1
|
Chen SY, Zhang Y, Li R, Wang B, Ye BC. De Novo Design of the ArsR Regulated P ars Promoter Enables a Highly Sensitive Whole-Cell Biosensor for Arsenic Contamination. Anal Chem 2022; 94:7210-7218. [PMID: 35537205 PMCID: PMC9134189 DOI: 10.1021/acs.analchem.2c00055] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Whole-cell biosensors for arsenic contamination are typically designed based on natural bacterial sensing systems, which are often limited by their poor performance for precisely tuning the genetic response to environmental stimuli. Promoter design remains one of the most important approaches to address such issues. Here, we use the arsenic-responsive ArsR-Pars regulation system from Escherichia coli MG1655 as the sensing element and coupled gfp or lacZ as the reporter gene to construct the genetic circuit for characterizing the refactored promoters. We first analyzed the ArsR binding site and a library of RNA polymerase binding sites to mine potential promoter sequences. A set of tightly regulated Pars promoters by ArsR was designed by placing the ArsR binding sites into the promoter's core region, and a novel promoter with maximal repression efficiency and optimal fold change was obtained. The fluorescence sensor PlacV-ParsOC2 constructed with the optimized ParsOC2 promoter showed a fold change of up to 63.80-fold (with green fluorescence visible to the naked eye) at 9.38 ppb arsenic, and the limit of detection was as low as 0.24 ppb. Further, the optimized colorimetric sensor PlacV-ParsOC2-lacZ with a linear response between 0 and 5 ppb was used to perform colorimetric reactions in 24-well plates combined with a smartphone application for the quantification of the arsenic level in groundwater. This study offers a new approach to improve the performance of bacterial sensing promoters and will facilitate the on-site application of arsenic whole-cell biosensors.
Collapse
Affiliation(s)
- Sheng-Yan Chen
- School
of Chemistry and Chemical Engineering, Shihezi
University, Shihezi 832003, China
| | - Yan Zhang
- School
of Chemistry and Chemical Engineering, Shihezi
University, Shihezi 832003, China
| | - Renjie Li
- School
of Chemistry and Chemical Engineering, Shihezi
University, Shihezi 832003, China
| | - Baojun Wang
- College
of Chemical and Biological Engineering & ZJU-Hangzhou Global Scientific
and Technological Innovation Center, Zhejiang
University, Hangzhou 311200, China,Research
Center of Biological Computation, Zhejiang
Laboratory, Hangzhou 311100, China,Centre
for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, United Kingdom,
| | - Bang-Ce Ye
- School
of Chemistry and Chemical Engineering, Shihezi
University, Shihezi 832003, China,Institute
of Engineering Biology and Health, Collaborative Innovation Center
of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical
Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China,Lab of Biosystem
and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China,. Tel/Fax: 0086-21-64252094
| |
Collapse
|
2
|
Tavares D, van der Meer JR. Subcellular Localization Defects Characterize Ribose-Binding Mutant Proteins with New Ligand Properties in Escherichia coli. Appl Environ Microbiol 2022; 88:e0211721. [PMID: 34757821 PMCID: PMC8788693 DOI: 10.1128/aem.02117-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/04/2021] [Indexed: 11/20/2022] Open
Abstract
Periplasmic binding proteins have been previously proclaimed as a general scaffold to design sensor proteins with new recognition specificities for nonnatural compounds. Such proteins can be integrated in bacterial bioreporter chassis with hybrid chemoreceptors to produce a concentration-dependent signal after ligand binding to the sensor cell. However, computationally designed new ligand-binding properties ignore the more general properties of periplasmic binding proteins, such as their periplasmic translocation, dynamic transition of open and closed forms, and interactions with membrane receptors. In order to better understand the roles of such general properties in periplasmic signaling behavior, we studied the subcellular localization of ribose-binding protein (RbsB) in Escherichia coli in comparison to a recently evolved set of mutants designed to bind 1,3-cyclohexanediol. As proxies for localization, we calibrated and deployed C-terminal end mCherry fluorescent protein fusions. Whereas RbsB-mCherry coherently localized to the periplasmic space and accumulated in (periplasmic) polar regions depending on chemoreceptor availability, mutant RbsB-mCherry expression resulted in high fluorescence cell-to-cell variability. This resulted in higher proportions of cells devoid of clear polar foci and of cells with multiple fluorescent foci elsewhere, suggesting poorer translocation, periplasmic autoaggregation, and mislocalization. Analysis of RbsB mutants and mutant libraries at different stages of directed evolution suggested overall improvement to more RbsB-wild-type-like characteristics, which was corroborated by structure predictions. Our results show that defects in periplasmic localization of mutant RbsB proteins partly explain their poor sensing performance. Future efforts should be directed to predicting or selecting secondary mutations outside computationally designed binding pockets, taking folding, translocation, and receptor interactions into account. IMPORTANCE Biosensor engineering relies on transcription factors or signaling proteins to provide the actual sensory functions for the target chemicals. Since for many compounds there are no natural sensory proteins, there is a general interest in methods that could unlock routes to obtaining new ligand-binding properties. Bacterial periplasmic binding proteins (PBPs) form an interesting family of proteins to explore for this purpose, because there is a large natural variety suggesting evolutionary trajectories to bind new ligands. PBPs are conserved and amenable to accurate computational binding pocket predictions. However, studying ribose-binding protein in Escherichia coli, we discovered that designed variants have defects in their proper localization in the cell, which can impair appropriate sensor signaling. This indicates that functional sensing capacity of PBPs cannot be obtained solely through computational design of the ligand-binding pocket but must take other properties of the protein into account, which are currently very difficult to predict.
Collapse
Affiliation(s)
- Diogo Tavares
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Jan R. van der Meer
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
3
|
Beabout K, Bernhards CB, Thakur M, Turner KB, Cole SD, Walper SA, Chávez JL, Lux MW. Optimization of Heavy Metal Sensors Based on Transcription Factors and Cell-Free Expression Systems. ACS Synth Biol 2021; 10:3040-3054. [PMID: 34723503 DOI: 10.1021/acssynbio.1c00331] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Many bacterial mechanisms for highly specific and sensitive detection of heavy metals and other hazards have been reengineered to serve as sensors. In some cases, these sensors have been implemented in cell-free expression systems, enabling easier design optimization and deployment in low-resource settings through lyophilization. Here, we apply the advantages of cell-free expression systems to optimize sensors based on three separate bacterial response mechanisms for arsenic, cadmium, and mercury. We achieved detection limits below the World Health Organization-recommended levels for arsenic and mercury and below the short-term US Military Exposure Guideline levels for all three. The optimization of each sensor was approached differently, leading to observations useful for the development of future sensors: (1) there can be a strong dependence of specificity on the particular cell-free expression system used, (2) tuning of relative concentrations of the sensing and reporter elements improves sensitivity, and (3) sensor performance can vary significantly with linear vs plasmid DNA. In addition, we show that simply combining DNA for the three sensors into a single reaction enables detection of each target heavy metal without any further optimization. This combined approach could lead to sensors that detect a range of hazards at once, such as a panel of water contaminants or all known variants of a target virus. For low-resource settings, such "all-hazard" sensors in a cheap, easy-to-use format could have high utility.
Collapse
Affiliation(s)
- Kathryn Beabout
- UES, Inc., Dayton, Ohio 45432, United States
- Air Force Research Laboratory, 711th Human Performance Wing, Wright-Patterson Air Force Base, Dayton, Ohio 45433, United States
| | - Casey B. Bernhards
- Excet, Inc., 6225 Brandon Avenue #360, Springfield, Virginia 22150, United States
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, 8198 Blackhawk Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - Meghna Thakur
- Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, D.C. 20375, United States
- College of Science, George Mason University, Fairfax, Virginia 22030, United States
| | - Kendrick B. Turner
- Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, D.C. 20375, United States
| | - Stephanie D. Cole
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, 8198 Blackhawk Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - Scott A. Walper
- Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, D.C. 20375, United States
| | - Jorge L. Chávez
- Air Force Research Laboratory, 711th Human Performance Wing, Wright-Patterson Air Force Base, Dayton, Ohio 45433, United States
| | - Matthew W. Lux
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, 8198 Blackhawk Road, Aberdeen Proving Ground, Maryland 21010, United States
| |
Collapse
|
4
|
Serdyukov DS, Goryachkovskaya TN, Mescheryakova IA, Kuznetsov SA, Popik VM, Peltek SE. Fluorescent bacterial biosensor E. coli/pTdcR-TurboYFP sensitive to terahertz radiation. BIOMEDICAL OPTICS EXPRESS 2021; 12:705-721. [PMID: 33680537 PMCID: PMC7901329 DOI: 10.1364/boe.412074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 05/05/2023]
Abstract
A fluorescent biosensor E. coli/pTdcR-TurboYFP sensitive to terahertz (THz) radiation was developed via transformation of Escherichia coli (E. coli) cells with plasmid, in which the promotor of the tdcR gene controls the expression of yellow fluorescent protein TurboYFP. The biosensor was exposed to THz radiation in various vessels and nutrient media. The threshold and dynamics of fluorescence were found to depend on irradiation conditions. Heat shock or chemical stress yielded the absence of fluorescence induction. The biosensor is applicable to studying influence of THz radiation on the activity of tdcR promotor that is involved in the transport and metabolism of threonine and serine in E. coli.
Collapse
Affiliation(s)
- Danil S. Serdyukov
- Laboratory of Molecular Biotechnologies of Federal research center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Aven., Novosibirsk, 630090, Russia
- Kurchatov Genomics Center of Federal research center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Aven., Novosibirsk, 630090, Russia
- Institute of Laser Physics of the Siberian Branch of the Russian Academy of Sciences, 15B Lavrentiev Aven., Novosibirsk, 630090, Russia
| | - Tatiana N. Goryachkovskaya
- Laboratory of Molecular Biotechnologies of Federal research center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Aven., Novosibirsk, 630090, Russia
- Kurchatov Genomics Center of Federal research center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Aven., Novosibirsk, 630090, Russia
| | - Irina A. Mescheryakova
- Laboratory of Molecular Biotechnologies of Federal research center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Aven., Novosibirsk, 630090, Russia
- Kurchatov Genomics Center of Federal research center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Aven., Novosibirsk, 630090, Russia
| | - Sergei A. Kuznetsov
- Physics Department of Novosibirsk State University, 2 Pirogov Str., Novosibirsk, 630090, Russia
- Technological Design Institute of Applied Microelectronics — Novosibirsk Branch of Rzhanov Institute of Semiconductor Physics of the Siberian Branch of the Russian Academy of Sciences, 2/1 Lavrentiev Aven., Novosibirsk, 630090, Russia
| | - Vasiliy M. Popik
- Budker Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of Sciences, 11 Lavrentiev Aven., Novosibirsk, 630090, Russia
| | - Sergey E. Peltek
- Laboratory of Molecular Biotechnologies of Federal research center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Aven., Novosibirsk, 630090, Russia
- Kurchatov Genomics Center of Federal research center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Aven., Novosibirsk, 630090, Russia
| |
Collapse
|
5
|
Sonntag CK, Flachbart LK, Maass C, Vogt M, Marienhagen J. A unified design allows fine-tuning of biosensor parameters and application across bacterial species. Metab Eng Commun 2020; 11:e00150. [PMID: 33145168 PMCID: PMC7593625 DOI: 10.1016/j.mec.2020.e00150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 11/23/2022] Open
Abstract
In recent years, transcriptional biosensors have become valuable tools in metabolic engineering as they allow semiquantitative determination of metabolites in single cells. Although being perfectly suitable tools for high-throughput screenings, application of transcriptional biosensors is often limited by the intrinsic characteristics of the individual sensor components and their interplay. In addition, biosensors often fail to work properly in heterologous host systems due to signal saturation at low intracellular metabolite concentrations, which typically limits their use in high-level producer strains at advanced engineering stages. We here introduce a biosensor design, which allows fine-tuning of important sensor parameters and restores the sensor response in a heterologous expression host. As a key feature of our design, the regulator activity is controlled through the expression level of the respective gene by different (synthetic) constitutive promoters selected for the used expression host. In this context, we constructed biosensors responding to basic amino acids or ring-hydroxylated phenylpropanoids for applications in Corynebacterium glutamicum and Escherichia coli. Detailed characterization of these biosensors in liquid cultures and during single-cell analysis using flow cytometry showed that the presented sensor design enables customization of important biosensor parameters as well as application of these sensors in relevant heterologous hosts. Development of a unified biosensor design for C. glutamicum and E. coli. Gradual expression of the regulator gene allows for biosensor fine-tuning. Biosensor response in a heterologous host can be restored. Biosensor characterization on the single-cell level prior to FACS is mandatory.
Collapse
Affiliation(s)
| | - Lion Konstantin Flachbart
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Celine Maass
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Michael Vogt
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Jan Marienhagen
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, D-52425, Jülich, Germany.,Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, D-52074, Aachen, Germany
| |
Collapse
|
6
|
Serdyukov DS, Goryachkovskaya TN, Mescheryakova IA, Bannikova SV, Kuznetsov SA, Cherkasova OP, Popik VM, Peltek SE. Study on the effects of terahertz radiation on gene networks of Escherichia coli by means of fluorescent biosensors. BIOMEDICAL OPTICS EXPRESS 2020; 11:5258-5273. [PMID: 33014613 PMCID: PMC7510871 DOI: 10.1364/boe.400432] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 05/03/2023]
Abstract
Three novel fluorescent biosensors sensitive to terahertz (THz) radiation were developed via transformation of Escherichia coli (E. coli) cells with plasmids, in which a promotor of genes matA, safA, or chbB controls the expression of a fluorescent protein. The biosensors were exposed to THz radiation from two sources: a high-intensity pulsed short-wave free electron laser and a low-intensity continuous long-wave IMPATT-diode-based device. The threshold and dynamics of fluorescence were found to depend on radiation parameters and exposure time. Heat shock or chemical stress yielded the absence of fluorescence induction. The biosensors are evaluated to be suitable for studying influence of THz radiation on the activity of gene networks related with considered gene promoters.
Collapse
Affiliation(s)
- Danil S. Serdyukov
- Laboratory of Molecular Biotechnologies of Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Avenue, Novosibirsk 630090, Russia
- Kurchatov Genomics Center of Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Avenue, Novosibirsk 630090, Russia
- Institute of Laser Physics of the Siberian Branch of the Russian Academy of Sciences, 15B Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Tatiana N. Goryachkovskaya
- Laboratory of Molecular Biotechnologies of Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Avenue, Novosibirsk 630090, Russia
- Kurchatov Genomics Center of Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Irina A. Mescheryakova
- Laboratory of Molecular Biotechnologies of Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Avenue, Novosibirsk 630090, Russia
- Kurchatov Genomics Center of Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Svetlana V. Bannikova
- Laboratory of Molecular Biotechnologies of Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Avenue, Novosibirsk 630090, Russia
- Kurchatov Genomics Center of Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Sergei A. Kuznetsov
- Physics Department, Novosibirsk State University, 2 Pirogov Street, Novosibirsk 630090, Russia
- Technological Design Institute of Applied Microelectronics, Rzhanov Institute of Semiconductor Physics of the Siberian Branch of the Russian Academy of Sciences, 2/1 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Olga P. Cherkasova
- Institute of Laser Physics of the Siberian Branch of the Russian Academy of Sciences, 15B Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Vasiliy M. Popik
- Budker Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of Sciences, 11 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Sergey E. Peltek
- Laboratory of Molecular Biotechnologies of Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Avenue, Novosibirsk 630090, Russia
- Kurchatov Genomics Center of Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Avenue, Novosibirsk 630090, Russia
| |
Collapse
|
7
|
Chen SY, Wei W, Yin BC, Tong Y, Lu J, Ye BC. Development of a Highly Sensitive Whole-Cell Biosensor for Arsenite Detection through Engineered Promoter Modifications. ACS Synth Biol 2019; 8:2295-2302. [PMID: 31525958 DOI: 10.1021/acssynbio.9b00093] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Whole-cell biosensors have attracted considerable interests because they are robust, eco-friendly, and cost-effective. However, most of the biosensors harness the naturally occurring wild-type promoter, which often suffers from high background noise and low sensitivity. In this study, we demonstrate how to design the core elements (i.e., RNA polymerase binding site and transcription factor binding site) of the promoters to obtain a significant gain in the signal-to-noise output ratio of the whole-cell biosensor circuits. As a proof of concept, we modified the arsenite-regulated promoter from Escherichia coli K-12 genome, such that it has a lower background and higher expression. This was achieved by balancing the relationship between the number of ArsR binding sites (ABS) and the activity of the promoter and adjusting the location of the auxiliary ABS. A promoter variant ParsD-ABS-8 was obtained with an induction ratio of 179 (11-fold increase over the wild-type promoter) when induced with 1 μM arsenite. Importantly, the developed biosensor exhibited good dose-response in the range of 0.1 to 4 μM (R2 = 0.9928) of arsenite with a detection limit of ca. 10 nM. These results indicated that the engineered promoter modification approach could be used to improve the performance of whole-cell biosensors, thereby facilitating their practical application.
Collapse
Affiliation(s)
- Sheng-Yan Chen
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Wenping Wei
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bin-Cheng Yin
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yanbin Tong
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Jianjiang Lu
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Bang-Ce Ye
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang China
| |
Collapse
|
8
|
Du R, Guo M, He X, Huang K, Luo Y, Xu W. Feedback regulation mode of gene circuits directly affects the detection range and sensitivity of lead and mercury microbial biosensors. Anal Chim Acta 2019; 1084:85-92. [PMID: 31519238 DOI: 10.1016/j.aca.2019.08.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/19/2019] [Accepted: 08/04/2019] [Indexed: 02/05/2023]
Abstract
Whole cell biosensors offer high potential for the detection of heavy metals in a manner that is simple, rapid and low-cost. However, previous researchers have paid little attention to the impacts of construction models on the performance of these biosensors, thereby limiting the achievement of rational design and the optimization of detection characteristics. Herein, for the first time, three basic models of lead and mercury detection circuits, namely feedback coupled, uncoupled and semi-coupled models, have been constructed and compared to explore the effects of uncoupling the topology of sensing circuits on the reporter signals. The results demonstrated that the uncoupled model had better sensitivity for both lead (50 nM) and mercury (1 nM), while the feedback coupled circuits had a wider detection range for mercury (10 nM - 7.5 μM). Introducing the semi-coupled model into the comparison revealed that both the type and location of promoters for regulatory protein genes were key factors for sensitivity. Moreover, the detection characteristics of the uncoupled biosensors were robust, as conditions such as induction time, the concentration of microbial cells, and the concentration of antibiotics had little interference on the performance of the microbial biosensors. This study also established a novel and simple pre-treatment method for sample detection by biosensors. When the uncoupled microbial biosensor was put into practice, the concentration levels of mercury in milk and lead in sewage were determined quickly and accurately. Our study, therefore, provides a strategy for the rational design of whole cell heavy metal biosensors and has developed the potential of their application.
Collapse
Affiliation(s)
- Ruoxi Du
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100194, PR China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, 100083, PR China
| | - Mingzhang Guo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100194, PR China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, 100083, PR China
| | - Xiaoyun He
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100194, PR China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, 100083, PR China
| | - Kunlun Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100194, PR China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, 100083, PR China
| | - Yunbo Luo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100194, PR China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, 100083, PR China
| | - Wentao Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100194, PR China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, 100083, PR China.
| |
Collapse
|
9
|
Probing chemotaxis activity in Escherichia coli using fluorescent protein fusions. Sci Rep 2019; 9:3845. [PMID: 30846802 PMCID: PMC6405996 DOI: 10.1038/s41598-019-40655-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 02/19/2019] [Indexed: 12/27/2022] Open
Abstract
Bacterial chemotaxis signaling may be interesting for the development of rapid biosensor assays, but is difficult to quantify. Here we explore two potential fluorescent readouts of chemotactically active Escherichia coli cells. In the first, we probed interactions between the chemotaxis signaling proteins CheY and CheZ by fusing them individually with non-fluorescent parts of stable or unstable ‘split’-Green Fluorescent Protein. Wild-type chemotactic cells but not mutants lacking the CheA kinase produced distinguishable fluorescence foci, two-thirds of which localize at the cell poles with the chemoreceptors and one-third at motor complexes. Fluorescent foci based on stable split-eGFP displayed small fluctuations in cells exposed to attractant or repellent, but those based on an unstable ASV-tagged eGFP showed a higher dynamic behaviour both in the foci intensity changes and the number of foci per cell. For the second readout, we expressed the pH-sensitive fluorophore pHluorin in the cyto- and periplasm of chemotactically active E. coli. Calibrations of pHluorin fluorescence as a function of pH demonstrated that cells accumulating near a chemo-attractant temporally increase cytoplasmic pH while decreasing periplasmic pH. Both readouts thus show promise for biosensor assays based on bacterial chemotaxis activity.
Collapse
|
10
|
Ho JCH, Pawar SV, Hallam SJ, Yadav VG. An Improved Whole-Cell Biosensor for the Discovery of Lignin-Transforming Enzymes in Functional Metagenomic Screens. ACS Synth Biol 2018; 7:392-398. [PMID: 29182267 DOI: 10.1021/acssynbio.7b00412] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The discovery and utilization of biocatalysts that selectively valorize lignocellulose is critical to the profitability of next-generation biorefineries. Here, we report the development of a refactored, whole-cell, GFP-based biosensor for high-throughput identification of biocatalysts that transform lignin into specialty chemicals from environmental DNA of uncultivable archaea and bacteria. The biosensor comprises the transcriptional regulator and promoter of the emrRAB operon of E. coli, and the configuration of the biosensor was tuned with the aid of mathematical model. The biosensor sensitively and selectively detects vanillin and syringaldehyde, and responds linearly over a wide detection range. We employed the biosensor to screen 42 520 fosmid clones comprising environmental DNA isolated from two coal beds and successfully identified 147 clones that transform hardwood kraft lignin to vanillin and syringaldehyde.
Collapse
Affiliation(s)
- Joe C. H. Ho
- Department
of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Sandip V. Pawar
- Department of Chemical & Biological Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Steven J. Hallam
- Department
of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Vikramaditya G. Yadav
- Department of Chemical & Biological Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
11
|
Saltepe B, Kehribar EŞ, Su Yirmibeşoğlu SS, Şafak Şeker UÖ. Cellular Biosensors with Engineered Genetic Circuits. ACS Sens 2018; 3:13-26. [PMID: 29168381 DOI: 10.1021/acssensors.7b00728] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An increasing interest in building novel biological devices with designed cellular functionalities has triggered the search of innovative tools for biocomputation. Utilizing the tools of synthetic biology, numerous genetic circuits have been implemented such as engineered logic operation in analog and digital circuits. Whole cell biosensors are widely used biological devices that employ several biocomputation tools to program cells for desired functions. Up to the present date, a wide range of whole-cell biosensors have been designed and implemented for disease theranostics, biomedical applications, and environmental monitoring. In this review, we investigated the recent developments in biocomputation tools such as analog, digital, and mix circuits, logic gates, switches, and state machines. Additionally, we stated the novel applications of biological devices with computing functionalities for diagnosis and therapy of various diseases such as infections, cancer, or metabolic diseases, as well as the detection of environmental pollutants such as heavy metals or organic toxic compounds. Current whole-cell biosensors are innovative alternatives to classical biosensors; however, there is still a need to advance decision making capabilities by developing novel biocomputing devices.
Collapse
Affiliation(s)
- Behide Saltepe
- UNAM-Institute
of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | - Ebru Şahin Kehribar
- UNAM-Institute
of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | | | - Urartu Özgür Şafak Şeker
- UNAM-Institute
of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| |
Collapse
|
12
|
Abstract
Synthetically engineered cells are powerful and potentially useful biosensors, but it remains problematic to deploy such systems due to practical difficulties and biosafety concerns. To overcome these hurdles, we developed a microfluidic device that serves as an interface between an engineered cellular system, environment, and user. We created a biodisplay consisting of 768 individually programmable biopixels and demonstrated that it can perform multiplexed, continuous sampling. The biodisplay detected 10 μg/L sodium-arsenite in tap water using a research grade fluorescent microscope, and reported arsenic contamination down to 20 μg/L with an easy to interpret "skull and crossbones" symbol detectable with a low-cost USB microscope or by eye. The biodisplay was designed to prevent release of chemical or biological material to avoid environmental contamination. The microfluidic biodisplay thus provides a practical solution for the deployment and application of engineered cellular systems.
Collapse
Affiliation(s)
- Francesca Volpetti
- Institute of Bioengineering,
School of Engineering, Ecole Polytechnique Federale de Lausanne, 1015 Lausanne, Switzerland
| | - Ekaterina Petrova
- Institute of Bioengineering,
School of Engineering, Ecole Polytechnique Federale de Lausanne, 1015 Lausanne, Switzerland
| | - Sebastian J. Maerkl
- Institute of Bioengineering,
School of Engineering, Ecole Polytechnique Federale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
13
|
Berset Y, Merulla D, Joublin A, Hatzimanikatis V, van der Meer JR. Mechanistic Modeling of Genetic Circuits for ArsR Arsenic Regulation. ACS Synth Biol 2017; 6:862-874. [PMID: 28215088 DOI: 10.1021/acssynbio.6b00364] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Bioreporters are living cells that generate an easily measurable signal in the presence of a chemical compound. They acquire their functionality from synthetic gene circuits, the configuration of which defines the response signal and signal-to-noise ratio. Bioreporters based on the Escherichia coli ArsR system have raised significant interest for quantifying arsenic pollution, but they need to be carefully optimized to accurately work in the required low concentration range (1-10 μg arsenite L-1). To better understand the general functioning of ArsR-based genetic circuits, we developed a comprehensive mechanistic model that was empirically tested and validated in E. coli carrying different circuit configurations. The model accounts for the different elements in the circuits (proteins, DNA, chemical species), and their detailed affinities and interactions, and predicts the (fluorescent) output from the bioreporter cell as a function of arsenite concentration. The model was parametrized using existing ArsR biochemical data, and then complemented by parameter estimations from the accompanying experimental data using a scatter search algorithm. Model predictions and experimental data were largely coherent for feedback and uncoupled circuit configurations, different ArsR alleles, promoter strengths, and presence or absence of arsenic efflux in the bioreporters. Interestingly, the model predicted a particular useful circuit variant having steeper response at low arsenite concentrations, which was experimentally confirmed and may be useful as arsenic bioreporter in the field. From the extensive validation we expect the mechanistic model to further be a useful framework for detailed modeling of other synthetic circuits.
Collapse
Affiliation(s)
- Yves Berset
- Department
of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
- Laboratory
of Computational Systems Biotechnology, Ecole Polytechnique Fédérale de Lausane (EPFL), CH 1015 Lausanne, Switzerland
| | - Davide Merulla
- Department
of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Aurélie Joublin
- Department
of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Vassily Hatzimanikatis
- Laboratory
of Computational Systems Biotechnology, Ecole Polytechnique Fédérale de Lausane (EPFL), CH 1015 Lausanne, Switzerland
| | - Jan R. van der Meer
- Department
of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
14
|
van Rossum T, Muras A, Baur MJ, Creutzburg SC, van der Oost J, Kengen SW. A growth- and bioluminescence-based bioreporter for the in vivo detection of novel biocatalysts. Microb Biotechnol 2017; 10:625-641. [PMID: 28393499 PMCID: PMC5404197 DOI: 10.1111/1751-7915.12612] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/10/2017] [Accepted: 01/13/2017] [Indexed: 11/28/2022] Open
Abstract
The use of bioreporters in high-throughput screening for small molecules is generally laborious and/or expensive. The technology can be simplified by coupling the generation of a desired compound to cell survival, causing only positive cells to stay in the pool of generated variants. Here, a dual selection/screening system was developed for the in vivo detection of novel biocatalysts. The sensor part of the system is based on the transcriptional regulator AraC, which controls expression of both a selection reporter (LeuB or KmR; enabling growth) for rapid reduction of the initially large library size and a screening reporter (LuxCDABE; causing bioluminescence) for further quantification of the positive variants. Of four developed systems, the best system was the medium copy system with KmR as selection reporter. As a proof of principle, the system was tested for the selection of cells expressing an l-arabinose isomerase derived from mesophilic Escherichia coli or thermophilic Geobacillus thermodenitrificans. A more than a millionfold enrichment of cells with l-arabinose isomerase activity was demonstrated by selection and exclusion of false positives by screening. This dual selection/screening system is an important step towards an improved detection method for small molecules, and thereby for finding novel biocatalysts.
Collapse
Affiliation(s)
- Teunke van Rossum
- Laboratory of MicrobiologyWageningen University and ResearchStippeneng 46708WE WageningenThe Netherlands
| | - Aleksandra Muras
- Laboratory of MicrobiologyWageningen University and ResearchStippeneng 46708WE WageningenThe Netherlands
| | - Marco J.J. Baur
- Laboratory of MicrobiologyWageningen University and ResearchStippeneng 46708WE WageningenThe Netherlands
| | - Sjoerd C.A. Creutzburg
- Laboratory of MicrobiologyWageningen University and ResearchStippeneng 46708WE WageningenThe Netherlands
| | - John van der Oost
- Laboratory of MicrobiologyWageningen University and ResearchStippeneng 46708WE WageningenThe Netherlands
| | - Servé W.M. Kengen
- Laboratory of MicrobiologyWageningen University and ResearchStippeneng 46708WE WageningenThe Netherlands
| |
Collapse
|
15
|
Buffi N, Beggah S, Truffer F, Geiser M, van Lintel H, Renaud P, van der Meer JR. An automated microreactor for semi-continuous biosensor measurements. LAB ON A CHIP 2016; 16:1383-1392. [PMID: 27001545 DOI: 10.1039/c6lc00119j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Living bacteria or yeast cells are frequently used as bioreporters for the detection of specific chemical analytes or conditions of sample toxicity. In particular, bacteria or yeast equipped with synthetic gene circuitry that allows the production of a reliable non-cognate signal (e.g., fluorescent protein or bioluminescence) in response to a defined target make robust and flexible analytical platforms. We report here how bacterial cells expressing a fluorescence reporter ("bactosensors"), which are mostly used for batch sample analysis, can be deployed for automated semi-continuous target analysis in a single concise biochip. Escherichia coli-based bactosensor cells were continuously grown in a 13 or 50 nanoliter-volume reactor on a two-layered polydimethylsiloxane-on-glass microfluidic chip. Physiologically active cells were directed from the nl-reactor to a dedicated sample exposure area, where they were concentrated and reacted in 40 minutes with the target chemical by localized emission of the fluorescent reporter signal. We demonstrate the functioning of the bactosensor-chip by the automated detection of 50 μgarsenite-As l(-1) in water on consecutive days and after a one-week constant operation. Best induction of the bactosensors of 6-9-fold to 50 μg l(-1) was found at an apparent dilution rate of 0.12 h(-1) in the 50 nl microreactor. The bactosensor chip principle could be widely applicable to construct automated monitoring devices for a variety of targets in different environments.
Collapse
Affiliation(s)
- Nina Buffi
- Laboratory for Microsystems Engineering, Ecole Polytechnique de Lausanne, Station 17, CH-1015 Lausanne, Switzerland
| | - Siham Beggah
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland.
| | - Frederic Truffer
- Institute of Systems Engineering, University of Applied Sciences and Arts of Western Switzerland, 1950 Sion, Switzerland
| | - Martial Geiser
- Institute of Systems Engineering, University of Applied Sciences and Arts of Western Switzerland, 1950 Sion, Switzerland
| | - Harald van Lintel
- Laboratory for Microsystems Engineering, Ecole Polytechnique de Lausanne, Station 17, CH-1015 Lausanne, Switzerland
| | - Philippe Renaud
- Laboratory for Microsystems Engineering, Ecole Polytechnique de Lausanne, Station 17, CH-1015 Lausanne, Switzerland
| | | |
Collapse
|
16
|
Merulla D, van der Meer JR. Regulatable and Modulable Background Expression Control in Prokaryotic Synthetic Circuits by Auxiliary Repressor Binding Sites. ACS Synth Biol 2016; 5:36-45. [PMID: 26348795 DOI: 10.1021/acssynbio.5b00111] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Expression control in synthetic genetic circuitry, for example, for construction of sensitive biosensors, is hampered by the lack of DNA parts that maintain ultralow background yet achieve high output upon signal integration by the cells. Here, we demonstrate how placement of auxiliary transcription factor binding sites within a regulatable promoter context can yield an important gain in signal-to-noise output ratios from prokaryotic biosensor circuits. As a proof of principle, we use the arsenite-responsive ArsR repressor protein from Escherichia coli and its cognate operator. Additional ArsR operators placed downstream of its target promoter can act as a transcription roadblock in a distance-dependent manner and reduce background expression of downstream-placed reporter genes. We show that the transcription roadblock functions both in cognate and heterologous promoter contexts. Secondary ArsR operators placed upstream of their promoter can also improve signal-to-noise output while maintaining effector dependency. Importantly, background control can be released through the addition of micromolar concentrations of arsenite. The ArsR-operator system thus provides a flexible system for additional gene expression control, which, given the extreme sensitivity to micrograms per liter effector concentrations, could be applicable in more general contexts.
Collapse
Affiliation(s)
- Davide Merulla
- Department of Fundamental
Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| | | |
Collapse
|
17
|
Wang B, Barahona M, Buck M. Amplification of small molecule-inducible gene expression via tuning of intracellular receptor densities. Nucleic Acids Res 2015; 43:1955-64. [PMID: 25589545 PMCID: PMC4330358 DOI: 10.1093/nar/gku1388] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Ligand-responsive transcription factors in prokaryotes found simple small molecule-inducible gene expression systems. These have been extensively used for regulated protein production and associated biosynthesis of fine chemicals. However, the promoter and protein engineering approaches traditionally used often pose significant restrictions to predictably and rapidly tune the expression profiles of inducible expression systems. Here, we present a new unified and rational tuning method to amplify the sensitivity and dynamic ranges of versatile small molecule-inducible expression systems. We employ a systematic variation of the concentration of intracellular receptors for transcriptional control. We show that a low density of the repressor receptor (e.g. TetR and ArsR) in the cell can significantly increase the sensitivity and dynamic range, whereas a high activator receptor (e.g. LuxR) density achieves the same outcome. The intracellular concentration of receptors can be tuned in both discrete and continuous modes by adjusting the strength of their cognate driving promoters. We exemplified this approach in several synthetic receptor-mediated sensing circuits, including a tunable cell-based arsenic sensor. The approach offers a new paradigm to predictably tune and amplify ligand-responsive gene expression with potential applications in synthetic biology and industrial biotechnology.
Collapse
Affiliation(s)
- Baojun Wang
- Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3JR, UK
- To whom correspondence should be addressed. Tel: +44 131 650 5527; Fax: +44 131 650 8650;
| | - Mauricio Barahona
- Department of Mathematics, Faculty of Natural Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Martin Buck
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
18
|
Chen B, Liu Q, Popowich A, Shen S, Yan X, Zhang Q, Li XF, Weinfeld M, Cullen WR, Le XC. Therapeutic and analytical applications of arsenic binding to proteins. Metallomics 2015; 7:39-55. [DOI: 10.1039/c4mt00222a] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Knowledge of arsenic binding to proteins advances the development of bioanalytical techniques and therapeutic drugs.
Collapse
Affiliation(s)
- Beibei Chen
- Division of Analytical and Environmental Toxicology
- Department of Laboratory Medicine and Pathology
- University of Alberta
- Edmonton, Canada
| | - Qingqing Liu
- Division of Analytical and Environmental Toxicology
- Department of Laboratory Medicine and Pathology
- University of Alberta
- Edmonton, Canada
| | | | - Shengwen Shen
- Division of Analytical and Environmental Toxicology
- Department of Laboratory Medicine and Pathology
- University of Alberta
- Edmonton, Canada
| | - Xiaowen Yan
- Division of Analytical and Environmental Toxicology
- Department of Laboratory Medicine and Pathology
- University of Alberta
- Edmonton, Canada
| | - Qi Zhang
- Division of Analytical and Environmental Toxicology
- Department of Laboratory Medicine and Pathology
- University of Alberta
- Edmonton, Canada
| | - Xing-Fang Li
- Division of Analytical and Environmental Toxicology
- Department of Laboratory Medicine and Pathology
- University of Alberta
- Edmonton, Canada
| | | | - William R. Cullen
- Department of Chemistry
- University of British Columbia
- Vancouver, Canada
| | - X. Chris Le
- Division of Analytical and Environmental Toxicology
- Department of Laboratory Medicine and Pathology
- University of Alberta
- Edmonton, Canada
- Department of Chemistry
| |
Collapse
|
19
|
Park M, Tsai SL, Chen W. Microbial biosensors: engineered microorganisms as the sensing machinery. SENSORS 2013; 13:5777-95. [PMID: 23648649 PMCID: PMC3690029 DOI: 10.3390/s130505777] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 04/18/2013] [Accepted: 05/03/2013] [Indexed: 01/10/2023]
Abstract
Whole-cell biosensors are a good alternative to enzyme-based biosensors since they offer the benefits of low cost and improved stability. In recent years, live cells have been employed as biosensors for a wide range of targets. In this review, we will focus on the use of microorganisms that are genetically modified with the desirable outputs in order to improve the biosensor performance. Different methodologies based on genetic/protein engineering and synthetic biology to construct microorganisms with the required signal outputs, sensitivity, and selectivity will be discussed.
Collapse
Affiliation(s)
- Miso Park
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA; E-Mail:
| | - Shen-Long Tsai
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan; E-Mail:
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-302-831-6327; Fax: +1-302-831-1048
| |
Collapse
|
20
|
Engineering the soil bacterium Pseudomonas putida for arsenic methylation. Appl Environ Microbiol 2013; 79:4493-5. [PMID: 23645194 DOI: 10.1128/aem.01133-13] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Accumulation of arsenic has potential health risks through consumption of food. Here, we inserted the arsenite [As(III)] S-adenosylmethionine methyltransferase (ArsM) gene into the chromosome of Pseudomonas putida KT2440. Recombinant bacteria methylate inorganic arsenic into less toxic organoarsenicals. This has the potential for bioremediation of environmental arsenic and reducing arsenic contamination in food.
Collapse
|