1
|
Men X, Han X, Lee SJ, Oh G, Im JH, Bae KS, Seong GS, La IJ, Lee DS, Choi SI, Lee OH. Ginsenosides Rh1, Rg2, and Rg3 ameliorate dexamethasone-induced muscle atrophy in C2C12 myotubes. Food Sci Biotechnol 2024; 33:1233-1243. [PMID: 38440685 PMCID: PMC10909033 DOI: 10.1007/s10068-023-01407-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 03/06/2024] Open
Abstract
High doses or prolonged use of the exogenous synthetic glucocorticoid dexamethasone (Dex) can lead to muscle atrophy. In this study, the anti-atrophic effects of ginsenosides Rh1, Rg2, and Rg3 on Dex-induced C2C12 myotube atrophy were assessed by XTT, myotube diameter, fusion index, and western blot analysis. The XTT assay results showed that treatment with Rh1, Rg2, and Rg3 enhanced cell viability in Dex-injured C2C12 myotubes. Compared with the control group, the myotube diameter and fusion index were both reduced in Dex-treated cells, but treatment with Rh1, Rg2, and Rg3 increased these parameters. Furthermore, Rh1, Rg2, and Rg3 significantly downregulated the protein expression of FoxO3a, MuRF1, and Fbx32, while also upregulating mitochondrial biogenesis through the SIRT1/PGC-1α pathway. It also prevents myotube atrophy by regulating the IGF-1/Akt/ mTOR signaling pathway. These findings indicate that Rh1, Rg2, and Rg3 have great potential as useful agents for the prevention and treatment of muscle atrophy.
Collapse
Affiliation(s)
- Xiao Men
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon, 24341 Republic of Korea
| | - Xionggao Han
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon, 24341 Republic of Korea
| | - Se-Jeong Lee
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon, 24341 Republic of Korea
| | - Geon Oh
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon, 24341 Republic of Korea
| | - Ji-Hyun Im
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon, 24341 Republic of Korea
| | | | | | | | | | - Sun-Il Choi
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon, 24341 Republic of Korea
- Agricultural and Life Sciences Research Institute, Kangwon National University, Chuncheon, 24341 Republic of Korea
| | - Ok-Hwan Lee
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon, 24341 Republic of Korea
| |
Collapse
|
2
|
Yin Z, Liu Y, Li Y, Yuan C, Tian Y. Mitochondria of Live Mizuhopecten yessoensis Scallops Can Sensitively Respond to Quality Changes during Dry/Reimmersed Storage as Determined by TMT-Labeled Proteomic Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12609-12617. [PMID: 37566884 DOI: 10.1021/acs.jafc.3c02364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2023]
Abstract
Dry/reimmersed storage is often used in the transportation of live scallops. In this study, tandem mass tag (TMT)-labeled protein omics were used to quantitatively analyze the protein changes in scallops during dry/reimmersed stress. The results showed that during dry storage, scallops maintained cellular redox homeostasis through the upregulation of SCO1-like protein and thioredoxin domain-containing protein and reduced organic acids from the ATP synthetic process by the downregulation of NADH dehydrogenase, thereby reducing the damage caused during dry storage. During reimmersed storage, mitochondrial proteins underwent very sensitive changes. By upregulating aerobic respiration-related proteins (including proteins involved in glucose phosphate metabolism, glyceraldehyde 3-phosphate metabolism, etc.), the ATP synthesis ability was improved. However, the damage to the mitochondrial structure by dry storage could not be completely recovered, even by reimmersion. This included some apoptosis-related proteins that were obviously upregulated. In summary, compared with ATP-related indexes, mitochondria can respond more sensitively to dry storage stress.
Collapse
Affiliation(s)
- Zhongzhuan Yin
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, Liaoning, China
| | - Yang Liu
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, Liaoning, China
| | - Yaxuan Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, Liaoning, China
| | - Chunhong Yuan
- United Graduate School of Agricultural Sciences, Iwate University, Ueda 3-18-8, Morioka, Iwate 020-88550, Japan
| | - Yuanyong Tian
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, Liaoning, China
| |
Collapse
|