1
|
Bani Saeid A, De Rubis G, Williams KA, Yeung S, Chellappan DK, Singh SK, Gupta G, Hansbro PM, Shahbazi MA, Gulati M, Kaur IP, Santos HA, Paudel KR, Dua K. Revolutionizing lung health: Exploring the latest breakthroughs and future prospects of synbiotic nanostructures in lung diseases. Chem Biol Interact 2024; 395:111009. [PMID: 38641145 DOI: 10.1016/j.cbi.2024.111009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/04/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024]
Abstract
The escalating prevalence of lung diseases underscores the need for innovative therapies. Dysbiosis in human body microbiome has emerged as a significant factor in these diseases, indicating a potential role for synbiotics in restoring microbial equilibrium. However, effective delivery of synbiotics to the target site remains challenging. Here, we aim to explore suitable nanoparticles for encapsulating synbiotics tailored for applications in lung diseases. Nanoencapsulation has emerged as a prominent strategy to address the delivery challenges of synbiotics in this context. Through a comprehensive review, we assess the potential of nanoparticles in facilitating synbiotic delivery and their structural adaptability for this purpose. Our review reveals that nanoparticles such as nanocellulose, starch, and chitosan exhibit high potential for synbiotic encapsulation. These offer flexibility in structure design and synthesis, making them promising candidates for addressing delivery challenges in lung diseases. Furthermore, our analysis highlights that synbiotics, when compared to probiotics alone, demonstrate superior anti-inflammatory, antioxidant, antibacterial and anticancer activities. This review underscores the promising role of nanoparticle-encapsulated synbiotics as a targeted and effective therapeutic approach for lung diseases, contributing valuable insights into the potential of nanomedicine in revolutionizing treatment strategies for respiratory conditions, ultimately paving the way for future advancements in this field.
Collapse
Affiliation(s)
- Ayeh Bani Saeid
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Kylie A Williams
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Stewart Yeung
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Sachin Kumar Singh
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia; School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, 144411, India
| | - Gaurav Gupta
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248007, India; Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - Philip M Hansbro
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Mohammad-Ali Shahbazi
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen, University of Groningen, AV, 9713, Groningen, the Netherlands
| | - Monica Gulati
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Indu Pal Kaur
- University Institute of Pharmaceutical Sciences, Punjab University Chandigarh, India
| | - Hélder A Santos
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen, University of Groningen, AV, 9713, Groningen, the Netherlands; Drug Research Program Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Keshav Raj Paudel
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India.
| |
Collapse
|
2
|
Razali FN, Teoh WY, Ramli MZ, Loo CY, Gnanaraj C. Role of prebiotics, probiotics, and synbiotics in the management of colonic disorders. ADVANCED DRUG DELIVERY SYSTEMS FOR COLONIC DISORDERS 2024:243-270. [DOI: 10.1016/b978-0-443-14044-0.00002-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Zanardi KR, Grancieri M, Silva CW, Trivillin LO, Viana ML, Costa AGV, Costa NMB. Functional effects of yacon ( Smallanthus sonchifolius) and kefir on systemic inflammation, antioxidant activity, and intestinal microbiome in rats with induced colorectal cancer. Food Funct 2023; 14:9000-9017. [PMID: 37740322 DOI: 10.1039/d3fo02599c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Colorectal cancer (CRC) is one of the most common cancers with high morbidity and mortality. The modulation of intestinal health through the administration of pro- and prebiotics may be a viable alternative to reduce the risk of CRC. This study aimed to evaluate the functional effects of yacon and kefir, isolated or associated, in rats with colorectal cancer. Adult Wistar rats were divided into five groups (n = 8): HC (healthy control AIN-93M diet), CC (CCR + AIN-93M diet), Y (CCR + AIN-93 M + yacon diet), K (CCR + AIN-93-M + kefir diet) and YK (CCR + AIN-93 M + yacon + kefir diet). Colorectal carcinogenesis was induced in groups CC, Y, K, and YK with 1,2-dimethylhydrazine (55 mg kg-1, subcutaneously) for 5 weeks. From the 6th week onwards, the experimental groups were fed the respective diets. In the 15th week, urine was collected for analysis of intestinal permeability and then the animals were euthanized. Yacon increased acetate levels, reduced pH and carcinogenic neoplastic lesions, and increased the abundance of bacteria related to the fermentation of non-digestible carbohydrates, such as the genera Dorea, Collinsela, and Bifidobacteria. On the other hand, kefir increased macroscopic neoplastic lesions and increased the abundance of Firmicutes and Clostridium. The association of yacon + kefir increased the number of carcinogenic lesions, despite a reduction in pH and beneficial bacteria prevalence. Thus, it is concluded that yacon, unlikely kefir, is a promising alternative to mitigate the manifestations of induced carcinogenesis in rats.
Collapse
Affiliation(s)
- Keila Rodrigues Zanardi
- Postgraduate Program in Food Science and Technology, Centre of Agricultural and Engineering Sciences, Federal University of Espirito Santo (Universidade Federal do Espírito Santo - UFES), Alto Universitário, Guararema, 29500-000, Alegre, ES, Brazil.
| | - Mariana Grancieri
- Postgraduate Program in Food Science and Technology, Centre of Agricultural and Engineering Sciences, Federal University of Espirito Santo (Universidade Federal do Espírito Santo - UFES), Alto Universitário, Guararema, 29500-000, Alegre, ES, Brazil.
- Department of Pharmacy and Nutrition, Centre of Exact, Natural and Health Sciences, UFES, Alegre, ES, Brazil
| | - Caroline Woelffel Silva
- Postgraduate Program in Food Science and Technology, Centre of Agricultural and Engineering Sciences, Federal University of Espirito Santo (Universidade Federal do Espírito Santo - UFES), Alto Universitário, Guararema, 29500-000, Alegre, ES, Brazil.
| | - Leonardo Oliveira Trivillin
- Department of Veterinary Medicine, Centre of Agricultural and Engineering Sciences, UFES, Alegre, ES, Brazil
| | - Mirelle Lomar Viana
- Department of Pharmacy and Nutrition, Centre of Exact, Natural and Health Sciences, UFES, Alegre, ES, Brazil
| | - André Gustavo Vasconcelos Costa
- Postgraduate Program in Food Science and Technology, Centre of Agricultural and Engineering Sciences, Federal University of Espirito Santo (Universidade Federal do Espírito Santo - UFES), Alto Universitário, Guararema, 29500-000, Alegre, ES, Brazil.
- Department of Pharmacy and Nutrition, Centre of Exact, Natural and Health Sciences, UFES, Alegre, ES, Brazil
| | - Neuza Maria Brunoro Costa
- Postgraduate Program in Food Science and Technology, Centre of Agricultural and Engineering Sciences, Federal University of Espirito Santo (Universidade Federal do Espírito Santo - UFES), Alto Universitário, Guararema, 29500-000, Alegre, ES, Brazil.
- Department of Pharmacy and Nutrition, Centre of Exact, Natural and Health Sciences, UFES, Alegre, ES, Brazil
| |
Collapse
|
4
|
Synbiotics and Their Antioxidant Properties, Mechanisms, and Benefits on Human and Animal Health: A Narrative Review. Biomolecules 2022; 12:biom12101443. [PMID: 36291652 PMCID: PMC9599591 DOI: 10.3390/biom12101443] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 12/01/2022] Open
Abstract
Antioxidants are often associated with a variety of anti-aging compounds that can ensure human and animal health longevity. Foods and diet supplements from animals and plants are the common exogenous sources of antioxidants. However, microbial-based products, including probiotics and their derivatives, have been recognized for their antioxidant properties through numerous studies and clinical trials. While the number of publications on probiotic antioxidant capacities and action mechanisms is expanding, that of synbiotics combining probiotics with prebiotics is still emerging. Here, the antioxidant metabolites and properties of synbiotics, their modes of action, and their different effects on human and animal health are reviewed and discussed. Synbiotics can generate almost unlimited possibilities of antioxidant compounds, which may have superior performance compared to those of their components through additive or complementary effects, and especially by synergistic actions. Either combined with antioxidant prebiotics or not, probiotics can convert these substrates to generate antioxidant compounds with superior activities. Such synbiotic-based new routes for supplying natural antioxidants appear relevant and promising in human and animal health prevention and treatment. A better understanding of various component interactions within synbiotics is key to generating a higher quality, quantity, and bioavailability of antioxidants from these biotic sources.
Collapse
|
5
|
dos Santos Cruz BC, da Silva Duarte V, Sousa Dias R, Ladeira Bernardes A, de Paula SO, de Luces Fortes Ferreira CL, do Carmo Gouveia Peluzio M. Synbiotic modulates intestinal microbiota metabolic pathways and inhibits DMH-induced colon tumorigenesis through c-myc and PCNA suppression. Food Res Int 2022; 158:111379. [PMID: 35840186 DOI: 10.1016/j.foodres.2022.111379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 11/04/2022]
|
6
|
Role of a mixed probiotic product, VSL#3, in the prevention and treatment of colorectal cancer. Eur J Pharmacol 2022; 930:175152. [PMID: 35835181 DOI: 10.1016/j.ejphar.2022.175152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/03/2022] [Accepted: 07/07/2022] [Indexed: 12/09/2022]
Abstract
Colorectal cancer (CRC) is a multifactorial disease. The incidence of this type of cancer in younger patients has increased in recent years, and more strategies are needed to prevent and delay the progression of CRC. Probiotics play an adjunctive role in the prevention and treatment of CRC and can not only prevent the onset and delay the progression of disease but also reduce the side effects after the application of anti-cancer drugs. The anti-cancer effect of individual probiotics has been extensively studied, and the exact curative effect of various probiotics has been found, but the anti-cancer effect of mixed probiotics is still not well summarized. In this review, we discuss the positive effects of mixed probiotics on CRC and the related mechanisms of action, especially VSL#3 (VSL Pharmaceuticals, Inc., Gaithersburg, MD, USA), thus providing new ideas for the treatment of CRC. Moreover, we suggest the need to search for more therapeutic possibilities, especially via the research and application of synbiotics and postbiotics.
Collapse
|
7
|
Méndez-Albiñana P, Martínez-González Á, Camacho-Rodríguez L, Ferreira-Lazarte Á, Villamiel M, Rodrigues-Díez R, Balfagón G, García-Redondo AB, Prieto-Nieto MI, Blanco-Rivero J. Supplementation with the Symbiotic Formulation Prodefen® Increases Neuronal Nitric Oxide Synthase and Decreases Oxidative Stress in Superior Mesenteric Artery from Spontaneously Hypertensive Rats. Antioxidants (Basel) 2022; 11:antiox11040680. [PMID: 35453365 PMCID: PMC9029967 DOI: 10.3390/antiox11040680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 12/23/2022] Open
Abstract
In recent years, gut dysbiosis has been related to some peripheral vascular alterations linked to hypertension. In this work, we explore whether gut dysbiosis is related to vascular innervation dysfunction and altered nitric oxide (NO) production in the superior mesenteric artery, one of the main vascular beds involved in peripheral vascular resistance. For this purpose, we used spontaneously hypertensive rats, either treated or not with the commercial synbiotic formulation Prodefen® (108 colony forming units/day, 4 weeks). Prodefen® diminished systolic blood pressure and serum endotoxin, as well as the vasoconstriction elicited by electrical field stimulation (EFS), and enhanced acetic and butyric acid in fecal samples, and the vasodilation induced by the exogenous NO donor DEA-NO. Unspecific nitric oxide synthase (NOS) inhibitor L-NAME increased EFS-induced vasoconstriction more markedly in rats supplemented with Prodefen®. Both neuronal NO release and neuronal NOS activity were enhanced by Prodefen®, through a hyperactivation of protein kinase (PK)A, PKC and phosphatidylinositol 3 kinase-AKT signaling pathways. The superoxide anion scavenger tempol increased both NO release and DEA-NO vasodilation only in control animals. Prodefen® caused an increase in both nuclear erythroid related factor 2 and superoxide dismutase activities, consequently reducing both superoxide anion and peroxynitrite releases. In summary, Prodefen® could be an interesting non-pharmacological approach to ameliorate hypertension.
Collapse
Affiliation(s)
- Pablo Méndez-Albiñana
- Department of Physiology, School of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (P.M.-A.); (Á.M.-G.); (L.C.-R.); (G.B.); (A.B.G.-R.)
- Group of Chemistry and Functionality of Carbohydrates and Derivatives, Food Science Research Institute (CIAL) (CSIC-UAM), 28049 Madrid, Spain; (Á.F.-L.); (M.V.)
| | - Ángel Martínez-González
- Department of Physiology, School of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (P.M.-A.); (Á.M.-G.); (L.C.-R.); (G.B.); (A.B.G.-R.)
| | - Laura Camacho-Rodríguez
- Department of Physiology, School of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (P.M.-A.); (Á.M.-G.); (L.C.-R.); (G.B.); (A.B.G.-R.)
| | - Álvaro Ferreira-Lazarte
- Group of Chemistry and Functionality of Carbohydrates and Derivatives, Food Science Research Institute (CIAL) (CSIC-UAM), 28049 Madrid, Spain; (Á.F.-L.); (M.V.)
| | - Mar Villamiel
- Group of Chemistry and Functionality of Carbohydrates and Derivatives, Food Science Research Institute (CIAL) (CSIC-UAM), 28049 Madrid, Spain; (Á.F.-L.); (M.V.)
| | - Raquel Rodrigues-Díez
- Department of Pharmacology and Therapeutics, School of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain;
- Research Institute University Hospital la Paz (IdIPaz), 28029 Madrid, Spain
- Center for Biomedical Research Network (CIBER) in Cardiovascular Diseases, 28029 Madrid, Spain
| | - Gloria Balfagón
- Department of Physiology, School of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (P.M.-A.); (Á.M.-G.); (L.C.-R.); (G.B.); (A.B.G.-R.)
- Research Institute University Hospital la Paz (IdIPaz), 28029 Madrid, Spain
- Center for Biomedical Research Network (CIBER) in Cardiovascular Diseases, 28029 Madrid, Spain
| | - Ana B. García-Redondo
- Department of Physiology, School of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (P.M.-A.); (Á.M.-G.); (L.C.-R.); (G.B.); (A.B.G.-R.)
- Research Institute University Hospital la Paz (IdIPaz), 28029 Madrid, Spain
- Center for Biomedical Research Network (CIBER) in Cardiovascular Diseases, 28029 Madrid, Spain
| | - Mª Isabel Prieto-Nieto
- Research Institute University Hospital la Paz (IdIPaz), 28029 Madrid, Spain
- Department of General and Digestive Surgery, Hospital Universitario la Paz, 28046 Madrid, Spain
- Correspondence: (M.I.P.-N.); (J.B.-R.); Tel.: +34-91-497-5446 (J.B.-R.)
| | - Javier Blanco-Rivero
- Department of Physiology, School of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (P.M.-A.); (Á.M.-G.); (L.C.-R.); (G.B.); (A.B.G.-R.)
- Research Institute University Hospital la Paz (IdIPaz), 28029 Madrid, Spain
- Center for Biomedical Research Network (CIBER) in Cardiovascular Diseases, 28029 Madrid, Spain
- Correspondence: (M.I.P.-N.); (J.B.-R.); Tel.: +34-91-497-5446 (J.B.-R.)
| |
Collapse
|
8
|
Han L, Shu X, Wang J. Helicobacter pylori-Mediated Oxidative Stress and Gastric Diseases: A Review. Front Microbiol 2022; 13:811258. [PMID: 35211104 PMCID: PMC8860906 DOI: 10.3389/fmicb.2022.811258] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
Gastric cancer is considered to be a type of gastrointestinal tumor and is mostly accompanied by Helicobacter pylori (HP) infection at the early stage. Hence, the long-term colonization of the gastric mucosa by HP as a causative factor for gastrointestinal diseases cannot be ignored. The virulence factors secreted by the bacterium activate the signaling pathway of oxidative stress and mediate chronic inflammatory response in the host cells. The virulence factors also thwart the antibacterial effect of neutrophils. Subsequently, DNA methylation is induced, which causes continuous cell proliferation and evolution toward low-grade-differentiated gastric cells. This process provides the pathological basis for the occurrence of progressive gastric cancer. Therefore, this review aims to summarize the oxidative stress response triggered by HP in the gastric mucosa and the subsequent signaling pathways. The findings are expected to help in the formulation of new targeted drugs for preventing the occurrence of early gastric cancer and its progression to middle and advanced cancer.
Collapse
Affiliation(s)
- Lu Han
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Clinical Research Center for Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xu Shu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Clinical Research Center for Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jian Wang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Clinical Research Center for Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|