiento Norte, Carretera Irapuato-León, Irapuato C.P. 36824, Mexico; (H.E.R.-A.); (R.W.)
| | - Lourdes Macías-Rodríguez
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, Morelia C.P. 58030, Mexico;
| |
Collapse
|
3
|
Yan X, Tian Y, Zhao F, Wang R, Zhou H, Zhang N, Wang Y, Shan Z, Zhang C. Analysis of the key aroma components of Pu'er tea by synergistic fermentation with three beneficial microorganisms. Food Chem X 2024; 21:101048. [PMID: 38162036 PMCID: PMC10757262 DOI: 10.1016/j.fochx.2023.101048] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/26/2023] [Accepted: 12/03/2023] [Indexed: 01/03/2024] Open
Abstract
Aroma is a key indicator of the quality and value of Pu'er tea. A total of 36 aroma components were detected,which Saccharomyces, Rhizopus, and Aspergillus niger, were in the ratios of 2:1:2, 2:2:2, and 2:3:2 inoculated to ferment Pu'er tea, comparing with natural fermentation. In addition, 12 key aroma compounds were identified by analysing ROAVs. Methoxyphenyl compounds and β-ionone were the primary contributors to the formation of aged and woody aroma when fermenting Pu'er tea naturally or using Rhizopus, while linalool and its oxides, benzyl alcohol, hexanal, and limonene were the primary contributors to the formation of floral and fruity aroma when fermenting Pu'er tea using synergistic fermentation with Saccharomyces, Rhizopus, and Aspergillus niger. This study identified the key aroma components of the Pu'er tea fermented using five methods, which revealed and demonstrated the potential application of synergistic effects of different microorganisms in the changes of aroma of Pu'er tea.
Collapse
Affiliation(s)
- Xuehang Yan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Yang Tian
- College of Tea and Coffee, Pu'er University, Pu'er 665000, China
| | - Feng Zhao
- College of Tea and Coffee, Pu'er University, Pu'er 665000, China
| | - Ruifang Wang
- College of Tea and Coffee, Pu'er University, Pu'er 665000, China
| | - Hongjie Zhou
- College of Tea, Yunnan Agricultural University, Kunming, Yunnan, 650000, China
| | - Naiming Zhang
- College of Tea, Yunnan Agricultural University, Kunming, Yunnan, 650000, China
| | - Yuefei Wang
- Tea Research Institute, Zhejiang University, Hangzhou, 310058, China
| | - Zhiguo Shan
- College of Tea and Coffee, Pu'er University, Pu'er 665000, China
| | - Chunhua Zhang
- College of Tea and Coffee, Pu'er University, Pu'er 665000, China
| |
Collapse
|
4
|
Improving flavor of summer Keemun black tea by solid-state fermentation using Cordyceps militaris revealed by LC/MS-based metabolomics and GC/MS analysis. Food Chem 2023; 407:135172. [PMID: 36508871 DOI: 10.1016/j.foodchem.2022.135172] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 10/04/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Cordyceps militaris (C. militaris) has been approved and widely used in healthy food. The present study aimed to improve the flavor of summer Keemun black tea (KBT) using C. militaris solid-state fermentation. Combined with sensory evaluation, the volatile and non-volatile components of solid-state fermentation of KBT (SSF-KBT) and KBT were analyzed. The results showed that after the solid-state fermentation, the contents of total polyphenol, total flavonoid, and total free amino acids were significantly reduced. Further non-targeted metabolomics analysis revealed that the contents of non-galloylated catechins and d-mannitol increased, while the galloylated catechins and flavonoid glycosides decreased as did the bitterness and astringency of KBT. Dihydro-β-ionone and β-ionone (OAV = 59321.97 and 8154.17) were the aroma-active compounds imparting woody and floral odors in SSF-KBT, respectively. Current study provides a new avenue to develop summer-autumn KBT.
Collapse
|
5
|
Zou C, Chen DQ, He HF, Huang YB, Feng ZH, Chen JX, Wang F, Xu YQ, Yin JF. Impact of tea leaves categories on physicochemical, antioxidant, and sensorial profiles of tea wine. Front Nutr 2023; 10:1110803. [PMID: 36824171 PMCID: PMC9941558 DOI: 10.3389/fnut.2023.1110803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/13/2023] [Indexed: 02/09/2023] Open
Abstract
Introduction Tea is the main raw material for preparing tea wine. Methods In this research, four types of tea wine were prepared using different categories of tea leaves, including green tea, oolong tea, black tea, and dark tea, and the comparative study looking their physicochemical, sensorial, and antioxidant profiles were carried out. Results The dynamic changes of total soluble solids, amino acids and ethanol concentrations, and pH were similar in four tea wines. The green tea wine (GTW) showed the highest consumption of total soluble solids and amino acids, and produced the highest concentrations of alcohol, malic, succinic, and lactic acid among all tea wines. The analysis of volatile components indicated the number and concentration of esters and alcohols increased significantly after fermentation of tea wines. GTW presented the highest volatile concentration, while oolong tea wine (OTW) showed the highest number of volatile compounds. GTW had the highest total catechins concentration of 404 mg/L and the highest ABTS value (1.63 mmol TEAC/mL), while OTW showed the highest DPPH value (1.00 mmol TEAC/mL). Moreover, OTW showed the highest score of sensory properties. Discussion Therefore, the types of tea leaves used in the tea wine production interfere in its bioactive composition, sensorial, and antioxidant properties.
Collapse
Affiliation(s)
- Chun Zou
- Tea Research Institute Chinese Academy of Agricultural Sciences, National Engineering Research Center for Tea Processing, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - De-Quan Chen
- Tea Research Institute Chinese Academy of Agricultural Sciences, National Engineering Research Center for Tea Processing, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China,Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hua-Feng He
- School of Pharmacy, Jining Medical University, Jining, China
| | - Yi-Bin Huang
- Tea Research Institute Chinese Academy of Agricultural Sciences, National Engineering Research Center for Tea Processing, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China,College of Tea Science, Guizhou University, Guiyang, China
| | - Zhi-Hui Feng
- Tea Research Institute Chinese Academy of Agricultural Sciences, National Engineering Research Center for Tea Processing, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Jian-Xin Chen
- Tea Research Institute Chinese Academy of Agricultural Sciences, National Engineering Research Center for Tea Processing, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Fang Wang
- Tea Research Institute Chinese Academy of Agricultural Sciences, National Engineering Research Center for Tea Processing, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Yong-Quan Xu
- Tea Research Institute Chinese Academy of Agricultural Sciences, National Engineering Research Center for Tea Processing, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China,*Correspondence: Yong-Quan Xu,
| | - Jun-Feng Yin
- Tea Research Institute Chinese Academy of Agricultural Sciences, National Engineering Research Center for Tea Processing, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China,Jun-Feng Yin,
| |
Collapse
|
6
|
Monitoring the Aroma Compound Profiles in the Microbial Fermentation of Seaweeds and Their Effects on Sensory Perception. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9020135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Seaweeds have a variety of biological activities, and their aromatic characteristics could play an important role in consumer acceptance. Here, changes in aroma compounds were monitored during microbial fermentation, and those most likely to affect sensory perception were identified. Ulva sp. and Laminaria sp. were fermented and generally recognized as safe microorganisms, and the profile of volatile compounds in the fermented seaweeds was investigated using headspace solid-phase microextraction with gas chromatography–mass spectrometry. Volatile compounds, including ketones, aldehydes, alcohols, and acids, were identified during seaweed fermentation. Compared with lactic acid bacteria fermentation, Bacillus subtilis fermentation could enhance the total ketone amount in seaweeds. Saccharomyces cerevisiae fermentation could also enhance the alcohol content in seaweeds. Principal component analysis of volatile compounds revealed that fermenting seaweeds with B. subtilis or S. cerevisiae could reduce aldehyde contents and boost ketone and alcohol contents, respectively, as expected. The odor of the fermented seaweeds was described by using GC–olfactometry, and B. subtilis and S. cerevisiae fermentations could enhance pleasant odors and reduce unpleasant odors. These results can support the capability of fermentation to improve the aromatic profile of seaweeds.
Collapse
|
7
|
Assessment of Tannin Tolerant Non- Saccharomyces Yeasts Isolated from Miang for Production of Health-Targeted Beverage Using Miang Processing Byproducts. J Fungi (Basel) 2023; 9:jof9020165. [PMID: 36836280 PMCID: PMC9964396 DOI: 10.3390/jof9020165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/28/2023] Open
Abstract
This research demonstrated an excellent potential approach for utilizing Miang fermentation broth (MF-broth), a liquid residual byproduct from the Miang fermentation process as a health-targeted beverage. One hundred and twenty yeast strains isolated from Miang samples were screened for their potential to ferment MF-broth and four isolates, P2, P3, P7 and P9 were selected, based on the characteristics of low alcoholic production, probiotic properties, and tannin tolerance. Based on a D1/D2 rDNA sequence analysis, P2 and P7 were identified to be Wikerhamomyces anomalus, while P3 and P9 were Cyberlindnera rhodanensis. Based on the production of unique volatile organic compounds (VOCs), W. anomalus P2 and C. rhodanensis P3 were selected for evaluation of MF-broth fermentation via the single culture fermentation (SF) and co-fermentation (CF) in combination with Saccharomyces cerevisiae TISTR 5088. All selected yeasts showed a capability for growth with 6 to 7 log CFU/mL and the average pH value range of 3.91-4.09. The ethanol content of the fermented MF-broth ranged between 11.56 ± 0.00 and 24.91 ± 0.01 g/L after 120 h fermentation, which is categorized as a low alcoholic beverage. Acetic, citric, glucuronic, lactic, succinic, oxalic and gallic acids slightly increased from initial levels in MF-broth, whereas the bioactive compounds and antioxidant activity were retained. The fermented MF-broth showed distinct VOCs profiles between the yeast groups. High titer of isoamyl alcohol was found in all treatments fermented with S. cerevisiae TISTR 5088 and W. anomalus P2. Meanwhile, C. rhodanensis P3 fermented products showed a higher quantity of ester groups, ethyl acetate and isoamyl acetate in both SF and CF. The results of this study confirmed the high possibilities of utilizing MF-broth residual byproduct in for development of health-targeted beverages using the selected non-Saccharomyces yeast.
Collapse
|
8
|
de Noronha MC, Cardoso RR, dos Santos D'Almeida CT, Vieira do Carmo MA, Azevedo L, Maltarollo VG, Júnior JIR, Eller MR, Cameron LC, Ferreira MSL, Barros FARD. Black tea kombucha: Physicochemical, microbiological and comprehensive phenolic profile changes during fermentation, and antimalarial activity. Food Chem 2022; 384:132515. [DOI: 10.1016/j.foodchem.2022.132515] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/15/2022]
|
9
|
Shi H, Li J, Zhang Y, Ding K, Zhao G, Hadiatullah H, Duan X. Effect of wheat germination on nutritional properties and the flavor of soy sauce. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Wang R, Sun J, Lassabliere B, Yu B, Liu SQ. Green tea fermentation with Saccharomyces boulardii CNCM I-745 and Lactiplantibacillus plantarum 299V. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Wang R, Sun J, Lassabliere B, Yu B, Liu SQ. UPLC-Q-TOF-MS based metabolomics and chemometric analyses for green tea fermented with Saccharomyces boulardii CNCM I-745 and Lactiplantibacillus plantarum 299V. Curr Res Food Sci 2022; 5:471-478. [PMID: 35252880 PMCID: PMC8892000 DOI: 10.1016/j.crfs.2022.02.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/07/2022] [Accepted: 02/20/2022] [Indexed: 10/27/2022] Open
|
12
|
β-Glucosidase activity of Cyberlindnera (Williopsis) saturnus var. mrakii NCYC 2251 and its fermentation effect on green tea aroma compounds. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Wang R, Sun J, Lassabliere B, Yu B, Liu SQ. Fermentation characteristics of four non-Saccharomyces yeasts in green tea slurry. Food Microbiol 2020; 92:103609. [PMID: 32950144 DOI: 10.1016/j.fm.2020.103609] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/20/2020] [Accepted: 07/25/2020] [Indexed: 01/19/2023]
Abstract
The fermentation characteristics of non-Saccharomyces yeasts (Pichia kluyveri FrootZen, Torulaspora delbrueckii Prelude, Williopsis saturnus var. mrakii NCYC2251 and Torulaspora delbrueckii Biodiva) were evaluated in green tea slurry fermentation. Each yeast showed different fermentation performances: strains Prelude and Biodiva utilized sucrose faster than the other two yeasts; strain NCYC2251 was the only species that metabolized xylose. Strain FrootZen increased the caffeine content significantly and strain Prelude showed the opposite trend, both at a statistical level, while theanine contents in four samples were relatively stable. Biodiva and FrootZen significantly improved polyphenols content and the oxygen radical absorbance capacity of fermented teas. Some endogenous volatiles such as ketones, lactones and aldehydes decreased to lower or undetected levels, but one of the key tea aroma compounds methyl salicylate increased by 34-fold and 100-fold in P. kluyveri and W. saturnus samples respectively. Therefore, green tea fermentation by appropriate non-Saccharomyces yeasts can enhance its antioxidant capacity and alter the aroma compound profile.
Collapse
Affiliation(s)
- Rui Wang
- Department of Food Science & Technology, National University of Singapore, Science Drive 3, Singapore, 117543, Singapore
| | - Jingcan Sun
- Mane SEA PTE LTD, Biopolis Drive 3, 138623, Singapore
| | | | - Bin Yu
- Mane SEA PTE LTD, Biopolis Drive 3, 138623, Singapore
| | - Shao Quan Liu
- Department of Food Science & Technology, National University of Singapore, Science Drive 3, Singapore, 117543, Singapore; National University of Singapore (Suzhou) Research Institute, No. 377 Linquan Street, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|