1
|
Wang Z, Yu W, Liu M, Wu Y, Ouyang J. Inhibitory effect of bioactive compounds from quinoa of different colors on the in vitro digestibility of starch. Int J Biol Macromol 2025; 297:139918. [PMID: 39824403 DOI: 10.1016/j.ijbiomac.2025.139918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 01/07/2025] [Accepted: 01/14/2025] [Indexed: 01/20/2025]
Abstract
This study aimed to compare the bioactive compounds presented in quinoa of various colors, and investigated their inhibitory effect on α-glucosidase activity and the in vitro digestibility of starch. The primary bioactive compounds identified in quinoa included betaine and polyphenols (kaempferol, quercetin, rutin, etc.), with their contents increased as the color of quinoa darkened. The half maximal inhibitory concentration (IC50) values of quercetin, kaempferol, and rutin in inhibiting α-glucosidase activity were 0.29, 0.34, and 1.21 mg/mL, respectively, compared to the extracts from white quinoa (1.25 mg/mL), red quinoa (0.59 mg/mL), and black quinoa (0.41 mg/mL). All extracts exhibited a dose-dependent inhibitory effect on α-glucosidase, characterized by a reversible mixed noncompetitive and anti-competitive inhibition mode. The hydrolysis rate of starch in white, red, and black quinoa flours was 33.6 %, 31.7 %, 30.2 %, respectively, and these rates increased upon the removal of bioactive compounds. After in vitro digestion, the release rates of free betaine and polyphenol from quinoa flours reached 36.9 % ~ 39.9 % and 26.5 % ~ 37.4 %, respectively. This research contributes to the advancement of whole-grain and functional foods incorporating quinoa.
Collapse
Affiliation(s)
- Zhuo Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Wenjie Yu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Mengyu Liu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Yanwen Wu
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), Beijing 100089, China
| | - Jie Ouyang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
2
|
Ramos-Pacheco BS, Ligarda-Samanez CA, Choque-Quispe D, Choque-Quispe Y, Solano-Reynoso AM, Choque-Quispe K, Palomino-Rincón H, Taipe-Pardo F, Peralta-Guevara DE, Moscoso-Moscoso E, Diaz-Barrera Y, Agreda-Cerna HW. Study of the Physical-Chemical, Thermal, Structural, and Rheological Properties of Four High Andean Varieties of Germinated Chenopodium quinoa. Polymers (Basel) 2025; 17:312. [PMID: 39940514 PMCID: PMC11819805 DOI: 10.3390/polym17030312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/12/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
Chenopodium quinoa, a high Andean grain with excellent nutritional value and complex molecular structure, presents significant challenges in the bioavailability of nutrients and the functionality of its components. Germination as a biotechnological strategy generated significant modifications in four varieties of quinoa. The ungerminated and germinated samples' physical-chemical, thermal, structural, and rheological properties were determined. Results showed increases in protein bioavailability (14.13% in Black Collana Quinoa (BCQ) and 12.79% in Red Pasankalla Quinoa (RPQ)), phenolic compounds (30.81 mg Gallic Acid Equivalent/100 g in RPQ), flavonoids (108.53 mg Quercetin Equivalent/100 g in Yellow Marangani Quinoa (YMQ)), and antioxidant capacity (up to 241.43 μmol Trolox Equivalent/g in BCQ). Thermal analysis showed increases in gelatinization temperature (57.53 °C to 59.45 °C in RPQ) and a reduction in enthalpy (1.38 J/g to 0.67 J/g). Structural analysis showed similar functional groups, but variation in spectra intensity was related to starches and proteins. Rheological properties exhibited pseudoplastic behavior at 80 °C. Principal component analysis showed a clear difference between germinated and non-germinated samples. The germination process significantly modified quinoa, improving its nutritional and functional properties and generating new opportunities for its application in the development of biodegradable materials and functional foods.
Collapse
Affiliation(s)
- Betsy S. Ramos-Pacheco
- Department of Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (C.A.L.-S.); (D.C.-Q.); (H.P.-R.); (F.T.-P.); (E.M.-M.); (Y.D.-B.)
| | - Carlos A. Ligarda-Samanez
- Department of Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (C.A.L.-S.); (D.C.-Q.); (H.P.-R.); (F.T.-P.); (E.M.-M.); (Y.D.-B.)
- Food Nanotechnology Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - David Choque-Quispe
- Department of Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (C.A.L.-S.); (D.C.-Q.); (H.P.-R.); (F.T.-P.); (E.M.-M.); (Y.D.-B.)
- Water and Food Treatment Materials Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Yudith Choque-Quispe
- Department of Environmental Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
| | - Aydeé M. Solano-Reynoso
- Department of Basic Sciences, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
| | - Katia Choque-Quispe
- Department of Accounting and Finance, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
| | - Henry Palomino-Rincón
- Department of Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (C.A.L.-S.); (D.C.-Q.); (H.P.-R.); (F.T.-P.); (E.M.-M.); (Y.D.-B.)
| | - Fredy Taipe-Pardo
- Department of Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (C.A.L.-S.); (D.C.-Q.); (H.P.-R.); (F.T.-P.); (E.M.-M.); (Y.D.-B.)
- Agroindustrial Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Diego E. Peralta-Guevara
- Department of Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (C.A.L.-S.); (D.C.-Q.); (H.P.-R.); (F.T.-P.); (E.M.-M.); (Y.D.-B.)
- Agroindustrial Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Elibet Moscoso-Moscoso
- Department of Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (C.A.L.-S.); (D.C.-Q.); (H.P.-R.); (F.T.-P.); (E.M.-M.); (Y.D.-B.)
- Food Nanotechnology Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Yasmine Diaz-Barrera
- Department of Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (C.A.L.-S.); (D.C.-Q.); (H.P.-R.); (F.T.-P.); (E.M.-M.); (Y.D.-B.)
- Agroindustrial Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | | |
Collapse
|
3
|
Zapana F, Vidaurre-Ruiz J, Linares-García L, Repo-Carrasco-Valencia R. Exploring the Future of Extrusion with Andean Grains: Macromolecular Changes, Innovations, Future Trends and Food Security. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2025; 80:38. [PMID: 39825970 DOI: 10.1007/s11130-025-01294-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/02/2025] [Indexed: 01/20/2025]
Abstract
This review aimed to explore the impact of extrusion on Andean grains, such as quinoa, kañiwa, and kiwicha, highlighting their macromolecular transformations, technological innovations, and contributions to food security. These grains, which are rich in starch, high-quality proteins, and antioxidant compounds, are versatile raw materials for extrusion, a continuous and efficient process that combines high temperatures and pressures to transform structural and chemical components. Extrusion improves the digestibility of proteins and starches, encourages the formation of amylose-lipid complexes, and increases the solubility of dietary fiber. However, it can degrade heat-sensitive nutrients, such as certain amino acids. The role of extrusion in food innovation is highlighted, especially in the creation of healthy and functional products such as snacks, gluten-free pastas, and meat analogs. Some innovations in the extrusion process and future trends, such as the use of artificial intelligence to optimize formulations and customize products, have been presented. The importance of Andean grains in the fight against food insecurity has been emphasized. These grains can be transformed into accessible, long-lasting, and nutritious foods, diversifying the diet and taking advantage of local resources. This review aims to serve as a valuable guide for researchers, food developers, and policymakers in their pursuit of creating more accessible, nutritious, and sustainable food options to meet escalating global demands for food security and enhanced nutrition.
Collapse
Affiliation(s)
- Franklyn Zapana
- Programa de Doctorado en Ingeniería Agroindustrial - mención Transformación Avanzada de Granos y Tubérculos Andinos, Universidad Nacional del Santa, Nuevo Chimbote, Ancash, Peru
| | - Julio Vidaurre-Ruiz
- Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Lima, Peru.
- Centro de Investigación e Innovación en Productos Derivados de Cultivos Andinos (CIINCA), Universidad Nacional Agraria La Molina, Lima, Peru.
| | - Laura Linares-García
- Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Lima, Peru
- Centro de Investigación e Innovación en Productos Derivados de Cultivos Andinos (CIINCA), Universidad Nacional Agraria La Molina, Lima, Peru
| | - Ritva Repo-Carrasco-Valencia
- Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Lima, Peru
- Centro de Investigación e Innovación en Productos Derivados de Cultivos Andinos (CIINCA), Universidad Nacional Agraria La Molina, Lima, Peru
| |
Collapse
|
4
|
Lu C, Guo J, Li P, Bai Z, Cui G, Li P. Physicochemical properties and in vitro digestion of quinoa starch induced by combination of ultrasound and konjac glucomannan. Food Chem 2025; 463:141380. [PMID: 39332370 DOI: 10.1016/j.foodchem.2024.141380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/30/2024] [Accepted: 09/19/2024] [Indexed: 09/29/2024]
Abstract
This study investigated the effects of konjac glucomannan (KGM) and ultrasound on the solubility, pasting properties, rheological behavior, thermal properties, structural characteristics, and digestibility of quinoa starch. The results demonstrated significant improvements in starch properties with both ultrasound and KGM treatment, with the most pronounced effects observed in the combined ultrasound and KGM treatment. This combined treatment led to enhanced energy storage modulus and loss modulus, indicating improved rheological properties. Additionally, combined treatment improved solubility, thermal stability, and digestibility and resulted in a more ordered structure and increased paste enthalpy compared with ultrasound or KGM treatment. Scanning electron microscopy and particle size analysis revealed a more compact starch structure following the synergistic treatment. X-ray diffraction and Fourier transform infrared spectroscopy showed a more organized, complex structure. These findings offer valuable insights into the application of ultrasound and KGM to enhance the performance and quality of quinoa starch.
Collapse
Affiliation(s)
- Can Lu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, PR China
| | - Jinying Guo
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, PR China.
| | - Peiyao Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, PR China
| | - Zhouya Bai
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, PR China
| | - Guoting Cui
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, PR China
| | - Peiyan Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, PR China
| |
Collapse
|
5
|
Manzanilla-Valdez ML, Boesch C, Orfila C, Montaño S, Hernández-Álvarez AJ. Unveiling the nutritional spectrum: A comprehensive analysis of protein quality and antinutritional factors in three varieties of quinoa ( Chenopodium quinoa Wild). Food Chem X 2024; 24:101814. [PMID: 39310886 PMCID: PMC11415592 DOI: 10.1016/j.fochx.2024.101814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
Quinoa (Chenopodium quinoa) is renowned for its high protein content and balanced amino acid profile. Despite promising protein characteristics, plant-based sources usually possess antinutritional factors (ANFs). This study aimed to analyze the nutritional and ANFs composition of three quinoa varieties (Black, Yellow, and Red), and assessed the protein quality. Among these varieties, Black quinoa showed the highest protein content (20.90 g/100 g) and total dietary fiber (TDF) (22.97 g/100 g). In contrast, Red quinoa exhibited the highest concentration of phenolic compounds (338.9 mg/100 g). The predominant ANFs identified included oxalates (ranging from 396.9 to 715.2 mg/100 g), saponins (83.27-96.82 g/100 g), and trypsin inhibitors (0.35-0.46 TUI/100 g). All three varieties showed similar in vitro protein digestibility (IVPD) (> 76.9 %), while Black quinoa exhibited the highest protein quality. In conclusion to ensure reduction of ANFs, processing methods are necessary in order to fully benefit from the high protein and nutritional value of quinoa.
Collapse
Affiliation(s)
| | - Christine Boesch
- School of Food Science and Nutrition, University of Leeds, LS2 9JT Leeds, UK
| | - Caroline Orfila
- School of Food Science and Nutrition, University of Leeds, LS2 9JT Leeds, UK
| | - Sarita Montaño
- Laboratorio de Bioinformática y Simulación Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Culiacán Sinaloa CP 80030, Mexico
| | | |
Collapse
|
6
|
Ramos-Pacheco BS, Choque-Quispe D, Ligarda-Samanez CA, Solano-Reynoso AM, Palomino-Rincón H, Choque-Quispe Y, Peralta-Guevara DE, Moscoso-Moscoso E, Aiquipa-Pillaca ÁS. Effect of Germination on the Physicochemical Properties, Functional Groups, Content of Bioactive Compounds, and Antioxidant Capacity of Different Varieties of Quinoa ( Chenopodium quinoa Willd.) Grown in the High Andean Zone of Peru. Foods 2024; 13:417. [PMID: 38338552 PMCID: PMC10855556 DOI: 10.3390/foods13030417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Germination is an effective strategy to improve the nutritional and functional quality of Andean grains such as quinoa (Chenopodium quinoa Willd.); it helps reduce anti-nutritional components and enhance the digestibility and sensory aspects of the germinated. This work aimed to evaluate the effect of germination (0, 24, 48, and 72 h) on the physicochemical properties, content of bioactive compounds, and antioxidant capacity of three varieties of quinoa: white, red, and black high Andean from Peru. Color, nutritional composition, mineral content, phenolic compounds, flavonoids, and antioxidant activity were analyzed. Additionally, infrared spectra were obtained to elucidate structural changes during germination. The results showed color variations and significant increases (p < 0.05) in proteins, fiber, minerals, phenolic compounds, flavonoids, and antioxidant capacity after 72 h of germination, attributed to the activation of enzymatic pathways. In contrast, the infrared spectra showed a decrease in the intensity of functional groups -CH-, -CH2-, C-OH, -OH, and C-N. Correlation analysis showed that flavonoids mainly contributed to antioxidant activity (r = 0.612). Germination represents a promising alternative to develop functional ingredients from germinated quinoa flour with improved nutritional and functional attributes.
Collapse
Affiliation(s)
- Betsy S. Ramos-Pacheco
- Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (D.C.-Q.); (C.A.L.-S.); (H.P.-R.); (D.E.P.-G.); (Á.S.A.-P.)
- Food Science and Technology, Universidad Nacional de San Antonio Abad del Cusco, Cusco 08000, Peru
- Food Nanotechnology Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
- Nutraceuticals and Biomaterials Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (A.M.S.-R.); (Y.C.-Q.)
| | - David Choque-Quispe
- Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (D.C.-Q.); (C.A.L.-S.); (H.P.-R.); (D.E.P.-G.); (Á.S.A.-P.)
- Nutraceuticals and Biomaterials Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (A.M.S.-R.); (Y.C.-Q.)
- Water and Food Treatment Materials Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Carlos A. Ligarda-Samanez
- Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (D.C.-Q.); (C.A.L.-S.); (H.P.-R.); (D.E.P.-G.); (Á.S.A.-P.)
- Food Nanotechnology Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
- Nutraceuticals and Biomaterials Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (A.M.S.-R.); (Y.C.-Q.)
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Aydeé M. Solano-Reynoso
- Nutraceuticals and Biomaterials Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (A.M.S.-R.); (Y.C.-Q.)
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Department of Basic Sciences, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Henry Palomino-Rincón
- Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (D.C.-Q.); (C.A.L.-S.); (H.P.-R.); (D.E.P.-G.); (Á.S.A.-P.)
- Nutraceuticals and Biomaterials Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (A.M.S.-R.); (Y.C.-Q.)
| | - Yudith Choque-Quispe
- Nutraceuticals and Biomaterials Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (A.M.S.-R.); (Y.C.-Q.)
- Water and Food Treatment Materials Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Department of Environmental Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Diego E. Peralta-Guevara
- Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (D.C.-Q.); (C.A.L.-S.); (H.P.-R.); (D.E.P.-G.); (Á.S.A.-P.)
- Nutraceuticals and Biomaterials Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (A.M.S.-R.); (Y.C.-Q.)
- Water and Food Treatment Materials Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Elibet Moscoso-Moscoso
- Food Nanotechnology Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
- Nutraceuticals and Biomaterials Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (A.M.S.-R.); (Y.C.-Q.)
| | - Ángel S. Aiquipa-Pillaca
- Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (D.C.-Q.); (C.A.L.-S.); (H.P.-R.); (D.E.P.-G.); (Á.S.A.-P.)
- Nutraceuticals and Biomaterials Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (A.M.S.-R.); (Y.C.-Q.)
| |
Collapse
|
7
|
Mu H, Xue S, Sun Q, Shi J, Zhang D, Wang D, Wei J. Research Progress of Quinoa Seeds ( Chenopodium quinoa Wild.): Nutritional Components, Technological Treatment, and Application. Foods 2023; 12:2087. [PMID: 37238905 PMCID: PMC10217622 DOI: 10.3390/foods12102087] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/11/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Quinoa (Chenopodium quinoa Wild.) is a pseudo-grain that belongs to the amaranth family and has gained attention due to its exceptional nutritional properties. Compared to other grains, quinoa has a higher protein content, a more balanced amino acid profile, unique starch features, higher levels of dietary fiber, and a variety of phytochemicals. In this review, the physicochemical and functional properties of the major nutritional components in quinoa are summarized and compared to those of other grains. Our review also highlights the technological approaches used to improve the quality of quinoa-based products. The challenges of formulating quinoa into food products are addressed, and strategies for overcoming these challenges through technological innovation are discussed. This review also provides examples of common applications of quinoa seeds. Overall, the review underscores the potential benefits of incorporating quinoa into the diet and the importance of developing innovative approaches to enhance the nutritional quality and functionality of quinoa-based products.
Collapse
Affiliation(s)
- Hongyan Mu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada
| | - Sophia Xue
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada
| | - Qingrui Sun
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - John Shi
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada
| | - Danyang Zhang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Deda Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Jianteng Wei
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
8
|
Miranda BM, Almeida VO, Terstegen T, Hundschell C, Flöter E, Silva FA, Fernandes KF, Wagemans A, Ulbrich M. The microstructure of the starch from the underutilized seed of jaboticaba (Plinia cauliflora). Food Chem 2023; 423:136145. [PMID: 37187005 DOI: 10.1016/j.foodchem.2023.136145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 05/17/2023]
Abstract
This work presents a starch extracted from jaboticaba seeds. The extraction yielded 22.65 ± 0.63% of a slightly beige powder (a* 1.92 ± 0.03, b* 10.82 ± 0.17 and L* 92.27 ± 0.24). The starch presented low protein content (1.19% ± 0.11) and phenolic compounds (0.58 ± 0.02 GAE. g) as contaminants. The starch granules showed small, smooth, irregular shapes and sizes between 6.1 and 9.6 µm. The starch presented a high content of amylose (34.50%±0.90) and a predominance of intermediate chain length (B1-chains 51%), followed by A-chains (26%) in the amylopectin. The SEC-MALS-DRI showed the starch had a low molecular weight (5.3·106 g·mol-1) and amylose/amylopectin content compatible with a Cc-type starch, confirmed in the X-ray diffractogram. Thermal studies showed a low onset temperature (T0 = 66.4 ± 0.46 °C) and gelatinization enthalpy (ΔH = 9.1 ± 1.19 J g-1) but a high-temperature range (ΔT = 14.1 ± 0.52 °C). The jaboticaba starch proved to be a promising material for food and non-food applications.
Collapse
Affiliation(s)
- Bruna M Miranda
- Department of Food Engineer, Institute of Agronomy, Federal University of Goiás, Goiânia, Brazil; Laboratory of Polymers Chemistry, Institute of Biological Science, ICB 2, Federal University of Goiás, Goiânia, Brazil; Department of Food Colloids, Institute of Food Technology and Food Chemistry, Technical University Berlin, Berlin, Germany
| | - Viviane O Almeida
- Department of Food Engineer, Institute of Agronomy, Federal University of Goiás, Goiânia, Brazil
| | - Tim Terstegen
- Department of Food Technology and Food Chemistry, Technical University Berlin, Berlin, Germany
| | - Christoph Hundschell
- Department of Food Colloids, Institute of Food Technology and Food Chemistry, Technical University Berlin, Berlin, Germany
| | - Eckhard Flöter
- Department of Food Technology and Food Chemistry, Technical University Berlin, Berlin, Germany
| | - Flávio A Silva
- Department of Food Engineer, Institute of Agronomy, Federal University of Goiás, Goiânia, Brazil
| | - Kátia F Fernandes
- Laboratory of Polymers Chemistry, Institute of Biological Science, ICB 2, Federal University of Goiás, Goiânia, Brazil.
| | - Anja Wagemans
- Department of Food Colloids, Institute of Food Technology and Food Chemistry, Technical University Berlin, Berlin, Germany
| | - Marco Ulbrich
- Department of Food Technology and Food Chemistry, Technical University Berlin, Berlin, Germany
| |
Collapse
|
9
|
Liu Y, Li X, Qin H, Huang M, Liu S, Chang R, Xi B, Mao J, Zhang S. Obtaining non-digestible polysaccharides from distillers' grains of Chinese baijiu after extrusion with enhanced antioxidation capability. Int J Biol Macromol 2023:124799. [PMID: 37182635 DOI: 10.1016/j.ijbiomac.2023.124799] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/19/2023] [Accepted: 05/06/2023] [Indexed: 05/16/2023]
Abstract
Distillers' grains of Chinese Baijiu (DGS) presents a significant challenge to the environmentally-friendly production of the brewing industry. This study utilized screw extrusion to modify the morphological and crystalline characteristics of DGS, resulting in a 316 % increase in the yield of non-digestible polysaccharides extraction. Physiochemical characteristics of extracted polysaccharides were variated, including infrared spectrum, monosaccharide composition, and molecular weight. Polysaccharides extracted from extruded DGS exhibited enhanced inhibitory capacity on α-amylase activity and starch hydrolyzation, as compared to those extracted from unextruded DGS. Additionally, the ABTS, DPPH, and OH radical scavenging efficiencies took a maximum increase of 1.20, 1.38, and 1.02-fold, correspondingly. Extrusion is a novel approach for the recycling non-digestible polysaccharides from DGS, augmenting the bioactivity of extracts and their potential application in functional food.
Collapse
Affiliation(s)
- Yizhou Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiong Li
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Hui Qin
- National Engineering Research Center of Solid-State Brewing, Luzhou 646000, China
| | - Mengyang Huang
- National Engineering Research Center of Solid-State Brewing, Luzhou 646000, China
| | - Shuangping Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Rui Chang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Beidou Xi
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Jian Mao
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Suyi Zhang
- National Engineering Research Center of Solid-State Brewing, Luzhou 646000, China.
| |
Collapse
|
10
|
Zhang H, Su J, Wang Q, Yuan M, Li C. Structure, gelatinization, and digestion characteristics of starch from Chinese wild rice. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2147943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Haifeng Zhang
- College of Tourism and Cuisine, Yangzhou University, Yangzhou, JP, P. R. China
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou University, Yangzhou, JP, P. R. China
| | - Jiamin Su
- College of Tourism and Cuisine, Yangzhou University, Yangzhou, JP, P. R. China
| | - Qiuyu Wang
- College of Tourism and Cuisine, Yangzhou University, Yangzhou, JP, P. R. China
| | - Meng Yuan
- College of Tourism and Cuisine, Yangzhou University, Yangzhou, JP, P. R. China
| | - Chunmei Li
- College of Tourism and Cuisine, Yangzhou University, Yangzhou, JP, P. R. China
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou University, Yangzhou, JP, P. R. China
| |
Collapse
|
11
|
Effect of Tartary Buckwheat Bran Substitution on the Quality, Bioactive Compounds Content, and In Vitro Starch Digestibility of Tartary Buckwheat Dried Noodles. Foods 2022; 11:foods11223696. [PMID: 36429287 PMCID: PMC9689101 DOI: 10.3390/foods11223696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
This study aimed to investigate the impact of partial replacement of Tartary buckwheat flour (TBF) with Tartary buckwheat bran flour (TBBF) on the quality, bioactive compounds content, and in vitro starch digestibility of Tartary buckwheat dried noodles (TBDNs). When the substitution of TBBF was increased from 0 to 35%, the cooking and textural properties decreased significantly (p < 0.05), while the content of bioactive compounds (phenolic, flavonoids and dietary fiber) increased significantly (p < 0.05). In addition, the substitution of TBBF decreased the starch digestibility of TBDNs. A 10.4% reduction in eGI values was observed in the TBDNs with 35% TBBF substitution compared to the control sample. The results of differential scanning calorimetry showed that with the increase of TBBF, TBDNs starch became more resistant to thermal processing. Meanwhile, the X-ray diffraction and Fourier transform infrared spectroscopy results revealed that the long- and short-range ordered structures of TBDN starch increased significantly (p < 0.05). Furthermore, the substitution of TBBF decreased the fluorescence intensity of α-amylase and amyloglucosidase. This study suggests that replacing TBF with TBBF could produce low glycemic index and nutrient-rich TBDNs.
Collapse
|
12
|
Hlásná Cepková P, Dostalíková L, Viehmannová I, Jágr M, Janovská D. Diversity of quinoa genetic resources for sustainable production: A survey on nutritive characteristics as influenced by environmental conditions. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.960159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Environmental extremes and climatic variability have enhanced the changes in numerous plant stressors. Researchers have been working to improve “major” crops for several decades to make them more adaptable and tolerant to environmental stresses. However, neglected and underutilized crop species that have the potential to ensure food and nutritional security for the ever-growing global population have received little or no research attention. Quinoa is one of these crops. It is a pseudocereal, considered a rich and balanced food resource due to its protein content and protein quality, high mineral content, and health benefits. This review provides currently available information on the genetic resources of quinoa and their quality in terms of variability of economically important traits such as yield, and the content of bioactive compounds, such as protein and amino acid composition. The influence of variety and environmental conditions on selected traits is also discussed. The various types of nutrients present in the different varieties form the basis and are key for future breeding efforts and for efficient, healthy, and sustainable food production.
Collapse
|
13
|
Kheto A, Das R, Deb S, Bist Y, Kumar Y, Tarafdar A, Saxena DC. Advances in isolation, characterization, modification, and application of Chenopodium starch: A comprehensive review. Int J Biol Macromol 2022; 222:636-651. [PMID: 36174856 DOI: 10.1016/j.ijbiomac.2022.09.191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/03/2022] [Accepted: 09/21/2022] [Indexed: 11/05/2022]
Abstract
The Chenopodium genus includes >250 species, among which only quinoa, pigweed, djulis, and kaniwa have been explored for starches. Chenopodium is a non-conventional and rich source of starch, which has been found effective in producing different classes of food. Chenopodium starches are characterized by their smaller granule size (0.4-3.5 μm), higher swelling index, shorter/lower gelatinization regions/temperature, good emulsifying properties, and high digestibility, making them suitable for food applications. However, most of the investigations into Chenopodium starches are in the primary stages (isolation, modification, and characterization), except for quinoa. This review comprehensively explores the major developments in Chenopodium starch research, emphasizing isolation, structural composition, functionality, hydrolysis, modification, and application. A critical analysis of the trends, limitations, and scope of these starches for novel food applications has also been provided to promote further scientific advancement in the field.
Collapse
Affiliation(s)
- Ankan Kheto
- Department of Food Process Engineering, National Institute of Technology, Rourkela, Odisha, India; Department of Food Technology, Vignan Foundation for Science Technology and Research, AP, India
| | - Rahul Das
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab, India
| | - Saptashish Deb
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab, India
| | - Yograj Bist
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab, India
| | - Yogesh Kumar
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab, India.
| | - Ayon Tarafdar
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243 122, India.
| | - D C Saxena
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab, India.
| |
Collapse
|
14
|
Junejo SA, Wang J, Liu Y, Jia R, Zhou Y, Li S. Multi-Scale Structures and Functional Properties of Quinoa Starch Extracted by Alkali, Wet-Milling, and Enzymatic Methods. Foods 2022; 11:foods11172625. [PMID: 36076810 PMCID: PMC9455589 DOI: 10.3390/foods11172625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/18/2022] [Accepted: 08/25/2022] [Indexed: 01/02/2023] Open
Abstract
The purpose of this study is to investigate the effects of starch extraction methods (alkali, wet-milling, and enzymatic) on the multi-scale structures and functional properties of quinoa starch. When the enzymatic method was compared with alkali and wet-milling, it showed higher protein content (2.39%), larger size of aggregated granules (44.1 μm), higher relative crystallinity (29.6%), scattering intensity (17.8 α.u.), absorbance ratio of 1047/1022 (0.9), single and double helical content (8.2% and 23.1%), FWHM ratio (2.1), and average molecular weight and radius of gyration (1.58 × 107 g/mol and 106.8 nm), respectively. Similarly, quinoa starch by enzymatic extraction had a higher onset (82.1 °C), peak (83.8 °C), and conclusion (86.3 °C) temperatures, as well as an enthalpy change (6.7 J/g). It further showed maximum hardness (238.8 N), gumminess (105.6 N), chewiness (80.2 N), SDS content (7.5% of raw and 4.8% of cooked), and RS content (15.5% of raw and 13.9% of cooked), whereas it contained minimum RDS content (77.1% of raw and 81.9% of cooked). The results suggest that extraction of starch by the enzymatic method could be a viable approach to retain the native structure of starch and may eventually improve the glycemic response.
Collapse
Affiliation(s)
- Shahid Ahmed Junejo
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jun Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
- School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China
| | - Ying Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Rui Jia
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yibin Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
- Key Laboratory of Agricultural Products Processing Engineering of Anhui Province, School of Tea and Food Technology, Anhui Agricultural University, Hefei 230036, China
- Correspondence: (Y.Z.); (S.L.)
| | - Songnan Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Correspondence: (Y.Z.); (S.L.)
| |
Collapse
|