1
|
Contreras-de la Rosa PA, De la Torre-Zavala S, O´Connor-Sánchez A, Prieto-Davó A, Góngora-Castillo EB. Exploring the microbial communities in coastal cenote and their hidden biotechnological potential. Microb Genom 2025; 11:001382. [PMID: 40178526 PMCID: PMC11968836 DOI: 10.1099/mgen.0.001382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/19/2025] [Indexed: 04/05/2025] Open
Abstract
Bacterial secondary metabolites are crucial bioactive compounds with significant therapeutic potential, playing key roles in ecological processes and the discovery of novel antimicrobial agents and natural products. Cenotes, as extreme environments, harbour untapped microbial diversity and hold an interesting potential as sources of novel secondary metabolites. While research has focused on the fauna and flora of cenotes, the study of their microbial communities and their biosynthetic capabilities remains limited. Advances in metagenomics and genome sequencing have greatly improved the capacity to explore these communities and their metabolites. In this study, we analysed the microbial diversity and biotechnological potential of micro-organisms inhabiting sediments from a coastal cenote. Metagenomic analyses revealed a rich diversity of bacterial and archaeal communities, containing several novel biosynthetic gene clusters (BGCs) linked to secondary metabolite production. Notably, polyketide synthase BGCs, including those encoding ladderanes and aryl-polyenes, were identified. Bioinformatics analyses of these pathways suggest the presence of compounds with potential industrial and pharmaceutical applications. These findings highlight the biotechnological value of cenotes as reservoirs of secondary metabolites. The study and conservation of these ecosystems are essential to facilitate the discovery of new bioactive compounds that could benefit various industries.
Collapse
Affiliation(s)
- Perla A. Contreras-de la Rosa
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130. Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, México
| | - Susana De la Torre-Zavala
- Facultad de Ciencias Biológicas, Instituto de Biotecnología, Universidad Autónoma de Nuevo León, 66425, San Nicolás de los Garza, Nuevo León, Mexico
| | - Aileen O´Connor-Sánchez
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130. Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, México
| | - Alejandra Prieto-Davó
- Unidad de Química-Sisal, Facultad de Química. Universidad Nacional Autónoma de México, 97356, Sisal, Yucatán, México
| | - Elsa B. Góngora-Castillo
- CONAHCYT- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130. Col. Chuburná de Hidalgo 97205, Mérida, Yucatán, México
- CONAHCYT-Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Km 6. Antigua carretera a Progreso. Cordemex, 97310, Mérida, Yucatán, México
| |
Collapse
|
2
|
Goralogia GS, Willig C, Strauss SH. Engineering Agrobacterium for improved plant transformation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70015. [PMID: 40051182 PMCID: PMC11885899 DOI: 10.1111/tpj.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/07/2025] [Accepted: 01/17/2025] [Indexed: 03/10/2025]
Abstract
Outside of a few model systems and selected taxa, the insertion of transgenes and regeneration of modified plants are difficult or impossible. This is a major bottleneck both for biotechnology and scientific research with many important species. Agrobacterium-mediated transformation (AMT) remains the most common approach to insert DNA into plant cells, and is also an important means to stimulate regeneration of organized tissues. However, the strains and transformation methods available today have been largely unchanged since the 1990s. New sources of Agrobacterium germplasm and associated genomic information are available for hundreds of wild strains in public repositories, providing new opportunities for research. Many of these strains contain novel gene variants or arrangements of genes in their T-DNA, potentially providing new tools for strain enhancement. There are also several new techniques for Agrobacterium modification, including base editing, CRISPR-associated transposases, and tailored recombineering, that make the process of domesticating wild strains more precise and efficient. We review the novel germplasm, genomic resources, and new methods available, which together should lead to a renaissance in Agrobacterium research and the generation of many new domesticated strains capable of promoting plant transformation and/or regeneration in diverse plant species.
Collapse
Affiliation(s)
- Greg S. Goralogia
- Department of Forest Ecosystems and SocietyOregon State UniversityCorvallisOregon97331USA
| | - Chris Willig
- Department of Forest Ecosystems and SocietyOregon State UniversityCorvallisOregon97331USA
| | - Steven H. Strauss
- Department of Forest Ecosystems and SocietyOregon State UniversityCorvallisOregon97331USA
| |
Collapse
|
3
|
Chen YN, Cui YZ, Chen XR, Wang JY, Li BZ, Yuan YJ. Direct cloning strategies for large genomic fragments: A review. Biotechnol Adv 2025; 79:108494. [PMID: 39637950 DOI: 10.1016/j.biotechadv.2024.108494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/08/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
Mining large-scale functional regions of the genome helps to understand the essence of cellular life. The rapid accumulation of genomic information provides a wealth of material for genomic functional, evolutionary, and structural research. DNA cloning technology is an important tool for understanding, analyzing, and manipulating the genetic code of organisms. As synthetic biologists engineer greater and broader genetic pathways and expand their research into new organisms, efficient tools capable of manipulating large-scale DNA will offer momentum to the ability to design, modify, and construct engineering life. In this review, we discuss the recent advances in the field of direct cloning of large genomic fragments, particularly of 50-150 kb genomic fragments. We specifically introduce the technological advances in the targeted release and capture steps of these cloning strategies. Additionally, the applications of large fragment cloning in functional genomics and natural product mining are also summarized. Finally, we further discuss the challenges and prospects for these technologies in the future.
Collapse
Affiliation(s)
- Ya-Nan Chen
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 30072, China
| | - You-Zhi Cui
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 30072, China
| | - Xiang-Rong Chen
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 30072, China
| | - Jun-Yi Wang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 30072, China
| | - Bing-Zhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 30072, China.
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 30072, China
| |
Collapse
|
4
|
Wang X, Zhang Z, Fu J, Li R. Genomics-Driven Discovery of Plantariitin A, a New Lipopeptide in Burkholderia plantarii DSM9509. Molecules 2025; 30:868. [PMID: 40005178 PMCID: PMC11858073 DOI: 10.3390/molecules30040868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/06/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
A significant number of silent biosynthetic gene clusters (BGCs) within the Burkholderia genome remain uncharacterized, representing a valuable opportunity for the discovery of new natural products. In this research, the recombineering system ETh1h2e_yi23, which facilitates recombination in Burkholderia and was developed in our previous study, was used for mining the BGCs of B. plantarii DSM9509. By using this recombineering system, the constitutive promoter was precisely inserted into the genome, resulting in the activation of the silent pla BGC, which led to the production of a new lipopeptide named plantariitin A. A distinctive characteristic of this lipopeptide is the incorporation of a non-proteinogenic amino acid residue, i.e., amino-1,2,3,6-tetrahydro-2,6-dioxo-4-pyrimidinepropanoic acid (ATDPP), which has not been identified in other natural products. A biological activity assay demonstrated that plantariitin A exhibits anti-inflammatory activity. This study further substantiates the notion that the in situ activation of silent BGCs is a crucial strategy for the discovery of new natural products within the genus Burkholderia. With the increasing availability of genomic data and the development of bioinformatics tools, Burkholderia is poised to emerge as a prominent source for the development of new lipopeptides.
Collapse
Affiliation(s)
| | | | - Jun Fu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (X.W.); (Z.Z.)
| | - Ruijuan Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (X.W.); (Z.Z.)
| |
Collapse
|
5
|
Wang M, Chen L, Zhang Z, Wang Q. Recent advances in genome mining and synthetic biology for discovery and biosynthesis of natural products. Crit Rev Biotechnol 2025; 45:236-256. [PMID: 39134459 DOI: 10.1080/07388551.2024.2383754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/28/2023] [Accepted: 07/13/2024] [Indexed: 12/17/2024]
Abstract
Natural products have long served as critical raw materials in chemical and pharmaceutical manufacturing, primarily which can provide superior scaffolds or intermediates for drug discovery and development. Over the last century, natural products have contributed to more than a third of therapeutic drug production. However, traditional methods of producing drugs from natural products have become less efficient and more expensive over the past few decades. The combined utilization of genome mining and synthetic biology based on genome sequencing, bioinformatics tools, big data analytics, genetic engineering, metabolic engineering, and systems biology promises to counter this trend. Here, we reviewed recent (2020-2023) examples of genome mining and synthetic biology used to resolve challenges in the production of natural products, such as less variety, poor efficiency, and low yield. Additionally, the emerging efficient tools, design principles, and building strategies of synthetic biology and its application prospects in NPs synthesis have also been discussed.
Collapse
Affiliation(s)
- Mingpeng Wang
- School of Life Sciences, Qufu Normal University, Qufu, China
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Lei Chen
- School of Life Sciences, Qufu Normal University, Qufu, China
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Zhaojie Zhang
- Department of Zoology and Physiology, University of WY, Laramie, Laramie, WY, USA
| | - Qinhong Wang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|
6
|
Rill A, Zhao L, Bode HB. Genetic toolbox for Photorhabdus and Xenorhabdus: pSEVA based heterologous expression systems and CRISPR/Cpf1 based genome editing for rapid natural product profiling. Microb Cell Fact 2024; 23:98. [PMID: 38561780 PMCID: PMC10983751 DOI: 10.1186/s12934-024-02363-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Bacteria of the genus Photorhabdus and Xenorhabdus are motile, Gram-negative bacteria that live in symbiosis with entomopathogenic nematodes. Due to their complex life cycle, they produce a large number of specialized metabolites (natural products) encoded in biosynthetic gene clusters (BGC). Genetic tools for Photorhabdus and Xenorhabdus have been rare and applicable to only a few strains. In the past, several tools have been developed for the activation of BGCs and the deletion of individual genes. However, these often have limited efficiency or are time consuming. Among the limitations, it is essential to have versatile expression systems and genome editing tools that could facilitate the practical work. RESULTS In the present study, we developed several expression vectors and a CRISPR-Cpf1 genome editing vector for genetic manipulations in Photorhabdus and Xenorhabdus using SEVA plasmids. The SEVA collection is based on modular vectors that allow exchangeability of different elements (e.g. origin of replication and antibiotic selection markers with the ability to insert desired sequences for different end applications). Initially, we tested different SEVA vectors containing the broad host range origins and three different resistance genes for kanamycin, gentamycin and chloramphenicol, respectively. We demonstrated that these vectors are replicative not only in well-known representatives, e.g. Photorhabdus laumondii TTO1, but also in other rarely described strains like Xenorhabdus sp. TS4. For our CRISPR/Cpf1-based system, we used the pSEVA231 backbone to delete not only small genes but also large parts of BGCs. Furthermore, we were able to activate and refactor BGCs to obtain high production titers of high value compounds such as safracin B, a semisynthetic precursor for the anti-cancer drug ET-743. CONCLUSIONS The results of this study provide new inducible expression vectors and a CRISPR/CPf1 encoding vector all based on the SEVA (Standard European Vector Architecture) collection, which can improve genetic manipulation and genome editing processes in Photorhabdus and Xenorhabdus.
Collapse
Affiliation(s)
- Alexander Rill
- Department of Natural Products in Organismic Interactions, Max-Planck Institute for Terrestrial Microbiology, 35043, Marburg, Germany
- Molecular Biotechnology, Department of Biosciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
- Department of Chemistry, Chemical Biology, Phillips University Marburg, 35043, Marburg, Germany
| | - Lei Zhao
- Molecular Biotechnology, Department of Biosciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Helge B Bode
- Department of Natural Products in Organismic Interactions, Max-Planck Institute for Terrestrial Microbiology, 35043, Marburg, Germany.
- Molecular Biotechnology, Department of Biosciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany.
- Department of Chemistry, Chemical Biology, Phillips University Marburg, 35043, Marburg, Germany.
- Center for Synthetic Microbiology (SYNMIKRO), Phillips University Marburg, 35043, Marburg, Germany.
- Senckenberg Gesellschaft für Naturforschung, 60325, Frankfurt, Germany.
| |
Collapse
|
7
|
Kalb MJ, Grenfell AW, Jain A, Fenske-Newbart J, Gralnick JA. Comparison of phage-derived recombinases for genetic manipulation of Pseudomonas species. Microbiol Spectr 2023; 11:e0317623. [PMID: 37882574 PMCID: PMC10714826 DOI: 10.1128/spectrum.03176-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 09/09/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE The Pseudomonas genus contains many members currently being investigated for applications in biodegradation, biopesticides, biocontrol, and synthetic biology. Though several strains have been identified with beneficial properties, chromosomal manipulations to further improve these strains for commercial applications have been limited due to the lack of efficient genetic tools that have been tested across this genus. Here, we test the recombineering efficiencies of five phage-derived recombinases across three biotechnologically relevant Pseudomonas strains: P. putida KT2440, P. protegens Pf-5, and P. protegens CHA0. These results demonstrate a method to generate targeted mutations quickly and efficiently across these strains, ideally introducing a method that can be implemented across the Pseudomonas genus and a strategy that may be applied to develop analogous systems in other nonmodel bacteria.
Collapse
Affiliation(s)
- Madison J. Kalb
- BioTechnology Institute and Department of Plant and Microbial Biology, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Andrew W. Grenfell
- BioTechnology Institute and Department of Plant and Microbial Biology, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Abhiney Jain
- BioTechnology Institute and Department of Plant and Microbial Biology, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Jane Fenske-Newbart
- BioTechnology Institute and Department of Plant and Microbial Biology, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Jeffrey A. Gralnick
- BioTechnology Institute and Department of Plant and Microbial Biology, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| |
Collapse
|
8
|
van Schaik J, Li Z, Cheadle J, Crook N. Engineering the Maize Root Microbiome: A Rapid MoClo Toolkit and Identification of Potential Bacterial Chassis for Studying Plant-Microbe Interactions. ACS Synth Biol 2023; 12:3030-3040. [PMID: 37712562 DOI: 10.1021/acssynbio.3c00371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Sustainably enhancing crop production is a global necessity to meet the escalating demand for staple crops while sustainably managing their associated carbon/nitrogen inputs. Leveraging plant-associated microbiomes is a promising avenue for addressing this demand. However, studying these communities and engineering them for sustainable enhancement of crop production have remained a challenge due to limited genetic tools and methods. In this work, we detail the development of the Maize Root Microbiome ToolKit (MRMTK), a rapid Modular Cloning (MoClo) toolkit that only takes 2.5 h to generate desired constructs (5400 potential plasmids) that replicate and express heterologous genes in Enterobacter ludwigii strain AA4 (Elu), Pseudomonas putida strain AA7 (Ppu), Herbaspirillum robiniae strain AA6 (Hro), Stenotrophomonas maltophilia strain AA1 (Sma), and Brucella pituitosa strain AA2 (Bpi), which comprise a model maize root synthetic community (SynCom). In addition to these genetic tools, we describe a highly efficient transformation protocol (107-109 transformants/μg of DNA) 1 for each of these strains. Utilizing this highly efficient transformation protocol, we identified endogenous Expression Sequences (ES; promoter and ribosomal binding sites) for each strain via genomic promoter trapping. Overall, MRMTK is a scalable and adaptable platform that expands the genetic engineering toolbox while providing a standardized, high-efficiency transformation method across a diverse group of root commensals. These results unlock the ability to elucidate and engineer plant-microbe interactions promoting plant growth for each of the 5 bacterial strains in this study.
Collapse
Affiliation(s)
- John van Schaik
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Room 2109, Partners II, 840 Main Campus Drive, Raleigh, North Carolina 27606, United States
| | - Zidan Li
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Room 2109, Partners II, 840 Main Campus Drive, Raleigh, North Carolina 27606, United States
| | - John Cheadle
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Room 2109, Partners II, 840 Main Campus Drive, Raleigh, North Carolina 27606, United States
| | - Nathan Crook
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Room 2109, Partners II, 840 Main Campus Drive, Raleigh, North Carolina 27606, United States
| |
Collapse
|
9
|
Chen H, Zhong L, Zhou H, Bai X, Sun T, Wang X, Zhao Y, Ji X, Tu Q, Zhang Y, Bian X. Biosynthesis and engineering of the nonribosomal peptides with a C-terminal putrescine. Nat Commun 2023; 14:6619. [PMID: 37857663 PMCID: PMC10587159 DOI: 10.1038/s41467-023-42387-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023] Open
Abstract
The broad bioactivities of nonribosomal peptides rely on increasing structural diversity. Genome mining of the Burkholderiales strain Schlegelella brevitalea DSM 7029 leads to the identification of a class of dodecapeptides, glidonins, that feature diverse N-terminal modifications and a uniform putrescine moiety at the C-terminus. The N-terminal diversity originates from the wide substrate selectivity of the initiation module. The C-terminal putrescine moiety is introduced by the unusual termination module 13, the condensation domain directly catalyzes the assembly of putrescine into the peptidyl backbone, and other domains are essential for stabilizing the protein structure. Swapping of this module to another two nonribosomal peptide synthetases leads to the addition of a putrescine to the C-terminus of related nonribosomal peptides, improving their hydrophilicity and bioactivity. This study elucidates the mechanism for putrescine addition and provides further insights to generate diverse and improved nonribosomal peptides by introducing a C-terminal putrescine.
Collapse
Affiliation(s)
- Hanna Chen
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, Shandong, China
- School of Medicine, Linyi University, Shuangling Road, 276000, Linyi, China
| | - Lin Zhong
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Haibo Zhou
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, Shandong, China
| | - Xianping Bai
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, Shandong, China
| | - Tao Sun
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, Shandong, China
| | - Xingyan Wang
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, Shandong, China
| | - Yiming Zhao
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, Shandong, China
| | - Xiaoqi Ji
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, Shandong, China
| | - Qiang Tu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Youming Zhang
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, Shandong, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Xiaoying Bian
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, Shandong, China.
| |
Collapse
|
10
|
Chen H, Bai X, Sun T, Wang X, Zhang Y, Bian X, Zhou H. The Genomic-Driven Discovery of Glutarimide-Containing Derivatives from Burkholderia gladioli. Molecules 2023; 28:6937. [PMID: 37836780 PMCID: PMC10574677 DOI: 10.3390/molecules28196937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/20/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Glutarimide-containing polyketides exhibiting potent antitumor and antimicrobial activities were encoded via conserved module blocks in various strains that favor the genomic mining of these family compounds. The bioinformatic analysis of the genome of Burkholderia gladioli ATCC 10248 showed a silent trans-AT PKS biosynthetic gene cluster (BGC) on chromosome 2 (Chr2C8), which was predicted to produce new glutarimide-containing derivatives. Then, the silent polyketide synthase gene cluster was successfully activated via in situ promoter insertion and heterologous expression. As a result, seven glutarimide-containing analogs, including five new ones, gladiofungins D-H (3-7), and two known gladiofungin A/gladiostatin (1) and 2 (named gladiofungin C), were isolated from the fermentation of the activated mutant. Their structures were elucidated through the analysis of HR-ESI-MS and NMR spectroscopy. The structural diversities of gladiofungins may be due to the degradation of the butenolide group in gladiofungin A (1) during the fermentation and extraction process. Bioactivity screening showed that 2 and 4 had moderate anti-inflammatory activities. Thus, genome mining combined with promoter engineering and heterologous expression were proved to be effective strategies for the pathway-specific activation of the silent BGCs for the directional discovery of new natural products.
Collapse
Affiliation(s)
- Hanna Chen
- Helmholtz International Lab for Anti-Infectives, Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (H.C.); (X.B.); (T.S.); (X.W.)
- School of Medicine, Linyi University, Shuangling Road, Linyi 276000, China
| | - Xianping Bai
- Helmholtz International Lab for Anti-Infectives, Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (H.C.); (X.B.); (T.S.); (X.W.)
| | - Tao Sun
- Helmholtz International Lab for Anti-Infectives, Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (H.C.); (X.B.); (T.S.); (X.W.)
| | - Xingyan Wang
- Helmholtz International Lab for Anti-Infectives, Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (H.C.); (X.B.); (T.S.); (X.W.)
| | - Youming Zhang
- Helmholtz International Lab for Anti-Infectives, Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (H.C.); (X.B.); (T.S.); (X.W.)
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaoying Bian
- Helmholtz International Lab for Anti-Infectives, Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (H.C.); (X.B.); (T.S.); (X.W.)
| | - Haibo Zhou
- Helmholtz International Lab for Anti-Infectives, Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (H.C.); (X.B.); (T.S.); (X.W.)
| |
Collapse
|
11
|
Wang X, Zhou H, Ren X, Chen H, Zhong L, Bai X, Bian X. Recombineering enables genome mining of novel siderophores in a non-model Burkholderiales strain. ENGINEERING MICROBIOLOGY 2023; 3:100106. [PMID: 39628930 PMCID: PMC11611033 DOI: 10.1016/j.engmic.2023.100106] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 12/06/2024]
Abstract
Iron is essential for bacterial survival, and most bacteria capture iron by producing siderophores. Burkholderiales bacteria produce various types of bioactive secondary metabolites, such as ornibactin and malleobactin siderophores. In this study, the genome analysis of Burkholderiales genomes showed a putative novel siderophore gene cluster crb, which is highly similar to the ornibactin and malleobactin gene clusters but does not have pvdF, a gene encoding a formyltransferase for N-δ‑hydroxy-ornithine formylation. Establishing the bacteriophage recombinase Redγ-Redαβ7029 mediated genome editing system in a non-model Burkholderiales strain Paraburkholderia caribensis CICC 10960 allowed the rapid identification of the products of crb gene cluster, caribactins A-F (1-6). Caribactins contain a special amino acid residue N-δ‑hydroxy-N-δ-acetylornithine (haOrn), which differs from the counterpart N-δ‑hydroxy-N-δ-formylornithine (hfOrn) in ornibactin and malleobactin, owing to the absence of pvdF. Gene inactivation showed that the acetylation of hOrn is catalyzed by CrbK, whose homologs probably not be involved in the biosynthesis of ornibactin and malleobactin, showing possible evolutionary clues of these siderophore biosynthetic pathways from different genera. Caribactins promote biofilm production and enhance swarming and swimming abilities, suggesting that they may play crucial roles in biofilm formation. This study also revealed that recombineering has the capability to mine novel secondary metabolites from non-model Burkholderiales species.
Collapse
Affiliation(s)
- Xingyan Wang
- Helmholtz International Lab for Anti-Infectives, State Key Laboratory of Microbial Technology, Shandong University–Helmholtz Institute of Biotechnology, Shandong University, Qingdao 266237, China
| | - Haibo Zhou
- Helmholtz International Lab for Anti-Infectives, State Key Laboratory of Microbial Technology, Shandong University–Helmholtz Institute of Biotechnology, Shandong University, Qingdao 266237, China
| | - Xiangmei Ren
- Helmholtz International Lab for Anti-Infectives, State Key Laboratory of Microbial Technology, Shandong University–Helmholtz Institute of Biotechnology, Shandong University, Qingdao 266237, China
| | - Hanna Chen
- Helmholtz International Lab for Anti-Infectives, State Key Laboratory of Microbial Technology, Shandong University–Helmholtz Institute of Biotechnology, Shandong University, Qingdao 266237, China
| | - Lin Zhong
- Helmholtz International Lab for Anti-Infectives, State Key Laboratory of Microbial Technology, Shandong University–Helmholtz Institute of Biotechnology, Shandong University, Qingdao 266237, China
| | - Xianping Bai
- Helmholtz International Lab for Anti-Infectives, State Key Laboratory of Microbial Technology, Shandong University–Helmholtz Institute of Biotechnology, Shandong University, Qingdao 266237, China
| | - Xiaoying Bian
- Helmholtz International Lab for Anti-Infectives, State Key Laboratory of Microbial Technology, Shandong University–Helmholtz Institute of Biotechnology, Shandong University, Qingdao 266237, China
| |
Collapse
|
12
|
Li R, Li A, Zhang Y, Fu J. The emerging role of recombineering in microbiology. ENGINEERING MICROBIOLOGY 2023; 3:100097. [PMID: 39628926 PMCID: PMC11610958 DOI: 10.1016/j.engmic.2023.100097] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 12/06/2024]
Abstract
Recombineering is a valuable technique for generating recombinant DNA in vivo, primarily in bacterial cells, and is based on homologous recombination using phage-encoded homologous recombinases, such as Redαβγ from the lambda phage and RecET from the Rac prophage. The recombineering technique can efficiently mediate homologous recombination using short homologous arms (∼50 bp) and is unlimited by the size of the DNA molecules or positions of restriction sites. In this review, we summarize characteristics of recombinases, mechanism of recombineering, and advances in recombineering for DNA manipulation in Escherichia coli and other bacteria. Furthermore, the broad applications of recombineering for mining new bioactive microbial natural products, and for viral mutagenesis, phage genome engineering, and understanding bacterial metabolism are also reviewed.
Collapse
Affiliation(s)
- Ruijuan Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Aiying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jun Fu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
13
|
Zheng W, Xia Y, Wang X, Gao S, Zhou D, Ravichandran V, Jiang C, Tu Q, Yin Y, Zhang Y, Fu J, Li R, Yin J. Precise genome engineering in Pseudomonas using phage-encoded homologous recombination and the Cascade-Cas3 system. Nat Protoc 2023; 18:2642-2670. [PMID: 37626246 DOI: 10.1038/s41596-023-00856-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 05/11/2023] [Indexed: 08/27/2023]
Abstract
A lack of generic and effective genetic manipulation methods for Pseudomonas has restricted fundamental research and utilization of this genus for biotechnology applications. Phage-encoded homologous recombination (PEHR) is an efficient tool for bacterial genome engineering. This PEHR system is based on a lambda Red-like operon (BAS) from Pseudomonas aeruginosa phage Ab31 and a Rac bacteriophage RecET-like operon (Rec-TEPsy) from P. syringae pv. syringae B728a and also contains exogenous elements, including the RecBCD inhibitor (Redγ or Pluγ) or single-stranded DNA-binding protein (SSB), that were added to enhance the PEHR recombineering efficiency. To solve the problem of false positives in Pseudomonas editing with the PEHR system, the processive enzyme Cas3 with a minimal Type I-C Cascade-based system was combined with PEHR. This protocol describes the utilization of a Pseudomonas-specific PEHR-Cas3 system that was designed to universally and proficiently modify the genomes of Pseudomonas species. The pipeline uses standardized cassettes combined with the concerted use of SacB counterselection and Cre site-specific recombinase for markerless or seamless genome modification, in association with vectors that possess the selectively replicating template R6K to minimize recombineering background. Compared with the traditional allelic exchange editing method, the PEHR-Cas3 system does not need to construct suicide plasmids carrying long homologous arms, thus simplifying the experimental procedure and shortening the traceless editing period. Compared with general editing systems based on phage recombinases, the PEHR-Cas3 system can effectively improve the screening efficiency of mutants using the cutting ability of Cas3 protein. The entire procedure requires ~12 days.
Collapse
Affiliation(s)
- Wentao Zheng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yandong Xia
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Sciences, Hunan Normal University, Changsha, China
- College of Life Science and Technology, Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Key Laboratory for Non-wood Forest Cultivation and Conservation of Ministry of Education, Central South University of Forestry and Technology, Changsha, China
| | - Xue Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Shiqing Gao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Diao Zhou
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | | | - Chanjuan Jiang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Qiang Tu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yulong Yin
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jun Fu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.
| | - Ruijuan Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.
| | - Jia Yin
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Sciences, Hunan Normal University, Changsha, China.
| |
Collapse
|
14
|
Liu Q, Li R, Shi H, Yang R, Shen Q, Cui Q, Wang X, Li A, Zhang Y, Fu J. A recombineering system for Bacillus subtilis based on the native phage recombinase pair YqaJ/YqaK. ENGINEERING MICROBIOLOGY 2023; 3:100099. [PMID: 39628932 PMCID: PMC11610992 DOI: 10.1016/j.engmic.2023.100099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 12/06/2024]
Abstract
Bacillus subtilis plays an important role in fundamental and applied research, and it has been widely used as a cell factory for the production of enzymes, antimicrobial materials, and chemicals for agriculture, medicine, and industry. However, genetic manipulation tools for B. subtilis have low efficiency. In this work, our goal was to develop a simple recombineering system for B. subtilis. We showed that genome editing can be achieved in B. subtiliis 1A751 through co-expression of YqaJ/YqaK, a native phage recombinase pair found in B. subtilis 168, and the competence master regulator ComK using a double-stranded DNA substrate with short homology arms (100 bp) and a phosphorothioate modification at the 5'-end. Efficient gene knockouts and large DNA insertions were achieved using this new recombineering system in B. subtilis 1A751. As far as we know, this is the first recombineering system using the native phage recombinase pair YqaJ/YqaK in B. subtilis. In conclusion, this new recombineering system provides a simple and fast tool for genetic manipulation of B. subtilis, and it will promote studies of genome function, construction of production strains, and genome mining in B. subtilis.
Collapse
Affiliation(s)
- Qingshu Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- Hunan Institute of Microbiology, Xinkaipu Lu 18, Tianxin District, Changsha 410009, China
| | - Ruijuan Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Hongbo Shi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Runyu Yang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Qiyao Shen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Qingwen Cui
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xiuling Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Aiying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Jun Fu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
15
|
Gong K, Wang M, Duan Q, Li G, Yong D, Ren C, Li Y, Zhang Q, Wang Z, Sun T, Zhang H, Tu Q, Wu C, Fu J, Li A, Song C, Zhang Y, Li R. High-yield production of FK228 and new derivatives in a Burkholderia chassis. Metab Eng 2023; 75:131-142. [PMID: 36528227 DOI: 10.1016/j.ymben.2022.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/30/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
FK228 (romidepsin) is the only natural histone deacetylases (HDACs) inhibitor approved by FDA to treat cutaneous and peripheral T-cell lymphoma. However, the limited supply and severe cardiotoxicity of FK228 underscore the importance to develop an effective synthetic biology platform for the manufacturing and fine-tuning of this drug lead. In this work, we constructed a Burkholderia chassis for the high-yield production of FK228-family (unnatural) natural products. By virtue of the optimized Burkholderia-specific recombineering system, the biosynthetic gene cluster (BGC) encoding the FK228-like skeleton thailandepsins (tdp) in Burkholderia thailandensis E264 was replaced with an attB integration site to afford the basal chassis KOGC1. The tdp BGC directly captured from E264 was hybridized with the FK228-encoding BGC (dep) using the versatile Red/ET technology. The hybrid BGC (tdp-dep) was integrated into the attB site of KOGC1, resulting in the heterologous expression of FK228. Remarkably, the titer reached 581 mg/L, which is 30-fold higher than that of native producer Chromobacterium violaceum No. 968. This success encouraged us to further engineer the NRPS modules 4 or 6 of hybrid tdp-dep BGC by domain units swapping strategy, and eight new FK228 derivatives (1-8) varying in the composition of amino acids were generated. Especially, the titers of 2 and 3 in KOGC1 were up to 985 mg/L and 453 mg/L, respectively. 2 and 3 displayed stronger cytotoxic activity than FK228. All in all, this work established a robust platform to produce FK228 and its new derivatives in sufficient quantities for anticancer drug development.
Collapse
Affiliation(s)
- Kai Gong
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Maoqin Wang
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Qiong Duan
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Gang Li
- Department of Natural Medicinal Chemistry and Pharmacognosy, Qingdao University, Qingdao, Shandong, China
| | - Daojing Yong
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Cailing Ren
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Yue Li
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Qijun Zhang
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Zongjie Wang
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Tao Sun
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Huanyun Zhang
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Qiang Tu
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China; Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Changsheng Wu
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Jun Fu
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Aiying Li
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Chaoyi Song
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China.
| | - Youming Zhang
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China; Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Ruijuan Li
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China.
| |
Collapse
|
16
|
Yong D, Li Y, Gong K, Yu Y, Zhao S, Duan Q, Ren C, Li A, Fu J, Ni J, Zhang Y, Li R. Biocontrol of strawberry gray mold caused by Botrytis cinerea with the termite associated Streptomyces sp. sdu1201 and actinomycin D. Front Microbiol 2022; 13:1051730. [PMID: 36406410 PMCID: PMC9674021 DOI: 10.3389/fmicb.2022.1051730] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
Strawberry gray mold caused by Botrytis cinerea is one of the most severe diseases in pre- and post-harvest periods. Although fungicides have been an effective way to control this disease, they can cause serious “3R” problems (Resistance, Resurgence and Residue). In this study, Streptomyces sp. sdu1201 isolated from the hindgut of the fungus-growing termite Odontotermes formosanus revealed significant antifungal activity against B. cinerea. Four compounds (1–4) were isolated from Streptomyces sp. sdu1201 and further identified as actinomycins by the HRMS and 1D NMR data. Among them, actinomycin D had the strongest inhibitory activity against B. cinerea with the EC50 value of 7.65 μg mL−1. The control effect of actinomycin D on strawberry gray mold was also tested on fruits and leaves in vitro, and its control efficiency on leaves was 78.77% at 3 d. Moreover, actinomycin D can also inhibit the polarized growth of germ tubes of B. cinerea. Therefore, Streptomyces sp. sdu1201 and actinomycin D have great potential to gray mold as biocontrol agents.
Collapse
Affiliation(s)
- Daojing Yong
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- Qingdao Zhongda Agritech Co., Ltd., Qingdao, China
| | - Yue Li
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Kai Gong
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yingying Yu
- Qingdao Zhongda Agritech Co., Ltd., Qingdao, China
| | - Shuai Zhao
- Qingdao Zhongda Agritech Co., Ltd., Qingdao, China
| | - Qiong Duan
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Cailing Ren
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Aiying Li
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Jun Fu
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Jinfeng Ni
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- *Correspondence: Jinfeng Ni,
| | - Youming Zhang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Youming Zhang,
| | - Ruijuan Li
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- Ruijuan Li,
| |
Collapse
|
17
|
Clements-Decker T, Kode M, Khan S, Khan W. Underexplored bacteria as reservoirs of novel antimicrobial lipopeptides. Front Chem 2022; 10:1025979. [PMID: 36277345 PMCID: PMC9581180 DOI: 10.3389/fchem.2022.1025979] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Natural products derived from microorganisms play a prominent role in drug discovery as potential anti-infective agents. Over the past few decades, lipopeptides produced by particularly Bacillus, Pseudomonas, Streptomyces, Paenibacillus, and cyanobacteria species, have been extensively studied for their antimicrobial potential. Subsequently, daptomycin and polymyxin B were approved by the Food and Drug Administration as lipopeptide antibiotics. Recent studies have however, indicated that Serratia, Brevibacillus, and Burkholderia, as well as predatory bacteria such as Myxococcus, Lysobacter, and Cystobacter, hold promise as relatively underexplored sources of novel classes of lipopeptides. This review will thus highlight the structures and the newly discovered scaffolds of lipopeptide families produced by these bacterial genera, with potential antimicrobial activities. Additionally, insight into the mode of action and biosynthesis of these lipopeptides will be provided and the application of a genome mining approach, to ascertain the biosynthetic gene cluster potential of these bacterial genera (genomes available on the National Center for Biotechnology Information) for their future pharmaceutical exploitation, will be discussed.
Collapse
Affiliation(s)
| | - Megan Kode
- Department of Microbiology, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Sehaam Khan
- Faculty of Health Sciences, University of Johannesburg, Doornfontein, South Africa
| | - Wesaal Khan
- Department of Microbiology, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
- *Correspondence: Wesaal Khan,
| |
Collapse
|
18
|
Adaikpoh BI, Fernandez HN, Eustáquio AS. Biotechnology approaches for natural product discovery, engineering, and production based on Burkholderia bacteria. Curr Opin Biotechnol 2022; 77:102782. [PMID: 36049254 DOI: 10.1016/j.copbio.2022.102782] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/13/2022] [Accepted: 07/26/2022] [Indexed: 11/15/2022]
Abstract
Bacterial natural products (NPs) retain high value in discovery efforts for applications in medicine and agriculture. Burkholderia β-Proteobacteria are a promising source of NPs. In this review, we summarize the recently developed genetic manipulation techniques used to access silent/cryptic biosynthetic gene clusters from Burkholderia native producers. We also discuss the development of Burkholderia bacteria as heterologous hosts and the application of Burkholderia in industrial-scale production of NPs. Genetic engineering and fermentation media optimization have enabled the industrial-scale production of at least two Burkholderia NPs. The biotechnology approaches discussed here will continue to facilitate the discovery and development of NPs from Burkholderia.
Collapse
Affiliation(s)
- Barbara I Adaikpoh
- Department of Pharmaceutical Sciences and Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Hannah N Fernandez
- Department of Pharmaceutical Sciences and Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Alessandra S Eustáquio
- Department of Pharmaceutical Sciences and Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
19
|
Matilla MA. Facing crises in the 21st century: microfluidics approaches for antibiotic discovery. Microb Biotechnol 2022; 15:392-394. [PMID: 34333833 PMCID: PMC8867967 DOI: 10.1111/1751-7915.13908] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 11/28/2022] Open
Abstract
We urgently need new antibiotics to counteract the rising in the emergence of multidrug-resistant microorganisms. To improve the identification of antimicrobial compounds of microbial origin, numerous multidisciplinary approaches are being implemented. However, the development of innovative microbial cultivation strategies is necessary to exploit the full biosynthetic potential of non-culturable microorganisms. Here, I highlight various articles that employ high-throughput microfluidic-based strategies to identify novel antimicrobial metabolites based on bacterial activities. The rapid development of this technology will likely advance the field of antibiotic discovery.
Collapse
Affiliation(s)
- Miguel A. Matilla
- Department of Biotechnology and Environmental ProtectionEstación Experimental del ZaidínConsejo Superior de Investigaciones CientíficasProf. Albareda 1Granada18008Spain
| |
Collapse
|
20
|
Development of a new recombineering system for Agrobacterium species. Appl Environ Microbiol 2022; 88:e0249921. [PMID: 35044833 DOI: 10.1128/aem.02499-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Discovery of new and efficient genetic engineering technologies for Agrobacterium will broaden the capacity for fundamental research on this genus and for its utilization as a transgenic vehicle. In this study, we aim to develop an efficient recombineering system for Agrobacterium species. We examined isolates of Agrobacterium and the closely related genus Rhizobium to identify pairs of ET-like recombinases that would aid in the recombineering of Agrobacterium species. Four pairs of ET-like recombinases, named RecETh1h2h3h4AGROB6, RecETh1h2P3RHI597, RecETRHI145, and RecEThRHI483, were identified in Agrobacterium tumefaciens str. B6, Rhizobium leguminosarum bv. trifolii WSM597, Rhizobium sp. LC145, and Rhizobium sp. Root483D2, respectively. Eight more candidate recombineering systems were generated by combining the new ET-like recombinases with Redγ or Pluγ. The PluγETRHI145 system, RecETh1h2h3h4AGROB6 system, and PluγEThRHI483 system were determined to be the most efficient recombineering system for the type strains A. tumefaciens C58, A. tumefaciens EHA105, and R. rhizogenes NBCR13257, respectively. The utility of these systems was demonstrated by knocking out the istB and istA fusion gene in C58, the celI gene in EHA105, and the 3'-5' exonuclease gene and endoglucanase gene in NBCR13257. Our work provides an effective genetic manipulation strategy for Agrobacterium species. IMPORTANCE Agrobacterium is a powerful transgenic vehicle for the genetic manipulation of numerous plant and fungal species and even animal cells. In addition to improving the utility of Agrobacterium as a transgenic vehicle, genetic engineering tools are important for revealing crucial components that are functionally involved in T-DNA translocation events. This work developed an efficient and versatile recombineering system for Agrobacterium. Successful genome modification of Agrobacterium strains revealed that this new recombineering system could be used for the genetic engineering of Agrobacterium.
Collapse
|
21
|
Alam K, Islam MM, Gong K, Abbasi MN, Li R, Zhang Y, Li A. In silico genome mining of potential novel biosynthetic gene clusters for drug discovery from Burkholderia bacteria. Comput Biol Med 2022; 140:105046. [PMID: 34864585 DOI: 10.1016/j.compbiomed.2021.105046] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 11/25/2022]
Abstract
As an emerging resource, Gram-negative Burkholderia bacteria were able to produce a wide range of bioactive secondary metabolites with potential therapeutic and biotechnological applications. Genome mining has emerged as an influential platform for screening and pinpointing natural product diversity with the increasing number of Burkholderia genome sequences. Here, for genome mining of potential biosynthetic gene clusters (BGCs) and prioritizing prolific producing Burkholderia strains, we investigated the relationship between species evolution and distribution of main BGC groups using computational analysis of complete genome sequences of 248 Burkholderia species publicly available. We uncovered significantly differential distribution patterns of BGCs in the Burkholderia phyla, even among strains that are genetically very similar. We found various types of BGCs in Burkholderia, including some representative and most common BGCs for biosynthesis of encrypted or known terpenes, non-ribosomal peptides (NRPs) and some hybrid BGCs for cryptic products. We also observed that Burkholderia contain a lot of unspecified BGCs, representing high potentials to produce novel compounds. Analysis of BGCs for RiPPs (Ribosomally synthesized and posttranslationally modified peptides) and a texobactin-like BGC as examples showed wide classification and diversity of RiPP BGCs in Burkholderia at species level and metabolite predication. In conclusion, as the biggest investigation in silico by far on BGCs of the particular genus Burkholderia, our data implied a great diversity of natural products in Burkholderia and BGC distributions closely related to phylogenetic variation, and suggested different or concurrent strategies used to identify new drug molecules from these microorganisms will be important for the selection of potential BGCs and prolific producing strains for drug discovery.
Collapse
Affiliation(s)
- Khorshed Alam
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China.
| | - Md Mahmudul Islam
- Department of Microbiology, Rajshahi Institute of Biosciences (RIB), Affi. University of Rajshahi, Rajshahi, 6212, Bangladesh.
| | - Kai Gong
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China.
| | - Muhammad Nazeer Abbasi
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China.
| | - Ruijuan Li
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China.
| | - Youming Zhang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China.
| | - Aiying Li
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China.
| |
Collapse
|
22
|
Methodological tools to study species of the genus Burkholderia. Appl Microbiol Biotechnol 2021; 105:9019-9034. [PMID: 34755214 PMCID: PMC8578011 DOI: 10.1007/s00253-021-11667-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 11/26/2022]
Abstract
Bacteria belonging to the Burkholderia genus are extremely versatile and diverse. They can be environmental isolates, opportunistic pathogens in cystic fibrosis, immunocompromised or chronic granulomatous disease patients, or cause disease in healthy people (e.g., Burkholderia pseudomallei) or animals (as in the case of Burkholderia mallei). Since the genus was separated from the Pseudomonas one in the 1990s, the methodological tools to study and characterize these bacteria are evolving fast. Here we reviewed the techniques used in the last few years to update the taxonomy of the genus, to study gene functions and regulations, to deepen the knowledge on the drug resistance which characterizes these bacteria, and to elucidate their mechanisms to establish infections. The availability of these tools significantly impacts the quality of research on Burkholderia and the choice of the most appropriated is fundamental for a precise characterization of the species of interest. Key points • Updated techniques to study the genus Burkholderia were reviewed. • Taxonomy, genomics, assays, and animal models were described. • A comprehensive overview on recent advances in Burkholderia studies was made.
Collapse
|