1
|
Méteignier LV, Szwarc S, Barunava P, Durand M, Zamar DL, Birer Williams C, Gautron N, Dutilleul C, Koudounas K, Lezin E, Perrot T, Oudin A, Pateyron S, Delannoy E, Brunaud V, Lanoue A, Abbasi BH, St-Pierre B, Jensen MK, Papon N, Sun C, Le Pogam P, Yuan L, Beniddir MA, Besseau S, Courdavault V. Harnessing the spatial and transcriptional regulation of monoterpenoid indole alkaloid metabolism in Alstonia scholaris leads to the identification of broad geissoschizine cyclase activities. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109363. [PMID: 39657422 DOI: 10.1016/j.plaphy.2024.109363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/21/2024] [Accepted: 11/28/2024] [Indexed: 12/12/2024]
Abstract
Monoterpene indole alkaloids (MIAs) are valuable metabolites produced in numerous medicinal plants from the Apocynaceae family such as Alstonia scholaris, which synthesizes strictamine, a MIA displaying neuropharmacological properties of a potential importance. To get insights into the MIA metabolism in A. scholaris, we studied here both the spatial and transcriptional regulations of MIA genes by performing a robust transcriptomics analysis of the main plant organs, leaf epidermis but also by sequencing RNA from leaves transiently overexpressing the master transcriptional regulator MYC2. These transcriptomic studies notably demonstrated that the first steps of the MIA pathway are successively distributed in the internal phloem associated parenchyma and epidermis, and that MYC2 exerts a remarkable transcriptional effect by modulating the expression of around 1000 genes. By combining these distinct datasets, we initiated the search for MIA-related genes encoding CYP71, based on the similarity of expression compared to already known MIA genes. Transient expression of these candidates in Nicotiana benthamiana leaves and yeast notably led to the identification of a related isoform of rhazimal synthase (RHS) capable of converting the MIA precursor geissoschizine into akuammicine, strictamine and 16-epi-pleiocarpamine. Investigating its catalytic mechanism revealed that strictamine results from rhazimal deformylation and that a similar mechanism may also explain 16-epi-pleiocarpamine synthesis. This prompted us to rename these enzymes geissoschizine cyclase due to their capacity of cyclizing geissoschizine into three different MIA scaffolds and to form both C-C and C-N bonds. This identification thus illustrates the potential of integrating spatial and transcriptional regulation analysis for MIA gene identification.
Collapse
Affiliation(s)
| | - Sarah Szwarc
- Équipe Chimie des Substances Naturelles, BioCIS, Université Paris-Saclay, CNRS, 91400, Orsay, France
| | - Patra Barunava
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA
| | - Mickael Durand
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | - Duchesse-Lacours Zamar
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | - Caroline Birer Williams
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | - Nicolas Gautron
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | - Christelle Dutilleul
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | - Konstantinos Koudounas
- Laboratory of Agricultural Chemistry, School of Agriculture, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Enzo Lezin
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | - Thomas Perrot
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | - Audrey Oudin
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | - Stéphanie Pateyron
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif sur Yvette, France; Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif sur Yvette, France
| | - Etienne Delannoy
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif sur Yvette, France; Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif sur Yvette, France
| | - Veronique Brunaud
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif sur Yvette, France; Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif sur Yvette, France
| | - Arnaud Lanoue
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Benoit St-Pierre
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | - Michael Krogh Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Nicolas Papon
- Univ Angers, Univ Brest, IRF, SFR ICAT, F-49000, Angers, France
| | - Chao Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pierre Le Pogam
- Équipe Chimie des Substances Naturelles, BioCIS, Université Paris-Saclay, CNRS, 91400, Orsay, France.
| | - Ling Yuan
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA.
| | - Mehdi A Beniddir
- Équipe Chimie des Substances Naturelles, BioCIS, Université Paris-Saclay, CNRS, 91400, Orsay, France.
| | - Sébastien Besseau
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France.
| | - Vincent Courdavault
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France.
| |
Collapse
|
2
|
Perrot T, Marc J, Lezin E, Papon N, Besseau S, Courdavault V. Emerging trends in production of plant natural products and new-to-nature biopharmaceuticals in yeast. Curr Opin Biotechnol 2024; 87:103098. [PMID: 38452572 DOI: 10.1016/j.copbio.2024.103098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 03/09/2024]
Abstract
Natural products represent an inestimable source of valuable compounds for human health. Notably, those produced by plants remain challenging to access due to their low production. Potential shortages of plant-derived biopharmaceuticals caused by climate change or pandemics also regularly tense the market trends. Thus, biotechnological alternatives of supply based on synthetic biology have emerged. These innovative strategies mostly rely on the use of engineered microbial systems for compound synthesis. In this regard, yeasts remain the easiest-tractable eukaryotic models and a convenient chassis for reconstructing whole biosynthetic routes for the heterologous production of plant-derived metabolites. Here, we highlight the recent discoveries dedicated to the bioproduction of new-to-nature compounds in yeasts and provide an overview of emerging strategies for optimising bioproduction.
Collapse
Affiliation(s)
- Thomas Perrot
- Biomolécules et Biotechnologies Végétales, BBV, EA2106, Université de Tours, Tours, France
| | - Jillian Marc
- Biomolécules et Biotechnologies Végétales, BBV, EA2106, Université de Tours, Tours, France
| | - Enzo Lezin
- Biomolécules et Biotechnologies Végétales, BBV, EA2106, Université de Tours, Tours, France
| | - Nicolas Papon
- Univ Angers, Univ Brest, IRF, SFR ICAT, F-49000 Angers, France
| | - Sébastien Besseau
- Biomolécules et Biotechnologies Végétales, BBV, EA2106, Université de Tours, Tours, France
| | - Vincent Courdavault
- Biomolécules et Biotechnologies Végétales, BBV, EA2106, Université de Tours, Tours, France.
| |
Collapse
|
3
|
Cuello C, Jansen HJ, Abdallah C, Zamar Mbadinga DL, Birer Williams C, Durand M, Oudin A, Papon N, Giglioli-Guivarc'h N, Dirks RP, Jensen MK, O'Connor SE, Besseau S, Courdavault V. The Madagascar palm genome provides new insights on the evolution of Apocynaceae specialized metabolism. Heliyon 2024; 10:e28078. [PMID: 38533072 PMCID: PMC10963385 DOI: 10.1016/j.heliyon.2024.e28078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
Specialized metabolites possess diverse interesting biological activities and some cardenolides- and monoterpene indole alkaloids- (MIAs) derived pharmaceuticals are currently used to treat human diseases such as cancers or hypertension. While these two families of biocompounds are produced by specific subfamilies of Apocynaceae, one member of this medicinal plant family, the succulent tree Pachypodium lamerei Drake (also known as Madagascar palm), does not produce such specialized metabolites. To explore the evolutionary paths that have led to the emergence and loss of cardenolide and MIA biosynthesis in Apocynaceae, we sequenced and assembled the P. lamerei genome by combining Oxford Nanopore Technologies long-reads and Illumina short-reads. Phylogenomics revealed that, among the Apocynaceae whose genomes have been sequenced, the Madagascar palm is so far the species closest to the common ancestor between MIA producers/non-MIA producers. Transposable elements, constituting 72.48% of the genome, emerge as potential key players in shaping genomic architecture and influencing specialized metabolic pathways. The absence of crucial MIA biosynthetic genes such as strictosidine synthase in P. lamerei and non-Rauvolfioideae species hints at a transposon-mediated mechanism behind gene loss. Phylogenetic analysis not only showcases the evolutionary divergence of specialized metabolite biosynthesis within Apocynaceae but also underscores the role of transposable elements in this intricate process. Moreover, we shed light on the low conservation of enzymes involved in the final stages of MIA biosynthesis in the distinct MIA-producing plant families, inferring independent gains of these specialized enzymes along the evolution of these medicinal plant clades. Overall, this study marks a leap forward in understanding the genomic dynamics underpinning the evolution of specialized metabolites biosynthesis in the Apocynaceae family, with transposons emerging as potential architects of genomics restructuring and gene loss.
Collapse
Affiliation(s)
- Clément Cuello
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | - Hans J. Jansen
- Future Genomics Technologies, 2333 BE, Leiden, the Netherlands
| | - Cécile Abdallah
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | | | - Caroline Birer Williams
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | - Mickael Durand
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | - Audrey Oudin
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | - Nicolas Papon
- Univ Angers, Univ Brest, IRF, SFR ICAT, F-49000, Angers, France
| | | | - Ron P. Dirks
- Future Genomics Technologies, 2333 BE, Leiden, the Netherlands
| | - Michael Krogh Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs, Lyngby, Denmark
| | - Sarah Ellen O'Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - Sébastien Besseau
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | - Vincent Courdavault
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| |
Collapse
|
4
|
Etit D, Ögmundarson Ó, Zhang J, Krogh Jensen M, Sukumara S. Early-stage economic and environmental impact assessment for optimized bioprocess development: Monoterpenoid indole alkaloids. BIORESOURCE TECHNOLOGY 2024; 391:130005. [PMID: 37952588 DOI: 10.1016/j.biortech.2023.130005] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
Microbial refactoring offers sustainable production of plant-sourced pharmaceuticals associated with high production costs, ecological harms, and supply chain dependencies. Here, microbial tabersonine production in Saccharomyces cerevisiae is modeled during early-stage development (TRL: 3-5), guiding decisions for process-scale economic and environmental optimization. The base-case 0.7 mg/L titer indicated a minimum selling price (MSP) of $3,910,000/kg and global warming potential (GWP) of 2,540 kgCO2eq/g. The industrial process at 1 g/L resulted in an MSP of 4,262 $/kg and a GWP of 6.36 kgCO2eq/g. Location analysis indicated a sustainability trade-off between France, USA, Poland, and China, with the written order of declining MSP and increasing GWP. Continuous processing promised reducing the MSP by 18-27 %, and the GWP by 17-31 %. In-situ product extraction during fermentation was estimated to lower the MSP by 41-61 %, and the GWP by 30-75 %. In addition to showcasing a combined TEA-LCA on biopharmaceuticals, the early-stage assessment approach guides bioprocess optimization.
Collapse
Affiliation(s)
- Deniz Etit
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Ólafur Ögmundarson
- Faculty of Food Science and Nutrition, University of Iceland, Aragata 14, 102 Reykjavík, Iceland
| | - Jie Zhang
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Michael Krogh Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Sumesh Sukumara
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark.
| |
Collapse
|
5
|
Bradley SA, Lehka BJ, Hansson FG, Adhikari KB, Rago D, Rubaszka P, Haidar AK, Chen L, Hansen LG, Gudich O, Giannakou K, Lengger B, Gill RT, Nakamura Y, de Bernonville TD, Koudounas K, Romero-Suarez D, Ding L, Qiao Y, Frimurer TM, Petersen AA, Besseau S, Kumar S, Gautron N, Melin C, Marc J, Jeanneau R, O'Connor SE, Courdavault V, Keasling JD, Zhang J, Jensen MK. Biosynthesis of natural and halogenated plant monoterpene indole alkaloids in yeast. Nat Chem Biol 2023; 19:1551-1560. [PMID: 37932529 PMCID: PMC10667104 DOI: 10.1038/s41589-023-01430-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/25/2023] [Indexed: 11/08/2023]
Abstract
Monoterpenoid indole alkaloids (MIAs) represent a large class of plant natural products with marketed pharmaceutical activities against a wide range of indications, including cancer, malaria and hypertension. Halogenated MIAs have shown improved pharmaceutical properties; however, synthesis of new-to-nature halogenated MIAs remains a challenge. Here we demonstrate a platform for de novo biosynthesis of two MIAs, serpentine and alstonine, in baker's yeast Saccharomyces cerevisiae and deploy it to systematically explore the biocatalytic potential of refactored MIA pathways for the production of halogenated MIAs. From this, we demonstrate conversion of individual haloindole derivatives to a total of 19 different new-to-nature haloserpentine and haloalstonine analogs. Furthermore, by process optimization and heterologous expression of a modified halogenase in the microbial MIA platform, we document de novo halogenation and biosynthesis of chloroalstonine. Together, this study highlights a microbial platform for enzymatic exploration and production of complex natural and new-to-nature MIAs with therapeutic potential.
Collapse
Affiliation(s)
- Samuel A Bradley
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Beata J Lehka
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Frederik G Hansson
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Khem B Adhikari
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Daniela Rago
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Paulina Rubaszka
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Ahmad K Haidar
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Ling Chen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Lea G Hansen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Olga Gudich
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Konstantina Giannakou
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Bettina Lengger
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Ryan T Gill
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Yoko Nakamura
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | | | | | - David Romero-Suarez
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Ling Ding
- Department of Bioengineering, Technical University of Denmark, Lyngby, Denmark
| | - Yijun Qiao
- Department of Bioengineering, Technical University of Denmark, Lyngby, Denmark
| | - Thomas M Frimurer
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Anja A Petersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Sébastien Besseau
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, Tours, France
| | - Sandeep Kumar
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, Tours, France
| | - Nicolas Gautron
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, Tours, France
| | - Celine Melin
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, Tours, France
| | - Jillian Marc
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, Tours, France
| | | | - Sarah E O'Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Vincent Courdavault
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, Tours, France
| | - Jay D Keasling
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
- Center for Synthetic Biochemistry, Institute for Synthetic Biology, Shenzhen Institutes of Advanced Technologies, Shenzhen, China
| | - Jie Zhang
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.
| | - Michael K Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
6
|
Stander EA, Lehka B, Carqueijeiro I, Cuello C, Hansson FG, Jansen HJ, Dugé De Bernonville T, Birer Williams C, Vergès V, Lezin E, Lorensen MDBB, Dang TT, Oudin A, Lanoue A, Durand M, Giglioli-Guivarc'h N, Janfelt C, Papon N, Dirks RP, O'connor SE, Jensen MK, Besseau S, Courdavault V. The Rauvolfia tetraphylla genome suggests multiple distinct biosynthetic routes for yohimbane monoterpene indole alkaloids. Commun Biol 2023; 6:1197. [PMID: 38001233 PMCID: PMC10673892 DOI: 10.1038/s42003-023-05574-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Monoterpene indole alkaloids (MIAs) are a structurally diverse family of specialized metabolites mainly produced in Gentianales to cope with environmental challenges. Due to their pharmacological properties, the biosynthetic modalities of several MIA types have been elucidated but not that of the yohimbanes. Here, we combine metabolomics, proteomics, transcriptomics and genome sequencing of Rauvolfia tetraphylla with machine learning to discover the unexpected multiple actors of this natural product synthesis. We identify a medium chain dehydrogenase/reductase (MDR) that produces a mixture of four diastereomers of yohimbanes including the well-known yohimbine and rauwolscine. In addition to this multifunctional yohimbane synthase (YOS), an MDR synthesizing mainly heteroyohimbanes and the short chain dehydrogenase vitrosamine synthase also display a yohimbane synthase side activity. Lastly, we establish that the combination of geissoschizine synthase with at least three other MDRs also produces a yohimbane mixture thus shedding light on the complex mechanisms evolved for the synthesis of these plant bioactives.
Collapse
Affiliation(s)
- Emily Amor Stander
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | - Beata Lehka
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs, Lyngby, Denmark
| | - Inês Carqueijeiro
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | - Clément Cuello
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | - Frederik G Hansson
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs, Lyngby, Denmark
| | - Hans J Jansen
- Future Genomics Technologies, 2333 BE, Leiden, The Netherlands
| | - Thomas Dugé De Bernonville
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
- Limagrain, Centre de Recherche, Route d'Ennezat, Chappes, France
| | - Caroline Birer Williams
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | - Valentin Vergès
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | - Enzo Lezin
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | | | - Thu-Thuy Dang
- Department of Chemistry, Irving K. Barber Faculty of Science, University of British Columbia, Kelowna, BC, Canada
| | - Audrey Oudin
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | - Arnaud Lanoue
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | - Mickael Durand
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | | | - Christian Janfelt
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Nicolas Papon
- Univ Angers, Univ Brest, IRF, SFR ICAT, F-49000, Angers, France
| | - Ron P Dirks
- Future Genomics Technologies, 2333 BE, Leiden, The Netherlands
| | - Sarah Ellen O'connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany.
| | - Michael Krogh Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs, Lyngby, Denmark.
| | - Sébastien Besseau
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France.
| | - Vincent Courdavault
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France.
| |
Collapse
|
7
|
Mall M, Shanker K, Nagegowda DA, Samad A, Kalra A, Pandey A, Sundaresan V, Shukla AK. Temperature-induced lipocalin-mediated membrane integrity: Possible implications for vindoline accumulation in Catharanthus roseus leaves. PHYSIOLOGIA PLANTARUM 2023; 175:e13994. [PMID: 37882277 DOI: 10.1111/ppl.13994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 07/29/2023] [Accepted: 08/05/2023] [Indexed: 10/27/2023]
Abstract
Plant lipocalins perform diverse functions. Recently, allene oxide cyclase, a lipocalin family member, has been shown to co-express with vindoline pathway genes in Catharanthus roseus under various biotic/abiotic stresses. This brought focus to another family member, a temperature-induced lipocalin (CrTIL), which was selected for full-length cloning, tissue-specific expression profiling, in silico characterization, and upstream genomic region analysis for cis-regulatory elements. Stress-mediated variations in CrTIL expression were reflected as disturbances in cell membrane integrity, assayed through measurement of electrolyte leakage and lipid peroxidation product, MDA, which implicated the role of CrTIL in maintaining cell membrane integrity. For ascertaining the function of CrTIL in maintaining membrane stability and elucidating the relationship between CrTIL expression and vindoline content, if any, a direct approach was adopted, whereby CrTIL was transiently silenced and overexpressed in C. roseus. CrTIL silencing and overexpression confirmed its role in the maintenance of membrane integrity and indicated an inverse relationship of its expression with vindoline content. GFP fusion-based subcellular localization indicated membrane localization of CrTIL, which was in agreement with its role in maintaining membrane integrity. Altogether, the role of CrTIL in maintaining membrane structure has possible implications for the intracellular sequestration, storage, and viability of vindoline.
Collapse
Affiliation(s)
- Maneesha Mall
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
| | - Karuna Shanker
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
| | - Dinesh A Nagegowda
- CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Bengaluru, Karnataka, India
| | - Abdul Samad
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
| | - Alok Kalra
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
| | - Alok Pandey
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
| | - Velusamy Sundaresan
- CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Bengaluru, Karnataka, India
| | - Ashutosh K Shukla
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
| |
Collapse
|
8
|
Salim V, Jarecki SA, Vick M, Miller R. Advances in Metabolic Engineering of Plant Monoterpene Indole Alkaloids. BIOLOGY 2023; 12:1056. [PMID: 37626942 PMCID: PMC10452178 DOI: 10.3390/biology12081056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023]
Abstract
Monoterpene indole alkaloids (MIAs) encompass a diverse family of over 3000 plant natural products with a wide range of medical applications. Further utilizations of these compounds, however, are hampered due to low levels of abundance in their natural sources, causing difficult isolation and complex multi-steps in uneconomical chemical syntheses. Metabolic engineering of MIA biosynthesis in heterologous hosts is attractive, particularly for increasing the yield of natural products of interest and expanding their chemical diversity. Here, we review recent advances and strategies which have been adopted to engineer microbial and plant systems for the purpose of generating MIAs and discuss the current issues and future developments of manufacturing MIAs by synthetic biology approaches.
Collapse
Affiliation(s)
- Vonny Salim
- Department of Biological Sciences, Louisiana State University Shreveport, Shreveport, LA 71115, USA; (S.-A.J.); (M.V.)
| | - Sara-Alexis Jarecki
- Department of Biological Sciences, Louisiana State University Shreveport, Shreveport, LA 71115, USA; (S.-A.J.); (M.V.)
| | - Marshall Vick
- Department of Biological Sciences, Louisiana State University Shreveport, Shreveport, LA 71115, USA; (S.-A.J.); (M.V.)
| | - Ryan Miller
- School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA 70112, USA;
| |
Collapse
|
9
|
Perrot T, Besseau S, Papon N, Courdavault V. Gaining access to acetyl-CoA by peroxisomal surface display. Synth Syst Biotechnol 2023; 8:224-226. [PMID: 36936387 PMCID: PMC10020669 DOI: 10.1016/j.synbio.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/27/2023] [Accepted: 02/15/2023] [Indexed: 03/08/2023] Open
Abstract
Synthetic biology is constantly making progress for producing compounds on demand. Recently, Yocum and collaborators have developed an outstanding approach based on the anchoring of biosynthetic enzymes to the peroxisomal membrane. This allowed access to an untapped resource of acetyl-CoA and stimulated the synthesis of a valuable polyketide.
Collapse
Affiliation(s)
- Thomas Perrot
- Biomolécules et Biotechnologies Végétales, BBV, EA2106, Université de Tours, Tours, France
| | - Sébastien Besseau
- Biomolécules et Biotechnologies Végétales, BBV, EA2106, Université de Tours, Tours, France
| | - Nicolas Papon
- Univ Angers, Univ Brest, IRF, SFR ICAT, F-49000, Angers, France
| | - Vincent Courdavault
- Biomolécules et Biotechnologies Végétales, BBV, EA2106, Université de Tours, Tours, France
- Corresponding author.
| |
Collapse
|
10
|
Lemos Cruz P, Carqueijeiro I, Koudounas K, Bomzan DP, Stander EA, Abdallah C, Kulagina N, Oudin A, Lanoue A, Giglioli-Guivarc'h N, Nagegowda DA, Papon N, Besseau S, Clastre M, Courdavault V. Identification of a second 16-hydroxytabersonine-O-methyltransferase suggests an evolutionary relationship between alkaloid and flavonoid metabolisms in Catharanthus roseus. PROTOPLASMA 2023; 260:607-624. [PMID: 35947213 DOI: 10.1007/s00709-022-01801-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
The medicinal plant Catharanthus roseus biosynthesizes many important drugs for human health, including the anticancer monoterpene indole alkaloids (MIAs) vinblastine and vincristine. Over the past decades, the continuous increase in pharmaceutical demand has prompted several research groups to characterize MIA biosynthetic pathways for considering future metabolic engineering processes of supply. In line with previous work suggesting that diversification can potentially occur at various steps along the vindoline branch, we were here interested in investigating the involvement of distinct isoforms of tabersonine-16-O-methyltransferase (16OMT) which plays a pivotal role in the MIA biosynthetic pathway. By combining homology searches based on the previously characterized 16OMT1, phylogenetic analyses, functional assays in yeast, and biochemical and in planta characterizations, we identified a second isoform of 16OMT, referred to as 16OMT2. 16OMT2 appears to be a multifunctional enzyme working on both MIA and flavonoid substrates, suggesting that a constrained evolution of the enzyme for accommodating the MIA substrate has probably occurred to favor the apparition of 16OMT2 from an ancestral specific flavonoid-O-methyltransferase. Since 16OMT1 and 16OMT2 displays a high sequence identity and similar kinetic parameters for 16-hydroxytabersonine, we postulate that 16OMT1 may result from a later 16OMT2 gene duplication accompanied by a continuous neofunctionalization leading to an almost complete loss of flavonoid O-methyltransferase activity. Overall, these results participate in increasing our knowledge on the evolutionary processes that have likely led to enzyme co-optation for MIA synthesis.
Collapse
Affiliation(s)
- Pamela Lemos Cruz
- Université de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Ines Carqueijeiro
- Université de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | | | - Dikki Pedenla Bomzan
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Bengaluru, 560065, India
| | - Emily Amor Stander
- Université de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Cécile Abdallah
- Université de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Natalja Kulagina
- Université de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Audrey Oudin
- Université de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Arnaud Lanoue
- Université de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | | | - Dinesh A Nagegowda
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Bengaluru, 560065, India
| | - Nicolas Papon
- Univ Angers, Univ Brest, IRF, SFR, ICAT, F-49000, Angers, France
| | - Sébastien Besseau
- Université de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Marc Clastre
- Université de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Vincent Courdavault
- Université de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France.
| |
Collapse
|
11
|
Gao D, Liu T, Gao J, Xu J, Gou Y, Pan Y, Li D, Ye C, Pan R, Huang L, Xu Z, Lian J. De Novo Biosynthesis of Vindoline and Catharanthine in Saccharomyces cerevisiae. BIODESIGN RESEARCH 2022; 2022:0002. [PMID: 37905202 PMCID: PMC10593122 DOI: 10.34133/bdr.0002] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/17/2022] [Indexed: 11/02/2023] Open
Abstract
Vinblastine has been used clinically as one of the most potent therapeutics for the treatment of several types of cancer. However, the traditional plant extraction method suffers from unreliable supply, low abundance, and extremely high cost. Here, we use synthetic biology approach to engineer Saccharomyces cerevisiae for de novo biosynthesis of vindoline and catharanthine, which can be coupled chemically or biologically to vinblastine. On the basis of a platform strain with sufficient supply of precursors and cofactors for biosynthesis, we reconstituted, debottlenecked, and optimized the biosynthetic pathways for the production of vindoline and catharanthine. The vindoline biosynthetic pathway represents one of the most complicated pathways ever reconstituted in microbial cell factories. Using shake flask fermentation, our engineered yeast strains were able to produce catharanthine and vindoline at a titer of 527.1 and 305.1 μg·liter-1, respectively, without accumulating detectable amount of pathway intermediates. This study establishes a representative example for the production of valuable plant natural products in yeast.
Collapse
Affiliation(s)
- Di Gao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Tengfei Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jucan Gao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China
| | - Junhao Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China
| | - Yuanwei Gou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China
| | - Yingjia Pan
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China
| | - Dongfang Li
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China
| | - Cuifang Ye
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ronghui Pan
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China
| | - Lei Huang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China
| | - Zhinan Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Zhejiang Key Laboratory of Smart Biomaterials, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
12
|
Perrin J, Besseau S, Papon N, Courdavault V. Boosting lignan-precursor synthesis in yeast cell factories through co-factor supply optimization. Front Bioeng Biotechnol 2022; 10:1079801. [DOI: 10.3389/fbioe.2022.1079801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/21/2022] [Indexed: 12/05/2022] Open
|
13
|
Stander EA, Cuello C, Birer-Williams C, Kulagina N, Jansen HJ, Carqueijeiro I, Méteignier LV, Vergès V, Oudin A, Papon N, Dirks RP, Jensen MK, O’Connor SE, Dugé de Bernonville T, Besseau S, Courdavault V. The Vinca minor genome highlights conserved evolutionary traits in monoterpene indole alkaloid synthesis. G3 (BETHESDA, MD.) 2022; 12:jkac268. [PMID: 36200869 PMCID: PMC9713385 DOI: 10.1093/g3journal/jkac268] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 09/28/2022] [Indexed: 11/26/2023]
Abstract
Vinca minor, also known as the lesser periwinkle, is a well-known species from the Apocynaceae, native to central and southern Europe. This plant synthesizes monoterpene indole alkaloids, which are a class of specialized metabolites displaying a wide range of bioactive- and pharmacologically important properties. Within the almost 50 monoterpene indole alkaloids it produces, V. minor mainly accumulates vincamine, which is commercially used as a nootropic. Using a combination of Oxford Nanopore Technologies long read- and Illumina short-read sequencing, a 679,098 Mb V. minor genome was assembled into 296 scaffolds with an N50 scaffold length of 6 Mb, and encoding 29,624 genes. These genes were functionally annotated and used in a comparative genomic analysis to establish gene families and to investigate gene family expansion and contraction across the phylogenetic tree. Furthermore, homology-based monoterpene indole alkaloid gene predictions together with a metabolic analysis across 4 different V. minor tissue types guided the identification of candidate monoterpene indole alkaloid genes. These candidates were finally used to identify monoterpene indole alkaloid gene clusters, which combined with synteny analysis allowed for the discovery of a functionally validated vincadifformine-16-hydroxylase, reinforcing the potential of this dataset for monoterpene indole alkaloids gene discovery. It is expected that access to these resources will facilitate the elucidation of unknown monoterpene indole alkaloid biosynthetic routes with the potential of transferring these pathways to heterologous expression systems for large-scale monoterpene indole alkaloid production.
Collapse
Affiliation(s)
- Emily Amor Stander
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200 Tours, France
| | - Clément Cuello
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200 Tours, France
| | | | - Natalja Kulagina
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200 Tours, France
| | - Hans J Jansen
- Future Genomics Technologies, 2333 BE Leiden, The Netherlands
| | - Ines Carqueijeiro
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200 Tours, France
| | | | - Valentin Vergès
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200 Tours, France
| | - Audrey Oudin
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200 Tours, France
| | - Nicolas Papon
- Univ Angers, Univ Brest, IRF, SFR ICAT, F-49000 Angers, France
| | - Ron P Dirks
- Future Genomics Technologies, 2333 BE Leiden, The Netherlands
| | - Michael Krogh Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Sarah Ellen O’Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena 07745, Germany
| | | | - Sébastien Besseau
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200 Tours, France
| | - Vincent Courdavault
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200 Tours, France
| |
Collapse
|
14
|
Cuello C, Stander EA, Jansen HJ, Dugé de Bernonville T, Lanoue A, Giglioli-Guivarc'h N, Papon N, Dirks RP, Jensen MK, O'Connor SE, Besseau S, Courdavault V. Genome Assembly of the Medicinal Plant Voacanga thouarsii. Genome Biol Evol 2022; 14:evac158. [PMID: 36300641 PMCID: PMC9673491 DOI: 10.1093/gbe/evac158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2022] [Indexed: 11/26/2023] Open
Abstract
The Apocynaceae tree Voacanga thouarsii, native to southern Africa and Madagascar, produces monoterpene indole alkaloids (MIA), which are specialized metabolites with a wide range of bioactive properties. Voacanga species mainly accumulates tabersonine in seeds making these species valuable medicinal plants currently used for industrial MIA production. Despite their importance, the MIA biosynthesis in Voacanga species remains poorly studied. Here, we report the first genome assembly and annotation of a Voacanga species. The combined assembly of Oxford Nanopore Technologies long-reads and Illumina short-reads resulted in 3,406 scaffolds with a total length of 1,354.26 Mb and an N50 of 3.04 Mb. A total of 33,300 protein-coding genes were predicted and functionally annotated. These genes were then used to establish gene families and to investigate gene family expansion and contraction across the phylogenetic tree. A transposable element (TE) analysis showed the highest proportion of TE in Voacanga thouarsii compared with all other MIA-producing plants. In a nutshell, this first reference genome of V. thouarsii will thus contribute to strengthen future comparative and evolutionary studies in MIA-producing plants leading to a better understanding of MIA pathway evolution. This will also allow the potential identification of new MIA biosynthetic genes for metabolic engineering purposes.
Collapse
Affiliation(s)
- Clément Cuello
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200 Tours, France
| | - Emily Amor Stander
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200 Tours, France
| | - Hans J Jansen
- Future Genomics Technologies, 2333 BE Leiden, The Netherlands
| | | | - Arnaud Lanoue
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200 Tours, France
| | | | - Nicolas Papon
- Univ Angers, Univ Brest, IRF, SFR ICAT, F-49000 Angers, France
| | - Ron P Dirks
- Future Genomics Technologies, 2333 BE Leiden, The Netherlands
| | - Michael Krogh Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Sarah Ellen O'Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena 07745, Germany
| | - Sébastien Besseau
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200 Tours, France
| | - Vincent Courdavault
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200 Tours, France
| |
Collapse
|
15
|
A microbial supply chain for production of the anti-cancer drug vinblastine. Nature 2022; 609:341-347. [PMID: 36045295 PMCID: PMC9452304 DOI: 10.1038/s41586-022-05157-3] [Citation(s) in RCA: 209] [Impact Index Per Article: 69.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/27/2022] [Indexed: 12/05/2022]
Abstract
Monoterpene indole alkaloids (MIAs) are a diverse family of complex plant secondary metabolites with many medicinal properties, including the essential anti-cancer therapeutics vinblastine and vincristine1. As MIAs are difficult to chemically synthesize, the world’s supply chain for vinblastine relies on low-yielding extraction and purification of the precursors vindoline and catharanthine from the plant Catharanthus roseus, which is then followed by simple in vitro chemical coupling and reduction to form vinblastine at an industrial scale2,3. Here, we demonstrate the de novo microbial biosynthesis of vindoline and catharanthine using a highly engineered yeast, and in vitro chemical coupling to vinblastine. The study showcases a very long biosynthetic pathway refactored into a microbial cell factory, including 30 enzymatic steps beyond the yeast native metabolites geranyl pyrophosphate and tryptophan to catharanthine and vindoline. In total, 56 genetic edits were performed, including expression of 34 heterologous genes from plants, as well as deletions, knock-downs and overexpression of ten yeast genes to improve precursor supplies towards de novo production of catharanthine and vindoline, from which semisynthesis to vinblastine occurs. As the vinblastine pathway is one of the longest MIA biosynthetic pathways, this study positions yeast as a scalable platform to produce more than 3,000 natural MIAs and a virtually infinite number of new-to-nature analogues. De novo microbial biosynthesis of vindoline and catharanthine using a highly engineered yeast and in vitro chemical coupling to vinblastine is carried out, positioning yeast as a scalable platform to produce many monoterpene indole alkaloids.
Collapse
|
16
|
Aliivibrio fischeri L-Asparaginase production by engineered Bacillus subtilis: a potential new biopharmaceutical. Bioprocess Biosyst Eng 2022; 45:1635-1644. [PMID: 35974197 DOI: 10.1007/s00449-022-02769-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/04/2022] [Indexed: 11/02/2022]
Abstract
L-Asparaginase (L-ASNase) is an enzyme applied in the treatment of lymphoid malignancies. However, an innovative L-ASNase with high yield and lower side effects than the commercially available preparations are still a market requirement. Here, a new-engineered Bacillus subtilis strain was evaluated for Aliivibrio fischeri L-ASNase II production, being the bioprocess development and the enzyme characterization studied. The pBS0E plasmid replicative in Bacillus sp and containing PxylA promoter inducible by xylose and its repressive molecule sequence (XylR) was used for the genetic modification. Initially, cultivations were carried out in orbital shaker, and then the process was scaled up to stirred tank bioreactor (STB). After the bioprocess, the cells were recovered and submitted to ultrasound sonication for cells disruption and intracellular enzyme recovery. The enzymatic extract was characterized to assess its biochemical, kinetic and thermal properties using L-Asparagine and L-Glutamine as substrates. The results indicated the potential enzyme production in STB achieving L-ASNase activity up to 1.539 U mL-1. The enzymatic extract showed an optimum pH of 7.5, high L-Asparagine affinity (Km = 1.2275 mmol L-1) and low L-Glutaminase activity (0.568-0.738 U mL-1). In addition, thermal inactivation was analyzed by two different Kinect models to elucidate inactivation mechanisms, low kinetic thermal inactivation constants for 25 ºC and 37 ºC (0.128 and 0.148 h-1, respectively) indicate an elevated stability. The findings herein show that the produced recombinant L-ASNase has potential to be applied for pharmaceutical purposes.
Collapse
|
17
|
Zuo Y, Xiao F, Gao J, Ye C, Jiang L, Dong C, Lian J. Establishing Komagataella phaffii as a Cell Factory for Efficient Production of Sesquiterpenoid α-Santalene. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8024-8031. [PMID: 35729733 DOI: 10.1021/acs.jafc.2c02353] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Santalene, a major component of the sandalwood essential oil, is a typical representative of sesquiterpenes and has important applications in medicine, food, flavors, and other fields. Due to the limited supply of natural sandalwood resources, there is a growing interest in engineering microbial cell factories for the mass production of santalene. In the present study, Komagataella phaffii (also known as Pichia pastoris) was established as a cell factory for high-level production of α-santalene for the first time. The metabolic fluxes were rewired toward α-santalene biosynthesis through the optimization of promoters to drive the expression of the α-santalene synthase (SAS) gene, overexpression of the key mevalonate pathway genes (i.e., tHMG1, IDI1, and ERG20), and multi-copy integration of the SAS expression cassette. In combination with medium optimization and bioprocess engineering, the optimal strain (STE-9) was able to produce α-santalene with a titer as high as 829.8 ± 70.6 mg/L, 4.4 ± 0.3 g/L, and 21.5 ± 1.6 g/L in a shake flask, batch fermenter, and fed-batch fermenter, respectively. These represented the highest production of α-santalene ever reported, highlighting the advantages of K. phaffii cell factories for the production of terpenoids and other natural products.
Collapse
Affiliation(s)
- Yimeng Zuo
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
| | - Feng Xiao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
| | - Jucan Gao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
| | - Cuifang Ye
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
| | - Lihong Jiang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Chang Dong
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
- Zhejiang Key Laboratory of Smart Biomaterials, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
18
|
Kulagina N, Méteignier LV, Papon N, O'Connor SE, Courdavault V. More than a Catharanthus plant: A multicellular and pluri-organelle alkaloid-producing factory. CURRENT OPINION IN PLANT BIOLOGY 2022; 67:102200. [PMID: 35339956 DOI: 10.1016/j.pbi.2022.102200] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/14/2022] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
Plants represent a huge reservoir of natural products. A broad series of these compounds now find application for human health. In this respect, the monoterpene indole alkaloids (MIAs), particularly from Madagascar periwinkle, are a prominent example of plant specialized metabolites with an important therapeutic potential. However, the supply of MIA drugs has always been a challenge since the low-yield accumulation in planta. This mainly results from the complex architecture of the MIA biosynthetic pathway that involves several organs, tissue types and subcellular organelles. Here, we describe the most recent advances towards the elucidation of this pathway route as well as its spatial organization in planta. Besides allowing a better understanding of the MIA biosynthetic flux in the whole plant, such knowledge will also probably pave the way for the development of metabolic engineering strategies to sustain the MIA supply.
Collapse
Affiliation(s)
- Natalja Kulagina
- Université de Tours, EA2106 Biomolécules et Biotechnologies Végétales, Tours, France
| | | | - Nicolas Papon
- Univ Angers, Univ Brest, IRF, SFR ICAT, F-49000 Angers, France
| | - Sarah Ellen O'Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena 07745, Germany.
| | - Vincent Courdavault
- Université de Tours, EA2106 Biomolécules et Biotechnologies Végétales, Tours, France.
| |
Collapse
|
19
|
Mistry V, Darji S, Tiwari P, Sharma A. Engineering Catharanthus roseus monoterpenoid indole alkaloid pathway in yeast. Appl Microbiol Biotechnol 2022; 106:2337-2347. [PMID: 35333954 DOI: 10.1007/s00253-022-11883-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/07/2022] [Accepted: 03/12/2022] [Indexed: 11/27/2022]
Abstract
Catharanthus roseus (Madagascar periwinkle), a medicinal plant possessing high pharmacological attributes, is widely recognized for the biosynthesis of anticancer monoterpenoid indole alkaloids (MIAs) - vinblastine and vincristine. The plant is known to biosynthesize more than 130 different bioactive MIAs, highly acclaimed in traditional and modern medicinal therapies. The MIA biosynthesis is strictly regulated at developmental and spatial-temporal stages and requires a well-defined cellular and sub-cellular compartmentation for completion of the entire MIAs biosynthesis. However, due to their cytotoxic nature, the production of vinblastine and vincristine occurs in low concentrations in planta and the absence of chemical synthesis alternatives projects a huge gap in demand and supply, leading to high market price. With research investigations spanning more than four decades, plant tissue culture and metabolic engineering (ME)-based studies were attempted to explore, understand, explain, improve and enhance the MIA biosynthesis using homologous and heterologous systems. Presently, metabolic engineering and synthetic biology are the two powerful tools that are contributing majorly in elucidating MIA biosynthesis. This review concentrates mainly on the efforts made through metabolic engineering of MIAs in heterologous microbial factories. KEY POINTS: • Yeast engineering provides alternative production source of phytomolecules • Yeast engineering also helps to discover missing plant pathway enzymes and genes.
Collapse
Affiliation(s)
- Vyoma Mistry
- Metabolic Engineering Lab, C. G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Gopal-Vidyanagar, Maliba Campus, Surat, 394350, India
| | - Siddhi Darji
- Metabolic Engineering Lab, C. G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Gopal-Vidyanagar, Maliba Campus, Surat, 394350, India
| | - Pragya Tiwari
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Abhishek Sharma
- Metabolic Engineering Lab, C. G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Gopal-Vidyanagar, Maliba Campus, Surat, 394350, India.
- Department of Biotechnology and Bioengineering, Institute of Advance Research, Koba Institutional Area, Gandhinagar, 382426, Gujarat, India.
| |
Collapse
|
20
|
Liu T, Gou Y, Zhang B, Gao R, Dong C, Qi M, Jiang L, Ding X, Li C, Lian J. Construction of Ajmalicine and Sanguinarine
de novo
Biosynthetic Pathways using Stable Integration Sites in Yeast. Biotechnol Bioeng 2022; 119:1314-1326. [DOI: 10.1002/bit.28040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/22/2021] [Accepted: 01/02/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Tengfei Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University Hangzhou 310027 China
| | - Yuanwei Gou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University Hangzhou 310027 China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University Hangzhou 310027 China
| | - Bei Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University Hangzhou 310027 China
| | - Rui Gao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University Hangzhou 310027 China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University Hangzhou 310027 China
| | - Chang Dong
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University Hangzhou 310027 China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University Hangzhou 310027 China
| | - Mingming Qi
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University Hangzhou 310027 China
| | - Lihong Jiang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University Hangzhou 310027 China
| | - Xuanwei Ding
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing 100081 China
| | - Chun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing 100081 China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University Hangzhou 310027 China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University Hangzhou 310027 China
| |
Collapse
|
21
|
Papon N, Copp BR, Courdavault V. Marine drugs: Biology, pipelines, current and future prospects for production. Biotechnol Adv 2021; 54:107871. [PMID: 34801661 DOI: 10.1016/j.biotechadv.2021.107871] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/02/2021] [Accepted: 11/15/2021] [Indexed: 12/17/2022]
Abstract
The marine environment is a huge reservoir of biodiversity and represents an excellent source of chemical compounds, some of which have large economical values. In the urgent quest for new pharmaceuticals, marine-based drug discovery has progressed significantly over the past several decades and we now benefit from a series of approved marine natural products (MNPs) to treat cancer and pain while an additional collection of promising leads are in clinical trials. However, the discovery and supply of MNPs has always been challenging given their low bioavailability and structural complexity. Their manufacture for pre-clinical and clinical development but also commercialization mainly relies upon marine source extraction and chemical synthesis, which are associated with high costs, unsustainability and severe environmental problems. In this review, we discuss how metabolic engineering now raises reasonable expectations for the implementation of microbial cell factories, which may provide a sustainable approach for MNP-based drug supply in the near future.
Collapse
Affiliation(s)
- Nicolas Papon
- Univ. Angers, Univ. Brest, GEIHP, SFR ICAT, F-49000 Angers, France.
| | - Brent R Copp
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Vincent Courdavault
- Université de Tours, EA2106 Biomolécules et Biotechnologies Végétales, Tours, France.
| |
Collapse
|