1
|
Thorwarth D. Clinical use of positron emission tomography for radiotherapy planning - Medical physics considerations. Z Med Phys 2023; 33:13-21. [PMID: 36272949 PMCID: PMC10068574 DOI: 10.1016/j.zemedi.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/17/2022] [Accepted: 09/21/2022] [Indexed: 11/06/2022]
Abstract
PET/CT imaging plays an increasing role in radiotherapy treatment planning. The aim of this article was to identify the major use cases and technical as well as medical physics challenges during integration of these data into treatment planning. Dedicated aspects, such as (i) PET/CT-based radiotherapy simulation, (ii) PET-based target volume delineation, (iii) functional avoidance to optimized organ-at-risk sparing and (iv) functionally adapted individualized radiotherapy are discussed in this article. Furthermore, medical physics aspects to be taken into account are summarized and presented in form of check-lists.
Collapse
Affiliation(s)
- Daniela Thorwarth
- Section for Biomedical Physics, Department of Radiation Oncology, University of Tübingen, Tübingen, Germany; German Cancer Consortium (DKTK), partner site Tübingen; and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
2
|
Thureau S, Mallet R, Gouel P, Modzelewski R, Vera P. [What dose escalation in the treatment of locally advanced non-small cell lung cancer?]. Cancer Radiother 2022; 26:890-893. [PMID: 36075830 DOI: 10.1016/j.canrad.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 11/29/2022]
Abstract
Despite significant therapeutic advances in the treatment of locally advanced inoperable non-small cell lung cancer (NSCLC), notably through adjuvant immunotherapy, the rate of therapeutic failure remains high. The use of positron emission tomography with fluorodeoxyglucose (FDG-PET), respiratory motion and intensity modulated radiotherapy (IMRT) have led to therapeutic improvements with reduced toxicity and better local control. The optimal dose to be delivered remains unknown due to discordant results of studies for almost 20 years and the way to define the area to benefit from a dose increase (whole volume, subvolume defined by pre- or per-radiotherapy PET).
Collapse
Affiliation(s)
- S Thureau
- Département de radiothérapie et de physique médicale, centre Henri-Becquerel, Rouen, France; Unité QuantIF LITIS EA 4108, université de Rouen, Normandie, France; Département d'imagerie, centre Henri-Becquerel, Rouen, France.
| | - R Mallet
- Département de radiothérapie et de physique médicale, centre Henri-Becquerel, Rouen, France
| | - P Gouel
- Département d'imagerie, centre Henri-Becquerel, Rouen, France
| | - R Modzelewski
- Unité QuantIF LITIS EA 4108, université de Rouen, Normandie, France; Département d'imagerie, centre Henri-Becquerel, Rouen, France
| | - P Vera
- Unité QuantIF LITIS EA 4108, université de Rouen, Normandie, France; Département d'imagerie, centre Henri-Becquerel, Rouen, France
| |
Collapse
|
3
|
Grootjans W, Rietbergen DDD, van Velden FHP. Added Value of Respiratory Gating in Positron Emission Tomography for the Clinical Management of Lung Cancer Patients. Semin Nucl Med 2022; 52:745-758. [DOI: 10.1053/j.semnuclmed.2022.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 04/21/2022] [Indexed: 12/24/2022]
|
4
|
Papoutsis I, Skjei Knudtsen I, Peter Skaug Sande E, Louni Rekstad B, Öllers M, van Elmpt W, Røthe Arnesen M, Malinen E. Positron emission tomography guided dose painting by numbers of lung cancer: Alanine dosimetry in an anthropomorphic phantom. Phys Imaging Radiat Oncol 2022; 21:101-107. [PMID: 35243040 PMCID: PMC8885607 DOI: 10.1016/j.phro.2022.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/19/2022] [Accepted: 02/20/2022] [Indexed: 11/27/2022] Open
Abstract
DPBN was delivered to a phantom based on the anatomy of a lung cancer patient examined by FDG PET/CT prior to radiotherapy. Alanine dosimetry showed that DPBN can be delivered with high accuracy to the tumour in the anthropomorphic phantom. For regions outside the tumour, high correspondence between planned and delivered doses were also found. Positioning errors can lead to large deviations and potentially sub-optimal tumor doses.
Background and purpose Dose painting by numbers (DPBN) require a high degree of dose modulation to fulfill the image-based voxel wise dose prescription. The aim of this study was to assess the dosimetric accuracy of 18F-fluoro-2-deoxy-glucose positron emission tomography(18F-FDG-PET)-based DPBN in an anthropomorphic lung phantom using alanine dosimetry. Materials and methods A linear dose prescription based on 18F-FDG-PET image intensities within the gross tumor volume (GTV) of a lung cancer patient was employed. One DPBN scheme with low dose modulation (Scheme A; minimum/maximum fraction dose to the GTV 2.92/4.26 Gy) and one with a high modulation (Scheme B; 2.81/4.52 Gy) were generated. The plans were transferred to a computed tomograpy (CT) scan of a thorax phantom based on CT images of the patient. Using volumetric modulated arc therapy (VMAT), DPBN was delivered to the phantom with embedded alanine dosimeters. A plan was also delivered to an intentionally misaligned phantom. Absorbed doses at various points in the phantom were measured by alanine dosimetry. Results A pointwise comparison between GTV doses from prescription, treatment plan calculation and VMAT delivery showed high correspondence, with a mean and maximum dose difference of <0.1 Gy and 0.3 Gy, respectively. No difference was found in dosimetric accuracy between scheme A and B. The misalignment caused deviations up to 1 Gy between prescription and delivery. Conclusion DPBN can be delivered with high accuracy, showing that the treatment may be applied correctly from a dosimetric perspective. Still, misalignment may cause considerable dosimetric erros, indicating the need for patient immobilization and monitoring.
Collapse
|
5
|
Driscoll B, Vines D, Shek T, Publicover J, Yeung I, Breen S, Jaffray D. 4D-CT Attenuation Correction in Respiratory-Gated PET for Hypoxia Imaging: Is It Really Beneficial? ACTA ACUST UNITED AC 2021; 6:241-249. [PMID: 32548302 PMCID: PMC7289254 DOI: 10.18383/j.tom.2019.00027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Previous literature has shown that 4D respiratory-gated positron emission tomography (PET) is beneficial for quantitative analysis and defining targets for boosting therapy. However the case for addition of a phase-matched 4D-computed tomography (CT) for attenuation correction (AC) is less clear. We seek to validate the use of 4D-CT for AC and investigate the impact of motion correction for low signal-to-background PET imaging of hypoxia using radiotracers such as FAZA and FMISO. A new insert for the Modus Medicals' QUASAR™ Programmable Respiratory Motion Phantom was developed in which a 3D-printed sphere was placed within the "lung" compartment while an additional compartment is added to simulate muscle/blood compartment required for hypoxia quantification. Experiments are performed at 4:1 or 2:1 signal-to-background ratio consistent with clinical FAZA and FMISO imaging. Motion blur was significant in terms of SUVmax, mean, and peak for motion ≥1 cm and could be significantly reduced (from 20% to 8% at 2-cm motion) for all 4D-PET-gated reconstructions. The effect of attenuation method on precision was significant (σ2 hCT-AC = 5.5%/4.7%/2.7% vs σ2 4D-CT-AC = 0.5%/0.6%/0.7% [max%/peak%/mean% variance]). The simulated hypoxic fraction also significantly decreased under conditions of 2-cm amplitude motion from 55% to 20% and was almost fully recovered (HF = 0.52 for phase-matched 4D-CT) using gated PET. 4D-gated PET is valuable under conditions of low radiotracer uptake found in hypoxia imaging. This work demonstrates the importance of using 4D-CT for AC when performing gated PET based on its significantly improved precision over helical CT.
Collapse
Affiliation(s)
- Brandon Driscoll
- Quantitative Imaging for Personalized Cancer Medicine Program-Techna Institute, University Health Network, Toronto, ON, Canada
| | - Douglass Vines
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON, Canada; and.,Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Tina Shek
- Quantitative Imaging for Personalized Cancer Medicine Program-Techna Institute, University Health Network, Toronto, ON, Canada
| | - Julia Publicover
- Quantitative Imaging for Personalized Cancer Medicine Program-Techna Institute, University Health Network, Toronto, ON, Canada
| | - Ivan Yeung
- Quantitative Imaging for Personalized Cancer Medicine Program-Techna Institute, University Health Network, Toronto, ON, Canada.,Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON, Canada; and.,Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Stephen Breen
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON, Canada; and.,Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - David Jaffray
- Quantitative Imaging for Personalized Cancer Medicine Program-Techna Institute, University Health Network, Toronto, ON, Canada.,Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON, Canada; and.,Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Thureau S, Modzelewski R, Bohn P, Hapdey S, Gouel P, Dubray B, Vera P. Comparison of Hypermetabolic and Hypoxic Volumes Delineated on [ 18F]FDG and [ 18F]Fluoromisonidazole PET/CT in Non-small-cell Lung Cancer Patients. Mol Imaging Biol 2021; 22:764-771. [PMID: 31432388 DOI: 10.1007/s11307-019-01422-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
PURPOSE The high rates of failure in the radiotherapy target volume suggest that patients with stage II or III non-small-cell lung cancer (NSCLC) should receive an increased total dose of radiotherapy. 2-Deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) and [18F]fluoromisonidazole ([18F]FMISO) (hypoxia) uptake on pre-radiotherapy positron emission tomography (PET)/X-ray computed tomography (CT) have been independently reported to identify intratumor subvolumes at higher risk of relapse after radiotherapy. We have compared the [18F]FDG and [18F]FMISO volumes defined by PET/CT in NSCLC patients included in a prospective study. PROCEDURES Thirty-four patients with non-resectable lung cancer underwent [18F]FDG and [18F]FMISO PET/CT before (pre-RT) and during radiotherapy (around 42 Gy, per-RT). The criteria were to delineate 40 % and 90 % SUVmax thresholds on [18F]FDG PET/CT (metabolic volumes), and SUV > 1.4 on pre-RT [18F]FMISO PET/CT (hypoxic volume). The functional volumes were delineated within the tumor volume as defined on co-registered CTs. RESULTS The mean pre-RT and per-RT [18F]FDG volumes were not statistically different (30.4 cc vs 22.2; P = 0.12). The mean pre-RT SUVmax [18F]FDG was higher than per-RT SUVmax (12.7 vs 6.5; P < 0.0001). The mean [18F]FMISO SUVmax and volumes were 2.7 and 1.37 cc, respectively. Volume-based analysis showed good overlap between [18F]FDG and [18F]FMISO for all methods of segmentation but a poor correlation for Jaccard or Dice Indices (DI). The DI maximum was 0.45 for a threshold at 40 or 50 %. CONCLUSION The correlation between [18F]FDG and [18F]FMISO uptake is low in NSCLC, making it possible to envisage different management strategies as the studies in progress show.
Collapse
Affiliation(s)
- Sébastien Thureau
- Department of Radiation Oncology, Henri Becquerel Cancer Center and Rouen University Hospital, & QuantIF - LITIS [EA (Equipe d'Accueil) 4108, FR CNRS 3638], Faculty of Medecine, University of Rouen, Rouen, France. .,Department of Nuclear Medicine, Henri Becquerel Cancer Center and Rouen University Hospital, & QuantIF - LITIS [EA (Equipe d'Accueil) 4108 - FR CNRS 3638], Faculty of Medicine, University of Rouen, Rouen, France.
| | - R Modzelewski
- Department of Nuclear Medicine, Henri Becquerel Cancer Center and Rouen University Hospital, & QuantIF - LITIS [EA (Equipe d'Accueil) 4108 - FR CNRS 3638], Faculty of Medicine, University of Rouen, Rouen, France
| | - P Bohn
- Department of Nuclear Medicine, Henri Becquerel Cancer Center and Rouen University Hospital, & QuantIF - LITIS [EA (Equipe d'Accueil) 4108 - FR CNRS 3638], Faculty of Medicine, University of Rouen, Rouen, France
| | - S Hapdey
- Department of Nuclear Medicine, Henri Becquerel Cancer Center and Rouen University Hospital, & QuantIF - LITIS [EA (Equipe d'Accueil) 4108 - FR CNRS 3638], Faculty of Medicine, University of Rouen, Rouen, France
| | - P Gouel
- Department of Nuclear Medicine, Henri Becquerel Cancer Center and Rouen University Hospital, & QuantIF - LITIS [EA (Equipe d'Accueil) 4108 - FR CNRS 3638], Faculty of Medicine, University of Rouen, Rouen, France
| | - B Dubray
- Department of Radiation Oncology, Henri Becquerel Cancer Center and Rouen University Hospital, & QuantIF - LITIS [EA (Equipe d'Accueil) 4108, FR CNRS 3638], Faculty of Medecine, University of Rouen, Rouen, France
| | - P Vera
- Department of Nuclear Medicine, Henri Becquerel Cancer Center and Rouen University Hospital, & QuantIF - LITIS [EA (Equipe d'Accueil) 4108 - FR CNRS 3638], Faculty of Medicine, University of Rouen, Rouen, France
| |
Collapse
|
7
|
Zeng J, Bowen SR. Treatment Intensification in Locally Advanced/Unresectable NSCLC Through Combined Modality Treatment and Precision Dose Escalation. Semin Radiat Oncol 2021; 31:105-111. [PMID: 33610266 DOI: 10.1016/j.semradonc.2020.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The best survival for patients with unresectable, locally advanced NSCLC is currently achieved through concurrent chemoradiation followed by durvalumab for a year. Despite the best standard of care treatment, the majority of patients still develop disease recurrence, which could be distant and/or local. Trials continue to try and improve outcomes for patients with unresectable NSCLC, typically through treatment intensification, with the addition of more systemic agents, or more radiation dose to the tumor. Although RTOG 0617 showed that uniform dose escalation across an unselected population of patients undergoing chemoradiation is not beneficial, efforts continue to select patients and tumor subsets that are likely to benefit from dose escalation. This review describes some of the ongoing therapeutic trials in unresectable NSCLC, with an emphasis on quantitative imaging and precision radiation dose escalation.
Collapse
Affiliation(s)
- Jing Zeng
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, WA.
| | - Stephen R Bowen
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, WA; Department of Radiology, University of Washington School of Medicine, Seattle, WA
| |
Collapse
|
8
|
Caillet V, Zwan B, Briggs A, Hardcastle N, Szymura K, Prodreka A, O’Brien R, Harris BE, Greer P, Haddad C, Jayamanne D, Eade T, Booth J, Keall P. Geometric uncertainty analysis of MLC tracking for lung SABR. ACTA ACUST UNITED AC 2020; 65:235040. [DOI: 10.1088/1361-6560/abb0c6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
9
|
Thureau S, Briens A, Decazes P, Castelli J, Barateau A, Garcia R, Thariat J, de Crevoisier R. PET and MRI guided adaptive radiotherapy: Rational, feasibility and benefit. Cancer Radiother 2020; 24:635-644. [PMID: 32859466 DOI: 10.1016/j.canrad.2020.06.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023]
Abstract
Adaptive radiotherapy (ART) corresponds to various replanning strategies aiming to correct for anatomical variations occurring during the course of radiotherapy. The goal of the article was to report the rational, feasibility and benefit of using PET and/or MRI to guide this ART strategy in various tumor localizations. The anatomical modifications defined by scanner taking into account tumour mobility and volume variation are not always sufficient to optimise treatment. The contribution of functional imaging by PET or the precision of soft tissue by MRI makes it possible to consider optimized ART. Today, the most important data for both PET and MRI are for lung, head and neck, cervical and prostate cancers. PET and MRI guided ART appears feasible and safe, however in a very limited clinical experience. Phase I/II studies should be therefore performed, before proposing cost-effectiveness comparisons in randomized trials and before using the approach in routine practice.
Collapse
Affiliation(s)
- S Thureau
- Département de radiothérapie et de physique médicale, centre Henri-Becquerel, QuantIF EA 4108, université de Rouen, 76000 Rouen, France.
| | - A Briens
- Département de radiothérapie, centre Eugène-Marquis, rue de la Bataille-Flandres-Dunkerque, CS 44229, 35042 Rennes cedex, France
| | - P Decazes
- Département de médecine nucléaire, center Henri-Becquerel, QuantIF EA 4108, université de Rouen, Rouen, France
| | - J Castelli
- Département de radiothérapie, centre Eugène Marquis, rue de la Bataille-Flandres-Dunkerque, CS 44229, 35042 Rennes cedex, France; CLCC Eugène Marquis, Inserm, LTSI-UMR 1099, université de Rennes, 35000 Rennes, France
| | - A Barateau
- Département de radiothérapie, centre Eugène Marquis, rue de la Bataille-Flandres-Dunkerque, CS 44229, 35042 Rennes cedex, France; CLCC Eugène Marquis, Inserm, LTSI-UMR 1099, université de Rennes, 35000 Rennes, France
| | - R Garcia
- Service de physique médicale, institut Sainte-Catherine, 84918 Avignon, France
| | - J Thariat
- Department of radiation oncology, centre François-Baclesse, 14000 Caen, France; Laboratoire de physique corpusculaire IN2P3/ENSICAEN-UMR6534-Unicaen-Normandie université, 14000 Caen, France; ARCHADE Research Community, 14000 Caen, France
| | - R de Crevoisier
- Département de radiothérapie, centre Eugène-Marquis, rue de la Bataille-Flandres-Dunkerque, CS 44229, 35042 Rennes cedex, France; CLCC Eugène Marquis, Inserm, LTSI-UMR 1099, université de Rennes, 35000 Rennes, France
| |
Collapse
|
10
|
« Définition des volumes cibles : quand et comment l’oncologue radiothérapeute peut-il utiliser la TEP ? ». Cancer Radiother 2019; 23:745-752. [DOI: 10.1016/j.canrad.2019.07.133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 07/28/2019] [Indexed: 12/12/2022]
|