1
|
Huang Z, Wang Y, McClements DJ, Dong R, Wang Y, Wang Q, Liu H, Yu Q, Xie J, Chen Y. Investigation of the interaction mechanism of citrus pectin-polyphenol-protein complex. Food Chem 2025; 468:142419. [PMID: 39700817 DOI: 10.1016/j.foodchem.2024.142419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/03/2024] [Accepted: 12/08/2024] [Indexed: 12/21/2024]
Abstract
Citrus pectin is an anionic polysaccharide in citrus, which may improve the stability of citrus juices. This study investigated the influence of citrus pectin on the stability of protein-polyphenol complexes in the citrus juice model system and its interaction mechanism by multispectral and molecular dynamics (MD) simulations. Dynamic light scattering (DLS) and differential scanning calorimetry (DSC) showed that the citrus pectin-proanthocyanidin-zein complex improved the model citrus juices' cloud and thermal stability. Molecular dynamics (MD) simulations suggested that both pectin and proanthocyanidin bound to the U-shaped cavity of the zein molecules. Electrostatic and van der Waals forces were predominant in citrus pectin-zein. In contrast, van der Waals forces predominantly drove in proanthocyanidin-zein. This study indicated that citrus pectin could stabilize juice by delaying the onset of protein-polyphenol haze formation, which may provide new strategies for improving the quality, stability, and nutritional profile of fruit juice systems.
Collapse
Affiliation(s)
- Ziyan Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Yuting Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| | | | - Ruihong Dong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Yu Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Qin Wang
- College of Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510000, China
| | - Huifan Liu
- College of Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510000, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Yi Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
2
|
Alongi M, Lanza U, Gorassini A, Verardo G, Comuzzi C, Anese M, Manzocco L, Nicoli MC. The role of processing on phenolic bioaccessibility and antioxidant capacity of apple derivatives. Food Chem 2025; 463:141402. [PMID: 39332366 DOI: 10.1016/j.foodchem.2024.141402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/17/2024] [Accepted: 09/21/2024] [Indexed: 09/29/2024]
Abstract
Fruit derivatives are commonly obtained by applying processing operations deemed responsible for the loss of phenol compounds, but very little information is available on the fate of phenols upon digestion of these products. The present study evaluated the effect of thermal and mechanical treatments, commonly applied to turn apple pulp into puree and homogenate, on phenolic bioaccessibility and antioxidant activity. Despite a 20 % decrease in polyphenols due to processing, their bioaccessibility was higher in apple derivatives (>20 %) compared to pulp (∼2 %). Polyphenol oxidase (PPO), inactivated by thermal treatments in apple derivatives but not in the pulp, was hypothesized to be responsible for this difference. Results acquired on an unprocessed PPO-free apple model, only featuring quercetin-3-glucoside and pectin, actually exhibited similar bioaccessibility as processed derivatives. The radical scavenging capacity was unaffected by the structural integrity of apples, indicating independence from the plant tissue's hierarchical arrangement. After digestion, radical scavenging capacity decreased in the real apple matrices, correlating with phenolic content, while it was retained in the apple model, further suggesting the pivotal food matrix role in modulating polyphenols bioaccessibility and subsequent biological activity. Translating these results to an industrial scale, processing conditions can be optimized not only to guarantee that the quality requirements are met, but also to achieve desired nutritional benefits.
Collapse
Affiliation(s)
- Marilisa Alongi
- Department of Agriculture, Food, Environment and Animal Sciences, University of Udine, Italy
| | - Umberto Lanza
- Department of Agriculture, Food, Environment and Animal Sciences, University of Udine, Italy
| | - Andrea Gorassini
- Department of Humanities and Cultural Heritage, University of Udine, Italy
| | - Giancarlo Verardo
- Department of Agriculture, Food, Environment and Animal Sciences, University of Udine, Italy
| | - Clara Comuzzi
- Department of Agriculture, Food, Environment and Animal Sciences, University of Udine, Italy
| | - Monica Anese
- Department of Agriculture, Food, Environment and Animal Sciences, University of Udine, Italy
| | - Lara Manzocco
- Department of Agriculture, Food, Environment and Animal Sciences, University of Udine, Italy.
| | - Maria Cristina Nicoli
- Department of Agriculture, Food, Environment and Animal Sciences, University of Udine, Italy
| |
Collapse
|
3
|
Li Q, Huang J, Zhao T, Wang Y, Cai F, McClements DJ, Fu Y, Shen P, Xu J. Impact of thermal treatment on proanthocyanidin-pectin binary complexes: Insights from structural, rheological, antioxidant, and astringent properties. Food Chem 2024; 442:138490. [PMID: 38245989 DOI: 10.1016/j.foodchem.2024.138490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/31/2023] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
In this study, the effects of thermal treatments on the structural, rheological, water mobility, antioxidant, and astringency properties of proanthocyanidin (PA)-pectin binary complexes were investigated. Thermal treatments (25, 63, or 85 °C) significantly decreased the particle size but increased the molecular weight of PA-pectin complexes, which indicated that heating altered the intermolecular and intramolecular interactions between PA and pectin. The thermal treatments reduced the apparent viscosity of both pectin and PA-pectin complexes, but the presence of proanthocyanidins (PAs) increased the apparent viscosity and water mobility of the PA-pectin complexes. Antioxidant activity analysis showed that the presence of pectin slightly reduced the antioxidant activity of the PAs, but there were no significant changes in the total phenolic content and antioxidant activity after thermal treatment. Finally, we found that pectin reduced the astringency of the PAs by forming PA-pectin complexes. Moreover, the thermal treatments also significantly reduced the astringency of the PA-pectin complexes.
Collapse
Affiliation(s)
- Qian Li
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Jialu Huang
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Tiantian Zhao
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Yuli Wang
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Fengjiao Cai
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, Hubei 430068, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | | | - Yinxin Fu
- Wuhan Fourth Hospital, Wuhan, Hubei 430000, China
| | - Peiyi Shen
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA.
| | - Jian Xu
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, Hubei 430068, China.
| |
Collapse
|
4
|
Delivery of Catechins from Green Tea Waste in Single- and Double-Layer Liposomes via Their Incorporation into a Functional Green Kiwifruit Juice. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020575. [PMID: 36677635 PMCID: PMC9866522 DOI: 10.3390/molecules28020575] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/24/2022] [Accepted: 01/04/2023] [Indexed: 01/08/2023]
Abstract
Globally, about one million tonnes of tea products, which contain high concentrations of catechins and their derivatives, are wasted annually. Therefore, green tea waste catechins (GTWCs) are worth extracting, processing, protection, and delivery to the human body. In this study, GTWCs were extracted using a green method and then encapsulated in both single- (SLLs) and double-layer liposomes (DLLs). The encapsulated extracts were subsequently incorporated into a fresh green kiwifruit juice. SLLs and DLLs containing GTWCs had a size of about 180 and 430 nm with a zeta potential of -35 and +25 mV, respectively. Electron microscopy illustrated the separation of the SLLs and fibre in kiwifruit juice and attraction of the DLLs to this fibre. Liposomal GTWCs were effectively maintained in the kiwifruit juice during the 28 days of storage (4 °C), demonstrating the effectiveness of this delivery system for high-value bioactives (i.e., catechins) from such a by-product (i.e., green tea waste).
Collapse
|
5
|
Hawthorn Juice Simulation System for Pectin and Polyphenol Adsorption Behavior: Kinetic Modeling Properties and Identification of the Interaction Mechanism. Foods 2022; 11:foods11182813. [PMID: 36140941 PMCID: PMC9498233 DOI: 10.3390/foods11182813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
The interaction between polyphenols and polysaccharides plays an important role in increasing the turbidity stability of fruit juice and improving unpleasant sensory experiences. The binding adsorption behavior between hawthorn pectin (HP) and polyphenols (epicatechin and chlorogenic acid) accorded with the monolayer adsorption behavior driven by chemical action and were better fitted by pseudo-second order dynamic equation and Langmuir model. The HP binding sites (Qm) and adsorption capacity (Qe) to epicatechin were estimated at 75.188 and 293.627 μg/mg HP, respectively, which was about nine and twelve times higher than that of chlorogenic acid. The interaction between HP and polyphenols exhibited higher turbidity characteristics, particle size and lower zeta potential than epicatechin and chlorogenic acid alone. Meanwhile, according to Fourier Transform Infrared Spectroscopy (FT-IR) analysis, it could be speculated that the interaction between HP and polyphenols resulted in chemical combination. Moreover, ΔH < 0 and TΔS < 0, which indicated that the interaction between HP and polyphenols was mainly driven by hydrogen bonds and van der Waals forces.
Collapse
|