1
|
Kodagoda YK, Kim G, Liyanage DS, Omeka WKM, Park C, Kim J, Lee JH, Hanchapola HACR, Dilshan MAH, Rodrigo DCG, Jones DB, Massault C, Jerry DR, Lee J. Genome-wide association mapping of scuticociliatosis resistance in a vaccinated population of olive flounder (Paralichthys olivaceus). FISH & SHELLFISH IMMUNOLOGY 2025; 162:110339. [PMID: 40239929 DOI: 10.1016/j.fsi.2025.110339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 04/11/2025] [Accepted: 04/14/2025] [Indexed: 04/18/2025]
Abstract
Scuticociliatosis, a parasitic disease caused by the scuticociliate Miamiensis avidus (M. avidus), poses a grave threat to the olive flounder industry owing to its high morbidity and mortality rates. Vaccination is a safe and effective approach commonly practiced in farms to control key diseases, thus replacing conventional therapeutic measures with many limitations. Concurrently, selective breeding for enhanced disease resistance is underway in olive flounder breeding programs contingent on challenge tests involving unvaccinated fish. However, vaccination status may affect genetic predisposition to infection. This study pioneered the investigation of the genetic diversity underlying scuticociliatosis resistance in vaccinated olive flounders. A cohort of 720 fish received vaccination with formalin-killed M. avidus, followed by an intraperitoneal challenge test with live M. avidus. Genotyping of 474 vaccinated fish from 130 families was performed using a custom high-density 70 k single-nucleotide polymorphism (SNP) array, revealing a polygenic architecture with substantial genetic variation in scuticociliatosis resistance, with an estimated heritability of approximately 0.10 in the vaccinated population. A Genome-Wide Association Study identified 16 suggestively (1 × 10-4) associated SNP variants distributed over chromosomes 1, 7, 11, 12, and 13 and no genome-wide significant SNP. The top 17 candidate genes linked with identified SNPs were enriched with vital biological processes, essential for combating parasitic infections. These findings provide insights into the polygenic architecture of scuticociliatosis resistance in olive flounders. While the identified genetic markers explain limited phenotypic variance of 0.49 %, this study lays the groundwork for further genomic selection approaches, contributing to more effective disease management and sustainable aquaculture of olive flounders.
Collapse
Affiliation(s)
- Yasara Kavindi Kodagoda
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea
| | - Gaeun Kim
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea
| | - D S Liyanage
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea
| | - W K M Omeka
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea
| | - Cheonguk Park
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea
| | - Jeongeun Kim
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea
| | - Ji Hun Lee
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea
| | - H A C R Hanchapola
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea
| | - M A H Dilshan
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea
| | - D C G Rodrigo
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea
| | - David B Jones
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| | - Cecile Massault
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| | - Dean R Jerry
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia; Tropical Futures Institute, James Cook University, Singapore.
| | - Jehee Lee
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea.
| |
Collapse
|
2
|
Zhou Q, Wang J, Li J, Chen Z, Wang N, Li M, Wang L, Si Y, Lu S, Cui Z, Liu X, Chen S. Decoding the fish genome opens a new era in important trait research and molecular breeding in China. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2064-2083. [PMID: 39145867 DOI: 10.1007/s11427-023-2670-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/01/2024] [Indexed: 08/16/2024]
Abstract
Aquaculture represents the fastest-growing global food production sector, as it has become an essential component of the global food supply. China has the world's largest aquaculture industry in terms of production volume. However, the sustainable development of fish culture is hindered by several concerns, including germplasm degradation and disease outbreaks. The practice of genomic breeding, which relies heavily on genome information and genotypephenotype relationships, has significant potential for increasing the efficiency of aquaculture production. In 2014, the completion of the genome sequencing and annotation of the Chinese tongue sole signified the beginning of the fish genomics era in China. Since then, domestic researchers have made dramatic progress in functional genomic studies. To date, the genomes of more than 60 species of fish in China have been assembled and annotated. Based on these reference genomes, evolutionary, comparative, and functional genomic studies have revolutionized our understanding of a wide range of biologically and economically important traits of fishes, including growth and development, sex determination, disease resistance, metamorphosis, and pigmentation. Furthermore, genomic tools and breeding techniques such as SNP arrays, genomic selection, and genome editing have greatly accelerated genetic improvement through the incorporation of functional genomic information into breeding activities. This review aims to summarize the current status, advances, and perspectives of the genome resources, genomic study of important traits, and genomic breeding techniques of fish in China. The review will provide aquaculture researchers, fish breeders, and farmers with updated information concerning fish genomic research and breeding technology. The summary will help to promote the genetic improvement of production traits and thus will support the sustainable development of fish aquaculture.
Collapse
Affiliation(s)
- Qian Zhou
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Jialin Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Jiongtang Li
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, 100041, China
| | - Zhangfan Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Na Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Ming Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Lei Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Yufeng Si
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Sheng Lu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Zhongkai Cui
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Xuhui Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Songlin Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China.
| |
Collapse
|
3
|
Rasal KD, Kumar PV, Risha S, Asgolkar P, Harshavarthini M, Acharya A, Shinde S, Dhere S, Rasal A, Sonwane A, Brahmane M, Sundaray JK, Nagpure N. Genetic improvement and genomic resources of important cyprinid species: status and future perspectives for sustainable production. Front Genet 2024; 15:1398084. [PMID: 39364006 PMCID: PMC11446788 DOI: 10.3389/fgene.2024.1398084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 09/02/2024] [Indexed: 10/05/2024] Open
Abstract
Cyprinid species are the most cultured aquatic species around the world in terms of quantity and total value. They account for 25% of global aquaculture production and significantly contribute to fulfilling the demand for fish food. The aquaculture of these species is facing severe concerns in terms of seed quality, rising feed costs, disease outbreaks, introgression of exotic species, environmental impacts, and anthropogenic activities. Numerous researchers have explored biological issues and potential methods to enhance cyprinid aquaculture. Selective breeding is extensively employed in cyprinid species to enhance specific traits like growth and disease resistance. In this context, we have discussed the efforts made to improve important cyprinid aquaculture practices through genetic and genomic approaches. The recent advances in DNA sequencing technologies and genomic tools have revolutionized the understanding of biological research. The generation of a complete genome and other genomic resources in cyprinid species has significantly strengthened molecular-level investigations into disease resistance, growth, reproduction, and adaptation to changing environments. We conducted a comprehensive review of genomic research in important cyprinid species, encompassing genome, transcriptome, proteome, metagenome, epigenome, etc. This review reveals that considerable data has been generated for cyprinid species. However, the seamless integration of this valuable data into genetic selection programs has yet to be achieved. In the upcoming years, genomic techniques, gene transfer, genome editing tools are expected to bring a paradigm shift in sustainable cyprinid aquaculture production. The comprehensive information presented here will offer insights for the cyprinid aquaculture research community.
Collapse
Affiliation(s)
- Kiran D Rasal
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | | | - Shasti Risha
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - Prachi Asgolkar
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - M Harshavarthini
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - Arpit Acharya
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - Siba Shinde
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - Siyag Dhere
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - Avinash Rasal
- ICAR - Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - Arvind Sonwane
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - Manoj Brahmane
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - Jitendra K Sundaray
- ICAR - Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - Naresh Nagpure
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| |
Collapse
|
4
|
Gutierrez AP, Selly SLC, Pountney SM, Taggart JB, Kokkinias P, Cavrois-Rogacki T, Fernandez EJ, Migaud H, Lein I, Davie A, Bekaert M. Development of genomic markers associated to growth-related traits and sex determination in lumpfish (Cyclopterus lumpus). Genomics 2023; 115:110721. [PMID: 37769819 DOI: 10.1016/j.ygeno.2023.110721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
Cleaner fish species have gained great importance in the control of sea lice, among them, lumpfish (Cyclopterus lumpus) has become one of the most popular. Lumpfish life cycle has been closed, and hatchery reproduction is now possible, however, current production is reliant on wild caught broodstock to meet the increasing demand. Selective breeding practices are called to play an important role in the successful breeding of most aquaculture species, including lumpfish. In this study we analysed a lumpfish population for the identification of genomic markers linked to production traits. Sequencing of RAD libraries allowed us to identify, 7193 informative markers within the sampled individuals. Genome wide association analysis for sex, weight, condition factor and standard length was performed. One single major QTL region was identified for sex, while nine QTL regions were detected for weight, and three QTL regions for standard length. A total of 177 SNP markers of interest (from QTL regions) and 399 high Fst SNP markers were combined in a low-density panel, useful to obtain relevant genetic information from lumpfish populations. Moreover, a robust combined subset of 29 SNP markers (10 associated to sex, 14 to weight and 18 to standard length) provided over 90% accuracy in predicting the animal's phenotype by machine learning. Overall, our findings provide significant insights into the genetic control of important traits in lumpfish and deliver important genomic resources that will facilitate the establishment of selective breeding programmes in lumpfish.
Collapse
Affiliation(s)
- Alejandro P Gutierrez
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK
| | - Sarah-Louise Counter Selly
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK
| | - Samuel M Pountney
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK; University of Victoria, Victoria, BC V8P 5C2, Canada
| | - John B Taggart
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK
| | - Panagiotis Kokkinias
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK
| | | | | | - Herve Migaud
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK
| | - Ingrid Lein
- Nofima AS, Sjølsengvegen 22, Sunndalsøra 6600, Norway
| | - Andrew Davie
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK
| | - Michaël Bekaert
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK.
| |
Collapse
|
5
|
Gao G, Waldbieser GC, Youngblood RC, Zhao D, Pietrak MR, Allen MS, Stannard JA, Buchanan JT, Long RL, Milligan M, Burr G, Mejía-Guerra K, Sheehan MJ, Scheffler BE, Rexroad CE, Peterson BC, Palti Y. The generation of the first chromosome-level de novo genome assembly and the development and validation of a 50K SNP array for the St. John River aquaculture strain of North American Atlantic salmon. G3 (BETHESDA, MD.) 2023; 13:jkad138. [PMID: 37335943 PMCID: PMC10468304 DOI: 10.1093/g3journal/jkad138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/21/2023]
Abstract
Atlantic salmon (Salmo salar) in Northeastern US and Eastern Canada has high economic value for the sport fishing and aquaculture industries. Large differences exist between the genomes of Atlantic salmon of European origin and North American (N.A.) origin. Given the genetic and genomic differences between the 2 lineages, it is crucial to develop unique genomic resources for N.A. Atlantic salmon. Here, we describe the resources that we recently developed for genomic and genetic research in N.A. Atlantic salmon aquaculture. Firstly, a new single nucleotide polymorphism (SNP) database for N.A. Atlantic salmon consisting of 3.1 million putative SNPs was generated using data from whole-genome resequencing of 80 N.A. Atlantic salmon individuals. Secondly, a high-density 50K SNP array enriched for the genic regions of the genome and containing 3 sex determination and 61 putative continent of origin markers was developed and validated. Thirdly, a genetic map composed of 27 linkage groups with 36K SNP markers was generated from 2,512 individuals in 141 full-sib families. Finally, a chromosome-level de novo genome assembly from a male N.A. Atlantic salmon from the St. John River aquaculture strain was generated using PacBio long reads. Information from Hi-C proximity ligation sequences and Bionano optical mapping was used to concatenate the contigs into scaffolds. The assembly contains 1,755 scaffolds and only 1,253 gaps, with a total length of 2.83 Gb and N50 of 17.2 Mb. A BUSCO analysis detected 96.2% of the conserved Actinopterygii genes in the assembly, and the genetic linkage information was used to guide the formation of 27 chromosome sequences. Comparative analysis with the reference genome assembly of the European Atlantic salmon confirmed that the karyotype differences between the 2 lineages are caused by a fission in chromosome Ssa01 and 3 chromosome fusions including the p arm of chromosome Ssa01 with Ssa23, Ssa08 with Ssa29, and Ssa26 with Ssa28. The genomic resources we have generated for Atlantic salmon provide a crucial boost for genetic research and for management of farmed and wild populations in this highly valued species.
Collapse
Affiliation(s)
- Guangtu Gao
- USDA-ARS National Center for Cool and Cold Water Aquaculture, 11861 Leetown Road, Kearneysville, WV 25430, USA
| | - Geoffrey C Waldbieser
- USDA-ARS Warmwater Aquaculture Research Unit, 141 Experimental Station Road, Stoneville, MS 38776, USA
| | - Ramey C Youngblood
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Dongyan Zhao
- Breeding Insight, 119 CALS Surge Facility, Cornell University, 525 Tower Road, Ithaca, NY 14853, USA
| | - Michael R Pietrak
- USDA-ARS National Cold Water Marine Aquaculture Center, 25 Salmon Farm Road, Franklin, ME 04634, USA
| | - Melissa S Allen
- Center for Aquaculture Technologies, 8395 Camino Santa Fe, San Diego, CA 92121, USA
| | - Jason A Stannard
- Center for Aquaculture Technologies, 8395 Camino Santa Fe, San Diego, CA 92121, USA
| | - John T Buchanan
- Center for Aquaculture Technologies, 8395 Camino Santa Fe, San Diego, CA 92121, USA
| | - Roseanna L Long
- USDA-ARS National Center for Cool and Cold Water Aquaculture, 11861 Leetown Road, Kearneysville, WV 25430, USA
| | - Melissa Milligan
- USDA-ARS National Cold Water Marine Aquaculture Center, 25 Salmon Farm Road, Franklin, ME 04634, USA
| | - Gary Burr
- USDA-ARS National Cold Water Marine Aquaculture Center, 25 Salmon Farm Road, Franklin, ME 04634, USA
| | - Katherine Mejía-Guerra
- Breeding Insight, 119 CALS Surge Facility, Cornell University, 525 Tower Road, Ithaca, NY 14853, USA
| | - Moira J Sheehan
- Breeding Insight, 119 CALS Surge Facility, Cornell University, 525 Tower Road, Ithaca, NY 14853, USA
| | - Brian E Scheffler
- USDA-ARS Genomics and Bioinformatics Research Unit, 141 Experimental Station Road, Stoneville, MS 38776, USA
| | - Caird E Rexroad
- USDA-ARS Office of National Programs, George Washington Carver Center Room 4-2106, 5601 Sunnyside Avenue, Beltsville, MD 20705, USA
| | - Brian C Peterson
- USDA-ARS National Cold Water Marine Aquaculture Center, 25 Salmon Farm Road, Franklin, ME 04634, USA
| | - Yniv Palti
- USDA-ARS National Center for Cool and Cold Water Aquaculture, 11861 Leetown Road, Kearneysville, WV 25430, USA
| |
Collapse
|
6
|
Animal board invited review: Widespread adoption of genetic technologies is key to sustainable expansion of global aquaculture. Animal 2022; 16:100642. [PMID: 36183431 PMCID: PMC9553672 DOI: 10.1016/j.animal.2022.100642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/23/2022] Open
Abstract
The extent of application of genetic technologies to aquaculture production varies widely by species and geography. Achieving a more universal application of seed derived from scientifically based breeding programmes is an important goal in order to meet increasing global demands for seafood production. This article reviews the status of genetic technologies across the world’s top 10 highly produced species. Opportunities and barriers to achieving broad-scale uptake of genetic technologies in global aquaculture are discussed. A future outlook for potential disruptive genetic technologies and how they might affect global aquaculture production is given.
Aquaculture production comprises a diverse range of species, geographies, and farming systems. The application of genetics and breeding technologies towards improved production is highly variable, ranging from the use of wild-sourced seed through to advanced family breeding programmes augmented by genomic techniques. This technical variation exists across some of the most highly produced species globally, with several of the top ten global species by volume generally lacking well-managed breeding programmes. Given the well-documented incremental and cumulative benefits of genetic improvement on production, this is a major missed opportunity. This short review focusses on (i) the status of application of selective breeding in the world’s most produced aquaculture species, (ii) the range of genetic technologies available and the opportunities they present, and (iii) a future outlook towards realising the potential contribution of genetic technologies to aquaculture sustainability and global food security.
Collapse
|
7
|
Bernard M, Dehaullon A, Gao G, Paul K, Lagarde H, Charles M, Prchal M, Danon J, Jaffrelo L, Poncet C, Patrice P, Haffray P, Quillet E, Dupont-Nivet M, Palti Y, Lallias D, Phocas F. Development of a High-Density 665 K SNP Array for Rainbow Trout Genome-Wide Genotyping. Front Genet 2022; 13:941340. [PMID: 35923696 PMCID: PMC9340366 DOI: 10.3389/fgene.2022.941340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/24/2022] [Indexed: 12/02/2022] Open
Abstract
Single nucleotide polymorphism (SNP) arrays, also named « SNP chips », enable very large numbers of individuals to be genotyped at a targeted set of thousands of genome-wide identified markers. We used preexisting variant datasets from USDA, a French commercial line and 30X-coverage whole genome sequencing of INRAE isogenic lines to develop an Affymetrix 665 K SNP array (HD chip) for rainbow trout. In total, we identified 32,372,492 SNPs that were polymorphic in the USDA or INRAE databases. A subset of identified SNPs were selected for inclusion on the chip, prioritizing SNPs whose flanking sequence uniquely aligned to the Swanson reference genome, with homogenous repartition over the genome and the highest Minimum Allele Frequency in both USDA and French databases. Of the 664,531 SNPs which passed the Affymetrix quality filters and were manufactured on the HD chip, 65.3% and 60.9% passed filtering metrics and were polymorphic in two other distinct French commercial populations in which, respectively, 288 and 175 sampled fish were genotyped. Only 576,118 SNPs mapped uniquely on both Swanson and Arlee reference genomes, and 12,071 SNPs did not map at all on the Arlee reference genome. Among those 576,118 SNPs, 38,948 SNPs were kept from the commercially available medium-density 57 K SNP chip. We demonstrate the utility of the HD chip by describing the high rates of linkage disequilibrium at 2–10 kb in the rainbow trout genome in comparison to the linkage disequilibrium observed at 50–100 kb which are usual distances between markers of the medium-density chip.
Collapse
Affiliation(s)
- Maria Bernard
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, Jouy-en-Josas, France
- INRAE, SIGENAE, Jouy-en-Josas, France
| | - Audrey Dehaullon
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, Jouy-en-Josas, France
| | - Guangtu Gao
- USDA, REE, ARS, NEA, NCCCWA, Kearneysville, WV, United States
| | - Katy Paul
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, Jouy-en-Josas, France
| | - Henri Lagarde
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, Jouy-en-Josas, France
| | - Mathieu Charles
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, Jouy-en-Josas, France
- INRAE, SIGENAE, Jouy-en-Josas, France
| | - Martin Prchal
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia, Vodňany, Czechia
| | - Jeanne Danon
- INRAE-UCA, Plateforme Gentyane, UMR GDEC, Clermont-Ferrand, France
| | - Lydia Jaffrelo
- INRAE-UCA, Plateforme Gentyane, UMR GDEC, Clermont-Ferrand, France
| | - Charles Poncet
- INRAE-UCA, Plateforme Gentyane, UMR GDEC, Clermont-Ferrand, France
| | | | | | - Edwige Quillet
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, Jouy-en-Josas, France
| | | | - Yniv Palti
- USDA, REE, ARS, NEA, NCCCWA, Kearneysville, WV, United States
| | - Delphine Lallias
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, Jouy-en-Josas, France
| | - Florence Phocas
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, Jouy-en-Josas, France
- *Correspondence: Florence Phocas,
| |
Collapse
|
8
|
Verbyla KL, Kube PD, Evans BS. Commercial implementation of genomic selection in Tasmanian Atlantic salmon: Scheme evolution and validation. Evol Appl 2021; 15:631-644. [PMID: 35505884 PMCID: PMC9046822 DOI: 10.1111/eva.13304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 11/30/2022] Open
Abstract
Genomic information was included for the first time in the prediction of breeding values for Atlantic salmon within the Australian Salmon Enterprises of Tasmania Pty Ltd selective breeding program in 2016. The process to realize genomic selection in the breeding program begun in 2014 with the scheme finalized and fully implemented for the first time in 2018. The high potential of within family selection to accelerate genetic gain, something not possible using the traditional pedigree‐based approach, provided the impetus for implementation. Efficient and effective genotyping platforms are essential for genomic selection. Genotype data from high density arrays revealed extensive persistence of linkage disequilibrium in the Tasmania Atlantic salmon population, resulting in high accuracies of both imputation and genomic breeding values when using imputed data. Consequently, a low‐density novel genotype‐by‐sequence assay was designed and incorporated into the scheme. Through the use of a static high‐ and dynamic low‐density genotyping platforms, an optimized genotyping scheme was devised and implemented such that all individuals in every year class are genotyped efficiently while maximizing the genetic gains and minimizing costs. The increase in the rates of genetic gain attributed to the implementation of genomic selection is significant across both the breeding programs primary and secondary traits. Substantial improvement in the ability to select parents prior to progeny testing is observed across multiple years. The resultant economic impacts for the industry are considerable based on the increases in genetic gain for traits achieved within the breeding program and the use of genomic selection for commercial production.
Collapse
|
9
|
Development of a multi-species SNP array for serrasalmid fish Colossoma macropomum and Piaractus mesopotamicus. Sci Rep 2021; 11:19289. [PMID: 34588599 PMCID: PMC8481427 DOI: 10.1038/s41598-021-98885-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 09/09/2021] [Indexed: 11/13/2022] Open
Abstract
Scarce genomic resources have limited the development of breeding programs for serrasalmid fish Colossoma macropomum (tambaqui) and Piaractus mesopotamicus (pacu), the key native freshwater fish species produced in South America. The main objectives of this study were to design a dense SNP array for this fish group and to validate its performance on farmed populations from several locations in South America. Using multiple approaches based on different populations of tambaqui and pacu, a final list of 29,575 and 29,612 putative SNPs was selected, respectively, to print an Axiom AFFYMETRIX (THERMOFISHER) SerraSNP array. After validation, 74.17% (n = 21,963) and 71.25% (n = 21,072) of SNPs were classified as polymorphic variants in pacu and tambaqui, respectively. Most of the SNPs segregated within each population ranging from 14,199 to 19,856 in pacu; and from 15,075 to 20,380 in tambaqui. Our results indicate high levels of genetic diversity and clustered samples according to their hatchery origin. The developed SerraSNP array represents a valuable genomic tool approaching in-depth genetic studies for these species.
Collapse
|
10
|
The Snakeskin Gourami (Trichopodus pectoralis) Tends to Exhibit XX/XY Sex Determination. FISHES 2021. [DOI: 10.3390/fishes6040043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The snakeskin gourami (Trichopodus pectoralis) has a high meat yield and is one of the top five aquaculture freshwater fishes in Thailand. The species is not externally sexually dimorphic, and its sex determination system is unknown. Understanding the sex determination system of this species will contribute to its full-scale commercialization. In this study, a cytogenetic analysis did not reveal any between-sex differences in chromosomal patterns. However, we used genotyping-by-sequencing to identify 4 male-linked loci and 1 female-linked locus, indicating that the snakeskin gourami tends to exhibit an XX/XY sex determination system. However, we did not find any male-specific loci after filtering the loci for a ratio of 100:0 ratio of males:females. This suggests that the putative Y chromosome is young and that the sex determination region is cryptic. This approach provides solid information that can help identify the sex determination mechanism and potential sex determination regions in the snakeskin gourami, allowing further investigation of genetic improvements in the species.
Collapse
|
11
|
A major quantitative trait locus affecting resistance to Tilapia lake virus in farmed Nile tilapia (Oreochromis niloticus). Heredity (Edinb) 2021; 127:334-343. [PMID: 34262170 PMCID: PMC8405827 DOI: 10.1038/s41437-021-00447-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/31/2021] [Accepted: 05/31/2021] [Indexed: 02/06/2023] Open
Abstract
Enhancing host resistance to infectious disease has received increasing attention in recent years as a major goal of farm animal breeding programs. Combining field data with genomic tools can provide opportunities to understand the genetic architecture of disease resistance, leading to new opportunities for disease control. In the current study, a genome-wide association study was performed to assess resistance to the Tilapia lake virus (TiLV), one of the biggest threats affecting Nile tilapia (Oreochromis niloticus); a key aquaculture species globally. A pond outbreak of TiLV in a pedigreed population of the GIFT strain was observed, with 950 fish classified as either survivor or mortality, and genotyped using a 65 K SNP array. A significant QTL of large effect was identified on chromosome Oni22. The average mortality rate of tilapia homozygous for the resistance allele at the most significant SNP (P value = 4.51E-10) was 11%, compared to 43% for tilapia homozygous for the susceptibility allele. Several candidate genes related to host response to viral infection were identified within this QTL, including lgals17, vps52, and trim29. These results provide a rare example of a major QTL affecting a trait of major importance to a farmed animal. Genetic markers from the QTL region have potential in marker-assisted selection to improve host resistance, providing a genetic solution to an infectious disease where few other control or mitigation options currently exist.
Collapse
|
12
|
Cáceres P, Barría A, Christensen KA, Bassini LN, Correa K, Garcia B, Lhorente JP, Yáñez JM. Genome-scale comparative analysis for host resistance against sea lice between Atlantic salmon and rainbow trout. Sci Rep 2021; 11:13231. [PMID: 34168167 PMCID: PMC8225872 DOI: 10.1038/s41598-021-92425-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 06/10/2021] [Indexed: 11/08/2022] Open
Abstract
Sea lice (Caligus rogercresseyi) is an ectoparasite which causes major production losses in the salmon aquaculture industry worldwide. Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss) are two of the most susceptible salmonid species to sea lice infestation. The objectives of this study were to: (1) identify genomic regions associated with resistance to Caligus rogercresseyi in Atlantic salmon and rainbow trout by performing single-step Genome-Wide Association studies (ssGWAS), and (2) identify candidate genes related to trait variation based on exploring orthologous genes within the associated regions across species. A total of 2626 Atlantic salmon and 2643 rainbow trout were challenged and genotyped with 50 K and 57 K SNP panels, respectively. We ran two independent ssGWAS for sea lice resistance on each species and identified 7 and 13 regions explaining more than 1% of the genetic variance for the trait, with the most important regions explaining 3% and 2.7% for Atlantic salmon and rainbow trout, respectively. We identified genes associated with immune response, cytoskeleton function, and cell migration when focusing on important genomic regions for each species. Moreover, we found 15 common orthogroups which were present in more than one associated genomic region, within- or between-species; however, only one orthogroup showed a clear potential biological relevance in the response against sea lice. For instance, dual-specificity protein phosphatase 10-like (dusp10) and dual-specificity protein phosphatase 8 (dusp8) were found in genomic regions associated with lice density in Atlantic salmon and rainbow trout, respectively. Dusp10 and dusp8 are modulators of the MAPK pathway and might be involved in the differences of the inflammation response between lice resistant and susceptible fish from both species. Our results provide further knowledge on candidate genes related to sea lice resistance and may help establish better control for sea lice in fish populations.
Collapse
Affiliation(s)
- Pablo Cáceres
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Av. Santa Rosa 11735, La Pintana, 8820808, Santiago, Chile
| | - Agustín Barría
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh Easter Bush, Midlothian, EH25 9RG, UK
| | - Kris A Christensen
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC, Canada
| | - Liane N Bassini
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Katharina Correa
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Av. Santa Rosa 11735, La Pintana, 8820808, Santiago, Chile
| | - Baltasar Garcia
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Av. Santa Rosa 11735, La Pintana, 8820808, Santiago, Chile
- School of Agricultural and Veterinary Sciences, UNESP-Sao Paulo State University, Jaboticabal, 14884900, Brazil
| | | | - José M Yáñez
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Av. Santa Rosa 11735, La Pintana, 8820808, Santiago, Chile.
- Núcleo Milenio INVASAL, Concepción, Chile.
- Center for Research and Innovation in Aquaculture (CRIA), Universidad de Chile, Santiago, Santiago, Chile.
| |
Collapse
|
13
|
Peñaloza C, Manousaki T, Franch R, Tsakogiannis A, Sonesson AK, Aslam ML, Allal F, Bargelloni L, Houston RD, Tsigenopoulos CS. Development and testing of a combined species SNP array for the European seabass (Dicentrarchus labrax) and gilthead seabream (Sparus aurata). Genomics 2021; 113:2096-2107. [PMID: 33933591 PMCID: PMC8276775 DOI: 10.1016/j.ygeno.2021.04.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/30/2021] [Accepted: 04/27/2021] [Indexed: 12/23/2022]
Abstract
SNP arrays are powerful tools for high-resolution studies of the genetic basis of complex traits, facilitating both selective breeding and population genomic research. The European seabass (Dicentrarchus labrax) and the gilthead seabream (Sparus aurata) are the two most important fish species for Mediterranean aquaculture. While selective breeding programmes increasingly underpin stock supply for this industry, genomic selection is not yet widespread. Genomic selection has major potential to expedite genetic gain, particularly for traits practically impossible to measure on selection candidates, such as disease resistance and fillet characteristics. The aim of our study was to design a combined-species 60 K SNP array for European seabass and gilthead seabream, and to test its performance on farmed and wild populations from numerous locations throughout the species range. To achieve this, high coverage Illumina whole-genome sequencing of pooled samples was performed for 24 populations of European seabass and 27 populations of gilthead seabream. This resulted in a database of ~20 million SNPs per species, which were then filtered to identify high-quality variants and create the final set for the development of the ‘MedFish’ SNP array. The array was then tested by genotyping a subset of the discovery populations, highlighting a high conversion rate to functioning polymorphic assays on the array (92% in seabass; 89% in seabream) and repeatability (99.4–99.7%). The platform interrogates ~30 K markers in each species, includes features such as SNPs previously shown to be associated with performance traits, and is enriched for SNPs predicted to have high functional effects on proteins. The array was demonstrated to be effective at detecting population structure across a wide range of fish populations from diverse geographical origins, and to examine the extent of haplotype sharing among Mediterranean farmed fish populations. In conclusion, the new MedFish array enables efficient and accurate high-throughput genotyping for genome-wide distributed SNPs for each fish species, and will facilitate stock management, population genomics approaches, and acceleration of selective breeding through genomic selection. Α 60 K SNP array (MedFish) was designed for European seabass and gilthead seabream from wild and domesticated populations. The array exhibited a high conversion rate (92% in seabass; 89% in seabream) and repeatability (99.4 and 99.7%). The MedFish array is expected to facilitate stock management and acceleration of selective breeding via genomic selection.
Collapse
Affiliation(s)
- C Peñaloza
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
| | - T Manousaki
- Hellenic Centre for Marine Research, Thalassocosmos Gournes Pediados, 71500 Irakleio, Crete, Greece
| | - R Franch
- Padova University, Via Ugo Bassi, 58yB, I-35131 Padova, Italy
| | - A Tsakogiannis
- Hellenic Centre for Marine Research, Thalassocosmos Gournes Pediados, 71500 Irakleio, Crete, Greece
| | - A K Sonesson
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, PO Box 210, N-1432 Ås, Norway
| | - M L Aslam
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, PO Box 210, N-1432 Ås, Norway
| | - F Allal
- MARBEC, University of Montpellier, Ifremer, CNRS, IRD, 34250 Palavas-les-Flots, France
| | - L Bargelloni
- Padova University, Via Ugo Bassi, 58yB, I-35131 Padova, Italy
| | - R D Houston
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK.
| | - C S Tsigenopoulos
- Hellenic Centre for Marine Research, Thalassocosmos Gournes Pediados, 71500 Irakleio, Crete, Greece.
| |
Collapse
|
14
|
Yoshikawa S, Hamasaki M, Kadomura K, Yamada T, Chuda H, Kikuchi K, Hosoya S. Genetic Dissection of a Precocious Phenotype in Male Tiger Pufferfish (Takifugu rubripes) using Genotyping by Random Amplicon Sequencing, Direct (GRAS-Di). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:177-188. [PMID: 33599909 PMCID: PMC8032607 DOI: 10.1007/s10126-020-10013-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
The novel non-targeted PCR-based genotyping system, namely Genotyping by Random Amplicon Sequencing, Direct (GRAS-Di), is characterized by the simplicity in library construction and robustness against DNA degradation and is expected to facilitate advancements in genetics, in both basic and applied sciences. In this study, we tested the utility of GRAS-Di for genetic analysis in a cultured population of the tiger pufferfish Takifugu rubripes. The genetic analyses included family structure analysis, genetic map construction, and quantitative trait locus (QTL) analysis for the male precocious phenotype using a population consisting of four full-sib families derived from a genetically precocious line. An average of 4.7 million raw reads were obtained from 198 fish. Trimmed reads were mapped onto a Fugu reference genome for genotyping, and 21,938 putative single-nucleotide polymorphisms (SNPs) were obtained. These 22 K SNPs accurately resolved the sibship and parent-offspring pairs. A fine-scale linkage map (total size: 1,949 cM; average interval: 1.75 cM) was constructed from 1,423 effective SNPs, for which the allele inheritance patterns were known. QTL analysis detected a significant locus for testes weight on Chr_14 and three suggestive loci on Chr_1, Chr_8, and Chr_19. The significant QTL was shared by body length and body weight. The effect of each QTL was small (phenotypic variation explained, PVE: 3.1-5.9%), suggesting that the precociousness seen in the cultured pufferfish is polygenic. Taken together, these results indicate that GRAS-Di is a practical genotyping tool for aquaculture species and applicable for molecular breeding programs, such as marker-assisted selection and genomic selection.
Collapse
Affiliation(s)
- Sota Yoshikawa
- Nagasaki Prefectural Institute of Fisheries, Nagasaki, Japan
- Fisheries Laboratory, Graduate School of Agricultural and Life Sciences, University of Tokyo, Shizuoka, Japan
| | | | | | | | - Hisashi Chuda
- Aquaculture Research Institute, Kindai University, Wakayama, Japan
| | - Kiyoshi Kikuchi
- Fisheries Laboratory, Graduate School of Agricultural and Life Sciences, University of Tokyo, Shizuoka, Japan
| | - Sho Hosoya
- Fisheries Laboratory, Graduate School of Agricultural and Life Sciences, University of Tokyo, Shizuoka, Japan.
| |
Collapse
|
15
|
Moraleda CP, Robledo D, Gutiérrez AP, Del-Pozo J, Yáñez JM, Houston RD. Investigating mechanisms underlying genetic resistance to Salmon Rickettsial Syndrome in Atlantic salmon using RNA sequencing. BMC Genomics 2021; 22:156. [PMID: 33676414 PMCID: PMC7936450 DOI: 10.1186/s12864-021-07443-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/11/2021] [Indexed: 12/29/2022] Open
Abstract
Background Salmon Rickettsial Syndrome (SRS), caused by Piscirickettsia salmonis, is one of the primary causes of morbidity and mortality in Atlantic salmon aquaculture, particularly in Chile. Host resistance is a heritable trait, and functional genomic studies have highlighted genes and pathways important in the response of salmon to the bacteria. However, the functional mechanisms underpinning genetic resistance are not yet well understood. In the current study, a large population of salmon pre-smolts were challenged with P. salmonis, with mortality levels recorded and samples taken for genotyping. In parallel, head kidney and liver samples were taken from animals of the same population with high and low genomic breeding values for resistance, and used for RNA-Sequencing to compare their transcriptome profile both pre and post infection. Results A significant and moderate heritability (h2 = 0.43) was shown for the trait of binary survival. Genome-wide association analyses using 38 K imputed SNP genotypes across 2265 animals highlighted that resistance is a polygenic trait. Several thousand genes were identified as differentially expressed between controls and infected samples, and enriched pathways related to the host immune response were highlighted. In addition, several networks with significant correlation with SRS resistance breeding values were identified, suggesting their involvement in mediating genetic resistance. These included apoptosis, cytoskeletal organisation, and the inflammasome. Conclusions While resistance to SRS is a polygenic trait, this study has highlighted several relevant networks and genes that are likely to play a role in mediating genetic resistance. These genes may be future targets for functional studies, including genome editing, to further elucidate their role underpinning genetic variation in host resistance. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07443-2.
Collapse
Affiliation(s)
- Carolina P Moraleda
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, The University of Edinburgh, Edinburgh, UK
| | - Diego Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, The University of Edinburgh, Edinburgh, UK
| | - Alejandro P Gutiérrez
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, The University of Edinburgh, Edinburgh, UK
| | - Jorge Del-Pozo
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, The University of Edinburgh, Edinburgh, UK
| | - José M Yáñez
- Faculty of Veterinary and Livestock Sciences, University of Chile, Santiago, Chile.
| | - Ross D Houston
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
16
|
Abstract
Diadromy, the predictable movements of individuals between marine and freshwater environments, is biogeographically and phylogenetically widespread across fishes. Thus, despite the high energetic and potential fitness costs involved in moving between distinct environments, diadromy appears to be an effective life history strategy. Yet, the origin and molecular mechanisms that underpin this migratory behavior are not fully understood. In this review, we aim first to summarize what is known about diadromy in fishes; this includes the phylogenetic relationship among diadromous species, a description of the main hypotheses regarding its origin, and a discussion of the presence of non-migratory populations within diadromous species. Second, we discuss how recent research based on -omics approaches (chiefly genomics, transcriptomics, and epigenomics) is beginning to provide answers to questions on the genetic bases and origin(s) of diadromy. Finally, we suggest future directions for -omics research that can help tackle questions on the evolution of diadromy.
Collapse
Affiliation(s)
- M. Lisette Delgado
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Daniel E. Ruzzante
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| |
Collapse
|
17
|
Zhou T, Chen B, Ke Q, Zhao J, Pu F, Wu Y, Chen L, Zhou Z, Bai Y, Pan Y, Gong J, Zheng W, Xu P. Development and Evaluation of a High-Throughput Single-Nucleotide Polymorphism Array for Large Yellow Croaker ( Larimichthys crocea). Front Genet 2020; 11:571751. [PMID: 33193675 PMCID: PMC7645154 DOI: 10.3389/fgene.2020.571751] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/29/2020] [Indexed: 11/16/2022] Open
Abstract
High-density single-nucleotide polymorphism (SNP) genotyping array is an essential tool for genetic analyses of animals and plants. Large yellow croaker (Larimichthys crocea) is one of the most commercially important marine fish species in China. Although plenty of SNPs have been identified in large yellow croaker, no high-throughput genotyping array is available. In this study, a high-throughput SNP array named NingXin-I with 600K SNPs was developed and evaluated. A set of 82 large yellow croakers were collected from different locations of China and re-sequenced. A total of 9.34M SNPs were identified by mapping sequence reads to the large yellow croaker reference genome. About 1.98M candidate SNPs were selected for further analyses by using criteria such as SNP quality score and conversion performance in the final array. Finally, 579.5K SNPs evenly distributed across the large yellow croaker genome with an average spacing of 1.19 kb were proceeded to array production. The performance of NingXin-I array was evaluated in 96 large yellow croaker individuals from five populations, and 83.38% SNPs on the array were polymorphic sites. A further test of the NingXin-I array in five closely related species in Sciaenidae identified 26.68–56.23% polymorphic SNP rate across species. A phylogenetic tree inferred by using the genotype data generated by NingXin-I confirmed the phylogenetic distance of the species in Sciaenidae. The performance of NingXin-I in large yellow croaker and the other species in Sciaenidae suggested high accuracy and broad application. The NingXin-I array should be valuable for quantitative genetic studies, such as genome-wide association studies (GWASs), high-density linkage map construction, haplotype analysis, and genome-based selection.
Collapse
Affiliation(s)
- Tao Zhou
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Baohua Chen
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Qiaozhen Ke
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, China
| | - Ji Zhao
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Fei Pu
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Yidi Wu
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Lin Chen
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Zhixiong Zhou
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Yulin Bai
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Ying Pan
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, China
| | - Jie Gong
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Weiqiang Zheng
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, China
| | - Peng Xu
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, China
| |
Collapse
|
18
|
Rougemont Q, Moore JS, Leroy T, Normandeau E, Rondeau EB, Withler RE, Van Doornik DM, Crane PA, Naish KA, Garza JC, Beacham TD, Koop BF, Bernatchez L. Demographic history shaped geographical patterns of deleterious mutation load in a broadly distributed Pacific Salmon. PLoS Genet 2020; 16:e1008348. [PMID: 32845885 PMCID: PMC7478589 DOI: 10.1371/journal.pgen.1008348] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/08/2020] [Accepted: 06/24/2020] [Indexed: 12/24/2022] Open
Abstract
A thorough reconstruction of historical processes is essential for a comprehensive understanding of the mechanisms shaping patterns of genetic diversity. Indeed, past and current conditions influencing effective population size have important evolutionary implications for the efficacy of selection, increased accumulation of deleterious mutations, and loss of adaptive potential. Here, we gather extensive genome-wide data that represent the extant diversity of the Coho salmon (Oncorhynchus kisutch) to address two objectives. We demonstrate that a single glacial refugium is the source of most of the present-day genetic diversity, with detectable inputs from a putative secondary micro-refugium. We found statistical support for a scenario whereby ancestral populations located south of the ice sheets expanded recently, swamping out most of the diversity from other putative micro-refugia. Demographic inferences revealed that genetic diversity was also affected by linked selection in large parts of the genome. Moreover, we demonstrate that the recent demographic history of this species generated regional differences in the load of deleterious mutations among populations, a finding that mirrors recent results from human populations and provides increased support for models of expansion load. We propose that insights from these historical inferences should be better integrated in conservation planning of wild organisms, which currently focuses largely on neutral genetic diversity and local adaptation, with the role of potentially maladaptive variation being generally ignored. Reconstruction of a species’ past demographic history from genetic data can highlight historical factors that have shaped the distribution of genetic diversity along its genome and its geographic range. Here, we combine genotyping-by-sequencing with demographic modelling to address these issues in the Coho salmon, a Pacific salmon of conservation concern in some parts of its range, notably in the south. Our demographic reconstructions reveal a linear decrease in genetic diversity toward the north of the species range, supporting the hypothesis of a northern route of postglacial recolonization from a single major southern refugium. As predicted by theory, we also observed a higher proportion of deleterious mutations in the most distant populations from this refugium. Beyond this general pattern, among-site variation in the proportion of deleterious mutations is consistent with different local trends in effective population sizes. Our results highlight the potential importance of understanding historical factors that have shaped geographic patterns of the distribution of deleterious mutations in order to implement effective management programs for the conservation of wild populations. Such fundamental knowledge of human historical demography is now having major impacts on health sciences, and we argue it is time to integrate such approaches in conservation science as well.
Collapse
Affiliation(s)
- Quentin Rougemont
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada
- * E-mail:
| | - Jean-Sébastien Moore
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada
| | - Thibault Leroy
- ISEM, Univ. Montpellier, CNRS, EPHE, IRD, Montpellier, France
- Department of Botany & Biodiversity Research, University of Vienna, Vienna, Austria
| | - Eric Normandeau
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada
| | - Eric B. Rondeau
- Centre for Biomedical Research, University of Victoria, Victoria, BC, Canada
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | - Ruth E. Withler
- Department of Fisheries and Ocean, Pacific Biological Station, Nanaimo, British Columbia, Canada
| | - Donald M. Van Doornik
- National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Northwest Fisheries Science Center, Manchester Research Station, Port Orchard, Washington, United States of America
| | - Penelope A. Crane
- Conservation Genetics Laboratory, U.S. Fish and Wildlife Service, Anchorage, Alaska, United States of America
| | - Kerry A. Naish
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, United States of America
| | - John Carlos Garza
- Fisheries Ecology Division, Southwest Fisheries Science Center, National Marine Fisheries Service and Institute of Marine Sciences, University of California–Santa Cruz, Santa Cruz, California, United States of America
| | - Terry D. Beacham
- Department of Fisheries and Ocean, Pacific Biological Station, Nanaimo, British Columbia, Canada
| | - Ben F. Koop
- Centre for Biomedical Research, University of Victoria, Victoria, BC, Canada
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | - Louis Bernatchez
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada
| |
Collapse
|
19
|
Development and Validation of an Open Access SNP Array for Nile Tilapia ( Oreochromis niloticus). G3-GENES GENOMES GENETICS 2020; 10:2777-2785. [PMID: 32532799 PMCID: PMC7407453 DOI: 10.1534/g3.120.401343] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Tilapia are among the most important farmed fish species worldwide, and are fundamental for the food security of many developing countries. Several genetically improved Nile tilapia (Oreochromis niloticus) strains exist, such as the iconic Genetically Improved Farmed Tilapia (GIFT), and breeding programs typically follow classical pedigree-based selection. The use of genome-wide single-nucleotide polymorphism (SNP) data can enable an understanding of the genetic architecture of economically important traits and the acceleration of genetic gain via genomic selection. Due to the global importance and diversity of Nile tilapia, an open access SNP array would be beneficial for aquaculture research and production. In the current study, a ∼65K SNP array was designed based on SNPs discovered from whole-genome sequence data from a GIFT breeding nucleus population and the overlap with SNP datasets from wild fish populations and several other farmed Nile tilapia strains. The SNP array was applied to clearly distinguish between different tilapia populations across Asia and Africa, with at least ∼30,000 SNPs segregating in each of the diverse population samples tested. It is anticipated that this SNP array will be an enabling tool for population genetics and tilapia breeding research, facilitating consistency and comparison of results across studies.
Collapse
|
20
|
A first genetic linage map construction and QTL mapping for growth traits in Larimichthys polyactis. Sci Rep 2020; 10:11621. [PMID: 32669609 PMCID: PMC7363912 DOI: 10.1038/s41598-020-68592-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 06/30/2020] [Indexed: 11/08/2022] Open
Abstract
Larimichthys polyactis is a commercially important marine fish species in Eastern Asia, yet very few genetic resources exist. In particular, genetic linkage maps are critical tools for genetic breeding. In this study, we generated a high resolution linkage map from a family of 110 individuals and their parents by resequencing the individuals. 3,802 effective SNPs were mapped to 24 linkage groups (LGs). The map spanned 2,567.39 cm, with an average marker interval of 0.66 cm. We used the map to conduct QTL analysis for growth traits, and found 31 markers were significantly associated with growth-related traits. Specifically, three SNPs were identified for total length, nineteen SNPs for body length, and nine SNPs for body weight. The identified SNPs could explain 15.2-22.6% of the phenotypic variation. SNPs associated with growth traits were distributed on LG6 and LG11, and candidate genes included, kif26b, bat1, gna1, gbgt1, and amfr, which may regulate growth. The linkage map and mapped QTLs would be useful for improving the quality of L. polyactis via marker-assisted selection.
Collapse
|
21
|
Naval-Sanchez M, McWilliam S, Evans B, Yáñez JM, Houston RD, Kijas JW. Changed Patterns of Genomic Variation Following Recent Domestication: Selection Sweeps in Farmed Atlantic Salmon. Front Genet 2020; 11:264. [PMID: 32318091 PMCID: PMC7147387 DOI: 10.3389/fgene.2020.00264] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/05/2020] [Indexed: 12/30/2022] Open
Abstract
The introduction of wild Atlantic salmon into captivity, and their subsequent artificial selection for production traits, has caused phenotypic differences between domesticated fish and their wild counterparts. Identification of regions of the genome underling these changes offers the promise of characterizing the early biological consequences of domestication. In the current study, we sequenced a population of farmed European Atlantic salmon and compared the observed patterns of SNP variation to those found in conspecific wild populations. This identified 139 genomic regions that contained significantly elevated SNP homozygosity in farmed fish when compared to their wild counterparts. The most extreme was adjacent to versican, a gene involved in control of neural crest cell migration. To control for false positive signals, a second and independent dataset of farmed and wild European Atlantic salmon was assessed using the same methodology. A total of 81 outlier regions detected in the first dataset showed significantly reduced homozygosity within the second one, strongly suggesting the genomic regions identified are enriched for true selection sweeps. Examination of the associated genes identified a number previously characterized as targets of selection in other domestic species and that have roles in development, behavior and olfactory system. These include arcvf, sema6, errb4, id2-like, and 6n1-like genes. Finally, we searched for evidence of parallel sweeps using a farmed population of North American origin. This failed to detect a convincing overlap to the putative sweeps present in European populations, suggesting the factors that drive patterns of variation under domestication and early artificial selection were largely independent. This is the first analysis on domestication of aquaculture species exploiting whole-genome sequence data and resulted in the identification of sweeps common to multiple independent populations of farmed European Atlantic salmon.
Collapse
Affiliation(s)
| | | | - Bradley Evans
- Salmon Enterprises of Tasmania Pty. Limited, Wayatinah, TAS, Australia
| | - José M Yáñez
- Faculty of Veterinary and Animal Sciences, University of Chile, Santiago, Chile
| | - Ross D Houston
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| | - James W Kijas
- CSIRO Agriculture and Food, Brisbane, QLD, Australia
| |
Collapse
|
22
|
Gao G, Pietrak MR, Burr GS, Rexroad CE, Peterson BC, Palti Y. A New Single Nucleotide Polymorphism Database for North American Atlantic Salmon Generated Through Whole Genome Resequencing. Front Genet 2020; 11:85. [PMID: 32153644 PMCID: PMC7046687 DOI: 10.3389/fgene.2020.00085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 01/27/2020] [Indexed: 12/30/2022] Open
Affiliation(s)
- Guangtu Gao
- National Center for Cool and Cold Water Aquaculture, ARS-USDA, Kearneysville, WV, United States
| | - Michael R Pietrak
- National Cold Water Marine Aquaculture Center, ARS-USDA, Orono, ME, United States
| | - Gary S Burr
- National Cold Water Marine Aquaculture Center, ARS-USDA, Orono, ME, United States
| | - Caird E Rexroad
- USDA ARS Office of National Programs, George Washington Carver Center, Washington, D.C., United States
| | - Brian C Peterson
- National Cold Water Marine Aquaculture Center, ARS-USDA, Orono, ME, United States
| | - Yniv Palti
- National Center for Cool and Cold Water Aquaculture, ARS-USDA, Kearneysville, WV, United States
| |
Collapse
|
23
|
Gutierrez AP, Symonds J, King N, Steiner K, Bean TP, Houston RD. Potential of genomic selection for improvement of resistance to ostreid herpesvirus in Pacific oyster (Crassostrea gigas). Anim Genet 2020; 51:249-257. [PMID: 31999002 DOI: 10.1111/age.12909] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2019] [Indexed: 01/15/2023]
Abstract
In genomic selection (GS), genome-wide SNP markers are used to generate genomic estimated breeding values for selection candidates. The application of GS in shellfish looks promising and has the potential to help in dealing with one of the main issues currently affecting Pacific oyster production worldwide, which is the 'summer mortality syndrome'. This causes periodic mass mortality in farms worldwide and has mainly been attributed to a specific variant of the ostreid herpesvirus (OsHV-1). In the current study, we evaluated the potential of genomic selection for host resistance to OsHV-1 in Pacific oysters, and compared it with pedigree-based approaches. An OsHV-1 disease challenge was performed using an immersion-based virus exposure treatment for oysters for 7 days. A total of 768 samples were genotyped using the medium-density SNP array for oysters. A GWAS was performed for the survival trait using a GBLUP approach in blupf90 software. Heritability ranged from 0.25 ± 0.05 to 0.37 ± 0.05 (mean ± SE) based on pedigree and genomic information respectively. Genomic prediction was more accurate than pedigree prediction, and SNP density reduction had little impact on prediction accuracy until marker densities dropped below approximately 500 SNPs. This demonstrates the potential for GS in Pacific oyster breeding programmes, and importantly, demonstrates that a low number of SNPs might suffice to obtain accurate genomic estimated breeding values, thus potentially making the implementation of GS more cost effective.
Collapse
Affiliation(s)
- A P Gutierrez
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - J Symonds
- Cawthron Institute, 98 Halifax Street East, Nelson, 7010, New Zealand
| | - N King
- Cawthron Institute, 98 Halifax Street East, Nelson, 7010, New Zealand
| | - K Steiner
- Cawthron Institute, 98 Halifax Street East, Nelson, 7010, New Zealand
| | - T P Bean
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - R D Houston
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| |
Collapse
|
24
|
Yáñez JM, Yoshida G, Barria A, Palma-Véjares R, Travisany D, Díaz D, Cáceres G, Cádiz MI, López ME, Lhorente JP, Jedlicki A, Soto J, Salas D, Maass A. High-Throughput Single Nucleotide Polymorphism (SNP) Discovery and Validation Through Whole-Genome Resequencing in Nile Tilapia (Oreochromis niloticus). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:109-117. [PMID: 31938972 DOI: 10.1007/s10126-019-09935-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 11/19/2019] [Indexed: 06/10/2023]
Abstract
Nile tilapia (Oreochromis niloticus) is the second most important farmed fish in the world and a sustainable source of protein for human consumption. Several genetic improvement programs have been established for this species in the world. Currently, the estimation of genetic merit of breeders is typically based on genealogical and phenotypic information. Genome-wide information can be exploited to efficiently incorporate traits that are difficult to measure into the breeding goal. Thus, single nucleotide polymorphisms (SNPs) are required to investigate phenotype-genotype associations and determine the genomic basis of economically important traits. We performed de novo SNP discovery in three different populations of farmed Nile tilapia. A total of 29.9 million non-redundant SNPs were identified through Illumina (HiSeq 2500) whole-genome resequencing of 326 individual samples. After applying several filtering steps, including removing SNP based on genotype and site quality, presence of Mendelian errors, and non-unique position in the genome, a total of 50,000 high-quality SNPs were selected for the development of a custom Illumina BeadChip SNP panel. These SNPs were highly informative in the three populations analyzed showing between 43,869 (94%) and 46,139 (99%) SNPs in Hardy-Weinberg Equilibrium; 37,843 (76%) and 45,171(90%) SNPs with a minor allele frequency (MAF) higher than 0.05; and 43,450 (87%) and 46,570 (93%) SNPs with a MAF higher than 0.01. The 50K SNP panel developed in the current work will be useful for the dissection of economically relevant traits, enhancing breeding programs through genomic selection, as well as supporting genetic studies in farmed populations of Nile tilapia using dense genome-wide information.
Collapse
Affiliation(s)
- José M Yáñez
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile.
- Núcleo Milenio INVASAL, Concepción, Chile.
| | - Grazyella Yoshida
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
- Benchmark Genetics Chile, Puerto Montt, Chile
| | - Agustín Barria
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Ricardo Palma-Véjares
- Centro para la Regulación del Genoma, Universidad de Chile, Santiago, Chile
- Centro de Modelamiento Matemático UMI CNRS 2807, Universidad de Chile, Santiago, Chile
| | - Dante Travisany
- Centro para la Regulación del Genoma, Universidad de Chile, Santiago, Chile
- Centro de Modelamiento Matemático UMI CNRS 2807, Universidad de Chile, Santiago, Chile
| | - Diego Díaz
- Centro para la Regulación del Genoma, Universidad de Chile, Santiago, Chile
- Centro de Modelamiento Matemático UMI CNRS 2807, Universidad de Chile, Santiago, Chile
| | - Giovanna Cáceres
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - María I Cádiz
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - María E López
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | - Ana Jedlicki
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - José Soto
- Grupo Acuacorporacion, Internacional (GACI), Cañas, Costa Rica
| | - Diego Salas
- Grupo Acuacorporacion, Internacional (GACI), Cañas, Costa Rica
| | - Alejandro Maass
- Centro para la Regulación del Genoma, Universidad de Chile, Santiago, Chile
- Centro de Modelamiento Matemático UMI CNRS 2807, Universidad de Chile, Santiago, Chile
| |
Collapse
|
25
|
Wang J, Li M, Qin Z, Li J, Li J. Validation of growth-related quantitative trait loci markers in different Exopalaemon carinicauda families for marker-assisted selection. Anim Genet 2020; 51:324-329. [PMID: 31981462 DOI: 10.1111/age.12914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2020] [Indexed: 01/08/2023]
Abstract
We detected growth-related QTL and associated markers from the backcross population of Exopalaemon carinicauda in the previous study. Based on our previous study, the 47 SNP markers associated with candidate growth trait QTL were selected to analyze the association between these markers and body weight (BW), body length and abdominal segment length traits in four different populations including wild population, a full-sib family, a half-sib family and a backcross population for evaluating their potential application of marker-assisted selection in E. carinicauda. The general linear model (GLM) and mixed linear model were applied and the associations between SNP loci and three growth-related traits verified. The results showed that the Marker79268 and Marker100644 were significantly associated with the BW trait in more than three populations by the GLM method. The Marker100644 was significantly associated with BW in the full-sib family, half-sib family and backcross populations by the GLM and mixed linear model methods. Our findings will provide useful SNP markers to go forward to improve growth performance through more refined marker-assisted selection in E. carinicauda.
Collapse
Affiliation(s)
- J Wang
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - M Li
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China.,College of Fishery and Life Sciences, Shanghai Ocean University, Shanghai, 201306, China
| | - Z Qin
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - J Li
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - J Li
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| |
Collapse
|
26
|
Single-Step Genome-Wide Association Study for Resistance to Piscirickettsia salmonis in Rainbow Trout ( Oncorhynchus mykiss). G3-GENES GENOMES GENETICS 2019; 9:3833-3841. [PMID: 31690599 PMCID: PMC6829148 DOI: 10.1534/g3.119.400204] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
One of the main pathogens affecting rainbow trout (Oncorhynchus mykiss) farming is the facultative intracellular bacteria Piscirickettsia salmonis Current treatments, such as antibiotics and vaccines, have not had the expected effectiveness in field conditions. Genetic improvement by means of selection for resistance is proposed as a viable alternative for control. Genomic information can be used to identify the genomic regions associated with resistance and enhance the genetic evaluation methods to speed up the genetic improvement for the trait. The objectives of this study were to i) identify the genomic regions associated with resistance to P. salmonis; and ii) identify candidate genes associated with the trait in rainbow trout. We experimentally challenged 2,130 rainbow trout with P. salmonis and genotyped them with a 57 K single nucleotide polymorphism (SNP) array. Resistance to P. salmonis was defined as time to death (TD) and as binary survival (BS). Significant heritabilities were estimated for TD and BS (0.48 ± 0.04 and 0.34 ± 0.04, respectively). A total of 2,047 fish and 26,068 SNPs passed quality control for samples and genotypes. Using a single-step genome wide association analysis (ssGWAS) we identified four genomic regions explaining over 1% of the genetic variance for TD and three for BS. Interestingly, the same genomic region located on Omy27 was found to explain the highest proportion of genetic variance for both traits (2.4 and 1.5% for TD and BS, respectively). The identified SNP in this region is located within an exon of a gene related with actin cytoskeletal organization, a protein exploited by P. salmonis during infection. Other important candidate genes identified are related with innate immune response and oxidative stress. The moderate heritability values estimated in the present study show it is possible to improve resistance to P. salmonis through artificial selection in the rainbow trout population studied here. Furthermore, our results suggest a polygenic genetic architecture for the trait and provide novel insights into the candidate genes underpinning resistance to P. salmonis in O. mykiss.
Collapse
|
27
|
Gabián M, Morán P, Fernández AI, Villanueva B, Chtioui A, Kent MP, Covelo-Soto L, Fernández A, Saura M. Identification of genomic regions regulating sex determination in Atlantic salmon using high density SNP data. BMC Genomics 2019; 20:764. [PMID: 31640542 PMCID: PMC6805462 DOI: 10.1186/s12864-019-6104-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 09/13/2019] [Indexed: 02/07/2023] Open
Abstract
Background A complete understanding of the genetic basis for sexual determination and differentiation is necessary in order to implement efficient breeding schemes at early stages of development. Atlantic salmon belongs to the family Salmonidae of fishes and represents a species of great commercial value. Although the species is assumed to be male heterogametic with XY sex determination, the precise genetic basis of sexual development remains unclear. The complexity is likely associated to the relatively recent salmonid specific whole genome duplication that may be responsible for certain genome instability. This instability together with the capacity of the sex-determining gene to move across the genome as reported by previous studies, may explain that sexual development genes are not circumscribed to the same chromosomes in all members of the species. In this study, we have used a 220 K SNP panel developed for Atlantic salmon to identify the chromosomes explaining the highest proportion of the genetic variance for sex as well as candidate regions and genes associated to sexual development in this species. Results Results from regional heritability analysis showed that the chromosomes explaining the highest proportion of variance in these populations were Ssa02 (heritability = 0.42, SE = 0.12) and Ssa21 (heritability = 0.26, SE = 0.11). After pruning by linkage disequilibrium, genome-wide association analyses revealed 114 SNPs that were significantly associated with sex, being Ssa02 the chromosome containing a greatest number of regions. Close examination of the candidate regions evidenced important genes related to sex in other species of Class Actinopterygii, including SDY, genes from family SOX, RSPO1, ESR1, U2AF2A, LMO7, GNRH-R, DND and FIGLA. Conclusions The combined results from regional heritability analysis and genome-wide association have provided new advances in the knowledge of the genetic regulation of sex determination in Atlantic salmon, supporting that Ssa02 is the candidate chromosome for sex in this species and suggesting an alternative population lineage in Spanish wild populations according to the results from Ssa21.
Collapse
Affiliation(s)
- María Gabián
- Departamento de Bioquímica, Genética e Inmunología, Facultad de Biología, Universidad de Vigo, Vigo, 36310, Spain
| | - Paloma Morán
- Departamento de Bioquímica, Genética e Inmunología, Facultad de Biología, Universidad de Vigo, Vigo, 36310, Spain
| | - Ana I Fernández
- Departamento de Mejora Genética Animal, INIA, Carretera de la Coruña km 7,5, 28040, Madrid, Spain
| | - Beatriz Villanueva
- Departamento de Mejora Genética Animal, INIA, Carretera de la Coruña km 7,5, 28040, Madrid, Spain
| | - Amel Chtioui
- Departamento de Mejora Genética Animal, INIA, Carretera de la Coruña km 7,5, 28040, Madrid, Spain
| | - Matthew P Kent
- Center for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Bioscience, Norwegian University of Life Sciences (NMBU), 1430, Ås, Norway
| | - Lara Covelo-Soto
- Departamento de Bioquímica, Genética e Inmunología, Facultad de Biología, Universidad de Vigo, Vigo, 36310, Spain
| | - Almudena Fernández
- Departamento de Mejora Genética Animal, INIA, Carretera de la Coruña km 7,5, 28040, Madrid, Spain
| | - María Saura
- Departamento de Mejora Genética Animal, INIA, Carretera de la Coruña km 7,5, 28040, Madrid, Spain.
| |
Collapse
|
28
|
López ME, Linderoth T, Norris A, Lhorente JP, Neira R, Yáñez JM. Multiple Selection Signatures in Farmed Atlantic Salmon Adapted to Different Environments Across Hemispheres. Front Genet 2019; 10:901. [PMID: 31632437 PMCID: PMC6786245 DOI: 10.3389/fgene.2019.00901] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 08/26/2019] [Indexed: 01/08/2023] Open
Abstract
Domestication of Atlantic salmon started approximately 40 years ago, using artificial selection through genetic improvement programs. Selection is likely to have imposed distinctive signatures on the salmon genome, which are often characterized by high genetic differentiation across population and/or reduction in genetic diversity in regions associated to traits under selection. The identification of such selection signatures may give insights into the candidate genomic regions of biological and commercial interest. Here, we used three complementary statistics to detect selection signatures, two haplotype-based (iHS and XP-EHH), and one FST-based method (BayeScan) among four populations of Atlantic salmon with a common genetic origin. Several regions were identified for these techniques that harbored genes, such as kind1 and chp2, which have been associated with growth-related traits or the kcnb2 gene related to immune system in Atlantic salmon, making them particularly relevant in the context of aquaculture. Our results provide candidate genes to inform the evolutionary and biological mechanisms controlling complex selected traits in Atlantic salmon.
Collapse
Affiliation(s)
- María Eugenia López
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile.,Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Tyler Linderoth
- Department of Integrative Biology, University of California, Berkeley, CA, United States
| | - Ashie Norris
- Marine Harvest, Kindrum, Fanad, C. Donegal, Ireland
| | | | - Roberto Neira
- Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago, Chile
| | - José Manuel Yáñez
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile.,Núcleo Milenio INVASAL, Concepción, Chile
| |
Collapse
|
29
|
Yáñez JM, Yoshida GM, Parra Á, Correa K, Barría A, Bassini LN, Christensen KA, López ME, Carvalheiro R, Lhorente JP, Pulgar R. Comparative Genomic Analysis of Three Salmonid Species Identifies Functional Candidate Genes Involved in Resistance to the Intracellular Bacterium Piscirickettsia salmonis. Front Genet 2019; 10:665. [PMID: 31428125 PMCID: PMC6690157 DOI: 10.3389/fgene.2019.00665] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 06/25/2019] [Indexed: 12/23/2022] Open
Abstract
Piscirickettsia salmonis is the etiologic agent of salmon rickettsial syndrome (SRS) and is responsible for considerable economic losses in salmon aquaculture. The bacterium affects coho salmon (CS; Oncorhynchus kisutch), Atlantic salmon (AS; Salmo salar), and rainbow trout (RT; Oncorhynchus mykiss) in several countries, including Norway, Canada, Scotland, Ireland, and Chile. We used Bayesian genome-wide association study analyses to investigate the genetic architecture of resistance to P. salmonis in farmed populations of these species. Resistance to SRS was defined as the number of days to death and as binary survival (BS). A total of 828 CS, 2130 RT, and 2601 AS individuals were phenotyped and then genotyped using double-digest restriction site-associated DNA sequencing and 57K and 50K Affymetrix® Axiom® single nucleotide polymorphism (SNP) panels, respectively. Both traits of SRS resistance in CS and RT appeared to be under oligogenic control. In AS, there was evidence of polygenic control of SRS resistance. To identify candidate genes associated with resistance, we applied a comparative genomics approach in which we systematically explored the complete set of genes adjacent to SNPs, which explained more than 1% of the genetic variance of resistance in each salmonid species (533 genes in total). Thus, genes were classified based on the following criteria: i) shared function of their protein domains among species, ii) shared orthology among species, iii) proximity to the SNP explaining the highest proportion of the genetic variance, and iv) presence in more than one genomic region explaining more than 1% of the genetic variance within species. Our results allowed us to identify 120 candidate genes belonging to at least one of the four criteria described above. Of these, 21 of them were part of at least two of the criteria defined above and are suggested to be strong functional candidates influencing P. salmonis resistance. These genes are related to diverse biological processes, such as kinase activity, GTP hydrolysis, helicase activity, lipid metabolism, cytoskeletal dynamics, inflammation, and innate immune response, which seem essential in the host response against P. salmonis infection. These results provide fundamental knowledge on the potential functional genes underpinning resistance against P. salmonis in three salmonid species.
Collapse
Affiliation(s)
- José M. Yáñez
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
- Núcleo Milenio INVASAL, Concepción, Chile
| | - Grazyella M. Yoshida
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Ángel Parra
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
- Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile
- Doctorado en Acuicultura. Programa Cooperativo Universidad de Chile, Universidad Católica del Norte, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile
| | | | - Agustín Barría
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh Easter Bush, Midlothian, United Kingdom
| | - Liane N. Bassini
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | | | - Maria E. López
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Roberto Carvalheiro
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, Brazil
- National Council for Scientific and Technological Development (CNPq), Brasília, Brazil
| | | | - Rodrigo Pulgar
- Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile
| |
Collapse
|
30
|
Nugent CM, Leong JS, Christensen KA, Rondeau EB, Brachmann MK, Easton AA, Ouellet-Fagg CL, Crown MTT, Davidson WS, Koop BF, Danzmann RG, Ferguson MM. Design and characterization of an 87k SNP genotyping array for Arctic charr (Salvelinus alpinus). PLoS One 2019; 14:e0215008. [PMID: 30951561 PMCID: PMC6450613 DOI: 10.1371/journal.pone.0215008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 03/25/2019] [Indexed: 11/21/2022] Open
Abstract
We have generated a high-density, high-throughput genotyping array for characterizing genome-wide variation in Arctic charr (Salvelinus alpinus). Novel single nucleotide polymorphisms (SNPs) were identified in charr from the Fraser, Nauyuk and Tree River aquaculture strains, which originated from northern Canada and fish from Iceland using high coverage sequencing, reduced representation sequencing and RNA-seq datasets. The array was designed to capture genome-wide variation from a diverse suite of Arctic charr populations. Cross validation of SNPs from various sources and comparison with previously published Arctic charr SNP data provided a set of candidate SNPs that generalize across populations. Further candidate SNPs were identified based on minor allele frequency, association with RNA transcripts, even spacing across intergenic regions and association with the sex determining (sdY) gene. The performance of the 86,503 SNP array was assessed by genotyping Fraser, Nauyuk and Tree River strain individuals, as well as wild Icelandic Arctic charr. Overall, 63,060 of the SNPs were polymorphic within at least one group and 36.8% were unique to one of the four groups, suggesting that the array design allows for characterization of both within and across population genetic diversity. The concordance between sdY markers and known phenotypic sex indicated that the array can accurately determine the sex of individuals based on genotype alone. The Salp87k genotyping array provides researchers and breeders the opportunity to analyze genetic variation in Arctic charr at a more detailed level than previously possible.
Collapse
Affiliation(s)
- Cameron M. Nugent
- University of Guelph, Department of Integrative Biology, Guelph, Ontario, Canada
| | - Jong S. Leong
- University of Victoria, Department of Biology, Victoria, British Columbia, Canada
| | - Kris A. Christensen
- Fisheries and Oceans Canada, Centre for Aquaculture and Environmental Research, West Vancouver, British Columbia, Canada
| | - Eric B. Rondeau
- Fisheries and Oceans Canada, Centre for Aquaculture and Environmental Research, West Vancouver, British Columbia, Canada
| | - Matthew K. Brachmann
- University of Guelph, Department of Integrative Biology, Guelph, Ontario, Canada
| | - Anne A. Easton
- University of Guelph, Department of Integrative Biology, Guelph, Ontario, Canada
| | | | - Michelle T. T. Crown
- Simon Fraser University, Molecular Biology and Biochemistry, Burnaby, British Columbia, Canada
| | - William S. Davidson
- Simon Fraser University, Molecular Biology and Biochemistry, Burnaby, British Columbia, Canada
| | - Ben F. Koop
- University of Victoria, Department of Biology, Victoria, British Columbia, Canada
| | - Roy G. Danzmann
- University of Guelph, Department of Integrative Biology, Guelph, Ontario, Canada
| | - Moira M. Ferguson
- University of Guelph, Department of Integrative Biology, Guelph, Ontario, Canada
| |
Collapse
|
31
|
Robledo D, Gutiérrez AP, Barría A, Lhorente JP, Houston RD, Yáñez JM. Discovery and Functional Annotation of Quantitative Trait Loci Affecting Resistance to Sea Lice in Atlantic Salmon. Front Genet 2019; 10:56. [PMID: 30800143 PMCID: PMC6375901 DOI: 10.3389/fgene.2019.00056] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/23/2019] [Indexed: 12/22/2022] Open
Abstract
Sea lice (Caligus rogercresseyi) are ectoparasitic copepods which have a large negative economic and welfare impact in Atlantic salmon (Salmo salar) aquaculture, particularly in Chile. A multi-faceted prevention and control strategy is required to tackle lice, and selective breeding contributes via cumulative improvement of host resistance to the parasite. While host resistance has been shown to be heritable, little is yet known about the individual loci that contribute to this resistance, the potential underlying genes, and their mechanisms of action. In this study we took a multifaceted approach to identify and characterize quantitative trait loci (QTL) affecting host resistance in a population of 2,688 Caligus-challenged Atlantic salmon post-smolts from a commercial breeding program. We used low and medium density genotyping with imputation to collect genome-wide SNP marker data for all animals. Moderate heritability estimates of 0.28 and 0.24 were obtained for lice density (as a measure of host resistance) and growth during infestation, respectively. Three QTL explaining between 7 and 13% of the genetic variation in resistance to sea lice (as represented by the traits of lice density) were detected on chromosomes 3, 18, and 21. Characterisation of these QTL regions was undertaken using RNA sequencing and pooled whole genome sequencing data. This resulted in the identification of a shortlist of potential underlying causative genes, and candidate functional mutations for further study. For example, candidates within the chromosome 3 QTL include a putative premature stop mutation in TOB1 (an anti-proliferative transcription factor involved in T cell regulation) and an uncharacterized protein which showed significant differential allelic expression (implying the existence of a cis-acting regulatory mutation). While host resistance to sea lice is polygenic in nature, the results of this study highlight significant QTL regions together explaining between 7 and 13 % of the heritability of the trait. Future investigation of these QTL may enable improved knowledge of the functional mechanisms of host resistance to sea lice, and incorporation of functional variants to improve genomic selection accuracy.
Collapse
Affiliation(s)
- Diego Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom
| | - Alejandro P. Gutiérrez
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom
| | - Agustín Barría
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | | | - Ross D. Houston
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom
| | - José M. Yáñez
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
- Núcleo Milenio INVASAL, Concepción, Chile
| |
Collapse
|
32
|
Houston RD, Macqueen DJ. Atlantic salmon (Salmo salar L.) genetics in the 21st century: taking leaps forward in aquaculture and biological understanding. Anim Genet 2019; 50:3-14. [PMID: 30426521 PMCID: PMC6492011 DOI: 10.1111/age.12748] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2018] [Indexed: 12/17/2022]
Abstract
Atlantic salmon (Salmo salar L.) is among the most iconic and economically important fish species and was the first member of Salmonidae to have a high-quality reference genome assembly published. Advances in genomics have become increasingly central to the genetic improvement of farmed Atlantic salmon as well as conservation of wild salmon stocks. The salmon genome has also been pivotal in shaping our understanding of the evolutionary and functional consequences arising from an ancestral whole-genome duplication event characterising all Salmonidae members. Here, we provide a review of the current status of Atlantic salmon genetics and genomics, focussed on progress made from genome-wide research aimed at improving aquaculture production and enhancing understanding of salmonid ecology, physiology and evolution. We present our views on the future direction of salmon genomics, including the role of emerging technologies (e.g. genome editing) in elucidating genetic features that underpin functional variation in traits of commercial and evolutionary importance.
Collapse
Affiliation(s)
- R. D. Houston
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghMidlothianEH25 9RGUK
| | - D. J. Macqueen
- School of Biological SciencesUniversity of AberdeenAberdeenAB24 2TZUK
| |
Collapse
|
33
|
Zenger KR, Khatkar MS, Jones DB, Khalilisamani N, Jerry DR, Raadsma HW. Genomic Selection in Aquaculture: Application, Limitations and Opportunities With Special Reference to Marine Shrimp and Pearl Oysters. Front Genet 2019; 9:693. [PMID: 30728827 PMCID: PMC6351666 DOI: 10.3389/fgene.2018.00693] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 12/11/2018] [Indexed: 11/20/2022] Open
Abstract
Within aquaculture industries, selection based on genomic information (genomic selection) has the profound potential to change genetic improvement programs and production systems. Genomic selection exploits the use of realized genomic relationships among individuals and information from genome-wide markers in close linkage disequilibrium with genes of biological and economic importance. We discuss the technical advances, practical requirements, and commercial applications that have made genomic selection feasible in a range of aquaculture industries, with a particular focus on molluscs (pearl oysters, Pinctada maxima) and marine shrimp (Litopenaeus vannamei and Penaeus monodon). The use of low-cost genome sequencing has enabled cost-effective genotyping on a large scale and is of particular value for species without a reference genome or access to commercial genotyping arrays. We highlight the pitfalls and offer the solutions to the genotyping by sequencing approach and the building of appropriate genetic resources to undertake genomic selection from first-hand experience. We describe the potential to capture large-scale commercial phenotypes based on image analysis and artificial intelligence through machine learning, as inputs for calculation of genomic breeding values. The application of genomic selection over traditional aquatic breeding programs offers significant advantages through being able to accurately predict complex polygenic traits including disease resistance; increasing rates of genetic gain; minimizing inbreeding; and negating potential limiting effects of genotype by environment interactions. Further practical advantages of genomic selection through the use of large-scale communal mating and rearing systems are highlighted, as well as presenting rate-limiting steps that impact on attaining maximum benefits from adopting genomic selection. Genomic selection is now at the tipping point where commercial applications can be readily adopted and offer significant short- and long-term solutions to sustainable and profitable aquaculture industries.
Collapse
Affiliation(s)
- Kyall R Zenger
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD, Australia.,ARC Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, Australia
| | - Mehar S Khatkar
- ARC Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, Australia.,Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW, Australia
| | - David B Jones
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - Nima Khalilisamani
- ARC Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, Australia.,Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW, Australia
| | - Dean R Jerry
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD, Australia.,ARC Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, Australia.,Tropical Futures Institute, James Cook University Singapore, Singapore, Singapore
| | - Herman W Raadsma
- ARC Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, Australia.,Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW, Australia
| |
Collapse
|
34
|
Genome-wide association analysis for body weight identifies candidate genes related to development and metabolism in rainbow trout (Oncorhynchus mykiss). Mol Genet Genomics 2019; 294:563-571. [PMID: 30635785 DOI: 10.1007/s00438-018-1518-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 12/03/2018] [Indexed: 01/12/2023]
Abstract
Growth is one of the most important traits from both a physiological and economic perspective in aquaculture species. Thus, identifying the genomic regions and genes underpinning genetic variation for this trait is of particular interest in several fish species, including rainbow trout. In this work, we perform a genome-wide association study (GWAS) to identify the genomic regions associated with body weight at tagging (BWT) and at 18 months (BW18M) using a dense SNP panel (57 k) and 4596 genotyped rainbow trout from 105 full-sib families belonging to a Chilean breeding population. Analysis was performed by means of single-step GBLUP approach. Genetic variance explained by 20 adjacent SNP windows across the whole genome is reported. To further explore candidate genes, we focused on windows that explained the highest proportion of genetic variance in the top 10 chromosomes for each trait. The main window from the top 10 chromosomes was explored by BLAST using the first and last SNP position of each window to determine the target nucleotide sequence. As expected, the percentage of genetic variance explained by windows was relatively low, due to the polygenic nature of body weight. The most important genomic region for BWT and BW18M were located on chromosomes 15 and 24 and they explained 2.14% and 3.02% of the genetic variance for each trait, respectively. Candidate genes including several growth factors, genes involved in development of skeletal muscle and bone tissue and nutrient metabolism were identified within the associated regions for both traits BWT and BW18M. These results indicate that body weight is polygenic in nature in rainbow trout, with the most important loci explaining as much as 3% of the genetic variance for the trait. The genes identified here represent good candidates for further functional validation to uncover biological mechanisms underlying variation for growth in rainbow trout.
Collapse
|
35
|
López ME, Benestan L, Moore J, Perrier C, Gilbey J, Di Genova A, Maass A, Diaz D, Lhorente J, Correa K, Neira R, Bernatchez L, Yáñez JM. Comparing genomic signatures of domestication in two Atlantic salmon ( Salmo salar L.) populations with different geographical origins. Evol Appl 2019; 12:137-156. [PMID: 30622641 PMCID: PMC6304691 DOI: 10.1111/eva.12689] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 06/29/2018] [Accepted: 07/17/2018] [Indexed: 12/16/2022] Open
Abstract
Selective breeding and genetic improvement have left detectable signatures on the genomes of domestic species. The elucidation of such signatures is fundamental for detecting genomic regions of biological relevance to domestication and improving management practices. In aquaculture, domestication was carried out independently in different locations worldwide, which provides opportunities to study the parallel effects of domestication on the genome of individuals that have been selected for similar traits. In this study, we aimed to detect potential genomic signatures of domestication in two independent pairs of wild/domesticated Atlantic salmon populations of Canadian and Scottish origins, respectively. Putative genomic regions under divergent selection were investigated using a 200K SNP array by combining three different statistical methods based either on allele frequencies (LFMM, Bayescan) or haplotype differentiation (Rsb). We identified 337 and 270 SNPs potentially under divergent selection in wild and hatchery populations of Canadian and Scottish origins, respectively. We observed little overlap between results obtained from different statistical methods, highlighting the need to test complementary approaches for detecting a broad range of genomic footprints of selection. The vast majority of the outliers detected were population-specific but we found four candidate genes that were shared between the populations. We propose that these candidate genes may play a role in the parallel process of domestication. Overall, our results suggest that genetic drift may have override the effect of artificial selection and/or point toward a different genetic basis underlying the expression of similar traits in different domesticated strains. Finally, it is likely that domestication may predominantly target polygenic traits (e.g., growth) such that its genomic impact might be more difficult to detect with methods assuming selective sweeps.
Collapse
Affiliation(s)
- Maria E. López
- Facultad de Ciencias Veterinarias y PecuariasUniversidad de ChileSantiagoChile
- Facultad de Ciencias AgronómicasUniversidad de ChileSantiagoChile
| | - Laura Benestan
- IBISInstitut de Biologie Intégrative et des SystèmesUniversité LavalQuébec CityQuébecCanada
| | - Jean‐Sebastien Moore
- IBISInstitut de Biologie Intégrative et des SystèmesUniversité LavalQuébec CityQuébecCanada
| | - Charles Perrier
- Centre d’Écologie Fonctionnelle et ÉvolutiveUnité Mixte de Recherche CNRS 5175MontpellierFrance
| | - John Gilbey
- Marine Scotland ScienceFreshwater Fisheries LaboratoryFaskallyPitlochryUK
| | - Alex Di Genova
- Laboratory of Bioinformatics and Mathematics of the GenomeCenter for Mathematical Modeling (UMI 2807 CNRS) and Center for Genome Regulation (Fondap 15090007)Universidad de ChileSantiagoChile
| | - Alejandro Maass
- Laboratory of Bioinformatics and Mathematics of the GenomeCenter for Mathematical Modeling (UMI 2807 CNRS) and Center for Genome Regulation (Fondap 15090007)Universidad de ChileSantiagoChile
| | - Diego Diaz
- Laboratory of Bioinformatics and Mathematics of the GenomeCenter for Mathematical Modeling (UMI 2807 CNRS) and Center for Genome Regulation (Fondap 15090007)Universidad de ChileSantiagoChile
| | | | | | - Roberto Neira
- Facultad de Ciencias AgronómicasUniversidad de ChileSantiagoChile
| | - Louis Bernatchez
- IBISInstitut de Biologie Intégrative et des SystèmesUniversité LavalQuébec CityQuébecCanada
| | - José M. Yáñez
- Facultad de Ciencias Veterinarias y PecuariasUniversidad de ChileSantiagoChile
- AquainnovoPuerto MonttChile
- Núcleo Milenio INVASALConcepciónChile
| |
Collapse
|
36
|
Barria A, López ME, Yoshida G, Carvalheiro R, Lhorente JP, Yáñez JM. Population Genomic Structure and Genome-Wide Linkage Disequilibrium in Farmed Atlantic Salmon ( Salmo salar L.) Using Dense SNP Genotypes. Front Genet 2018; 9:649. [PMID: 30619473 PMCID: PMC6302115 DOI: 10.3389/fgene.2018.00649] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 11/30/2018] [Indexed: 01/15/2023] Open
Abstract
Chilean Farmed Atlantic salmon (Salmo salar) populations were established with individuals of both European and North American origins. These populations are expected to be highly genetically differentiated due to evolutionary history and poor gene flow between ancestral populations from different continents. The extent and decay of linkage disequilibrium (LD) among single nucleotide polymorphism (SNP) impacts the implementation of genome-wide association studies and genomic selection and provides relevant information about demographic processes of fish populations. We assessed the population structure and characterized the extent and decay of LD in three Chilean commercial populations of Atlantic salmon with North American (NAM), Scottish (SCO), and Norwegian (NOR) origin. A total of 123 animals were genotyped using a 159 K SNP Axiom® myDesignTM Genotyping Array. A total of 32 K SNP markers, representing the common SNPs along the three populations after quality control were used. The principal component analysis explained 78.9% of the genetic diversity between populations, clearly discriminating between populations of North American and European origin, and also between European populations. NAM had the lowest effective population size, followed by SCO and NOR. Large differences in the LD decay were observed between populations of North American and European origin. An r 2 threshold of 0.2 was estimated for marker pairs separated by 7,800, 64, and 50 kb in the NAM, SCO, and NOR populations, respectively. In this study we show that this SNP panel can be used to detect association between markers and traits of interests and also to capture high-resolution information for genome-enabled predictions. Also, we suggest the feasibility to achieve similar prediction accuracies using a smaller SNP data set for the NAM population, compared with samples with European origin which would need a higher density SNP array.
Collapse
Affiliation(s)
- Agustin Barria
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, La Pintana, Chile
| | - Maria E. López
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, La Pintana, Chile
| | - Grazyella Yoshida
- Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista Júlio de Mesquita Filho, Jaboticabal, Brazil
| | - Roberto Carvalheiro
- Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista Júlio de Mesquita Filho, Jaboticabal, Brazil
| | | | - José M. Yáñez
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, La Pintana, Chile
- Benchmark Genetic S.A., Puerto Montt, Chile
- Nucleo Milenio INVASAL, Concepción, Chile
| |
Collapse
|
37
|
Kim OTP, Nguyen PT, Shoguchi E, Hisata K, Vo TTB, Inoue J, Shinzato C, Le BTN, Nishitsuji K, Kanda M, Nguyen VH, Nong HV, Satoh N. A draft genome of the striped catfish, Pangasianodon hypophthalmus, for comparative analysis of genes relevant to development and a resource for aquaculture improvement. BMC Genomics 2018; 19:733. [PMID: 30290758 PMCID: PMC6173838 DOI: 10.1186/s12864-018-5079-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/14/2018] [Indexed: 11/22/2022] Open
Abstract
Background The striped catfish, Pangasianodon hypophthalmus, is a freshwater and benthopelagic fish common in the Mekong River delta. Catfish constitute a valuable source of dietary protein. Therefore, they are cultured worldwide, and P. hypophthalmus is a food staple in the Mekong area. However, genetic information about the culture stock, is unavailable for breeding improvement, although genetics of the channel catfish, Ictalurus punctatus, has been reported. To acquire genome sequence data as a useful resource for marker-assisted breeding, we decoded a draft genome of P. hypophthalmus and performed comparative analyses. Results Using the Illumina platform, we obtained both nuclear and mitochondrial DNA sequences. Molecular phylogeny using the mitochondrial genome confirmed that P. hypophthalmus is a member of the family Pangasiidae and is nested within a clade including the families Cranoglanididae and Ictaluridae. The nuclear genome was estimated at approximately 700 Mb, assembled into 568 scaffolds with an N50 of 14.29 Mbp, and was estimated to contain ~ 28,600 protein-coding genes, comparable to those of channel catfish and zebrafish. Interestingly, zebrafish produce gadusol, but genes for biosynthesis of this sunscreen compound have been lost from catfish genomes. The differences in gene contents between these two catfishes were found in genes for vitamin D-binding protein and cytosolic phospholipase A2, which have lost only in channel catfish. The Hox cluster in catfish genomes comprised seven paralogous groups, similar to that of zebrafish, and comparative analysis clarified catfish lineage-specific losses of A5a, B10a, and A11a. Genes for insulin-like growth factor (IGF) signaling were conserved between the two catfish genomes. In addition to identification of MHC class I and sex determination-related gene loci, the hypothetical chromosomes by comparison with the channel catfish demonstrated the usefulness of the striped catfish genome as a marker resource. Conclusions We developed genomic resources for the striped catfish. Possible conservation of genes for development and marker candidates were confirmed by comparing the assembled genome to that of a model fish, Danio rerio, and to channel catfish. Since the catfish genomic constituent resembles that of zebrafish, it is likely that zebrafish data for gene functions is applicable to striped catfish as well. Electronic supplementary material The online version of this article (10.1186/s12864-018-5079-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Oanh T P Kim
- Institute of Genome Research, Vietnam Academy of Science and Technology, Cau Giay, Hanoi, Vietnam.
| | - Phuong T Nguyen
- Institute of Genome Research, Vietnam Academy of Science and Technology, Cau Giay, Hanoi, Vietnam
| | - Eiichi Shoguchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Kanako Hisata
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Thuy T B Vo
- Institute of Genome Research, Vietnam Academy of Science and Technology, Cau Giay, Hanoi, Vietnam
| | - Jun Inoue
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Chuya Shinzato
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan.,Present address: Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, 277-8564, Japan
| | - Binh T N Le
- Institute of Genome Research, Vietnam Academy of Science and Technology, Cau Giay, Hanoi, Vietnam
| | - Koki Nishitsuji
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Miyuki Kanda
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Vu H Nguyen
- Institute of Genome Research, Vietnam Academy of Science and Technology, Cau Giay, Hanoi, Vietnam
| | - Hai V Nong
- Institute of Genome Research, Vietnam Academy of Science and Technology, Cau Giay, Hanoi, Vietnam
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan.
| |
Collapse
|
38
|
Abstract
From a physiological-behavioral perspective, it has been shown that fish with a higher density of black eumelanin spots are more dominant, less sensitive to stress, have higher feed intake, better feed efficiency and therefore are larger in size. Thus, we hypothesized that genetic (co)variation between skin pigmentation patterns and growth exists and it is advantageous in rainbow trout. The objective of this study was to determine the genetic relationships between skin pigmentation patterns and BW in a breeding population of rainbow trout. We performed a genetic analysis of pigmentation traits including dorsal color (DC), lateral band (LB) intensity, amount of spotting above (SA) and below (SB) the lateral line, and BW at harvest (HW). Variance components were estimated using a multi-trait linear animal model fitted by restricted maximum likelihood. Estimated heritabilities were 0.08±0.02, 0.17±0.03, 0.44±0.04, 0.17±0.04 and 0.23±0.04 for DC, LB, SA, SB and HW, respectively. Genetic correlations between HW and skin color traits were 0.42±0.13, 0.32±0.14 and 0.25±0.11 for LB, SA and SB, respectively. These results indicate positive, but low to moderate genetic relationships between the amount of spotting and BW in rainbow trout. Thus, higher levels of spotting are genetically associated with better growth performance in this population.
Collapse
|
39
|
Guppy JL, Jones DB, Jerry DR, Wade NM, Raadsma HW, Huerlimann R, Zenger KR. The State of " Omics" Research for Farmed Penaeids: Advances in Research and Impediments to Industry Utilization. Front Genet 2018; 9:282. [PMID: 30123237 PMCID: PMC6085479 DOI: 10.3389/fgene.2018.00282] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/09/2018] [Indexed: 12/19/2022] Open
Abstract
Elucidating the underlying genetic drivers of production traits in agricultural and aquaculture species is critical to efforts to maximize farming efficiency. "Omics" based methods (i.e., transcriptomics, genomics, proteomics, and metabolomics) are increasingly being applied to gain unprecedented insight into the biology of many aquaculture species. While the culture of penaeid shrimp has increased markedly, the industry continues to be impeded in many regards by disease, reproductive dysfunction, and a poor understanding of production traits. Extensive effort has been, and continues to be, applied to develop critical genomic resources for many commercially important penaeids. However, the industry application of these genomic resources, and the translation of the knowledge derived from "omics" studies has not yet been completely realized. Integration between the multiple "omics" resources now available (i.e., genome assemblies, transcriptomes, linkage maps, optical maps, and proteomes) will prove critical to unlocking the full utility of these otherwise independently developed and isolated resources. Furthermore, emerging "omics" based techniques are now available to address longstanding issues with completing keystone genome assemblies (e.g., through long-read sequencing), and can provide cost-effective industrial scale genotyping tools (e.g., through low density SNP chips and genotype-by-sequencing) to undertake advanced selective breeding programs (i.e., genomic selection) and powerful genome-wide association studies. In particular, this review highlights the status, utility and suggested path forward for continued development, and improved use of "omics" resources in penaeid aquaculture.
Collapse
Affiliation(s)
- Jarrod L. Guppy
- Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, Australia
- College of Science and Engineering and Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, Australia
| | - David B. Jones
- Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, Australia
- College of Science and Engineering and Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, Australia
| | - Dean R. Jerry
- Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, Australia
- College of Science and Engineering and Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, Australia
| | - Nicholas M. Wade
- Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, Australia
- Aquaculture Program, CSIRO Agriculture & Food, Queensland Bioscience Precinct, St Lucia, QLD, Australia
| | - Herman W. Raadsma
- Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, Australia
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Camden, NSW, Australia
| | - Roger Huerlimann
- Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, Australia
- College of Science and Engineering and Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, Australia
| | - Kyall R. Zenger
- Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, Australia
- College of Science and Engineering and Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
40
|
Robledo D, Palaiokostas C, Bargelloni L, Martínez P, Houston R. Applications of genotyping by sequencing in aquaculture breeding and genetics. REVIEWS IN AQUACULTURE 2018; 10:670-682. [PMID: 30220910 PMCID: PMC6128402 DOI: 10.1111/raq.12193] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/27/2016] [Indexed: 05/18/2023]
Abstract
Selective breeding is increasingly recognized as a key component of sustainable production of aquaculture species. The uptake of genomic technology in aquaculture breeding has traditionally lagged behind terrestrial farmed animals. However, the rapid development and application of sequencing technologies has allowed aquaculture to narrow the gap, leading to substantial genomic resources for all major aquaculture species. While high-density single-nucleotide polymorphism (SNP) arrays for some species have been developed recently, direct genotyping by sequencing (GBS) techniques have underpinned many of the advances in aquaculture genetics and breeding to date. In particular, restriction-site associated DNA sequencing (RAD-Seq) and subsequent variations have been extensively applied to generate population-level SNP genotype data. These GBS techniques are not dependent on prior genomic information such as a reference genome assembly for the species of interest. As such, they have been widely utilized by researchers and companies focussing on nonmodel aquaculture species with relatively small research communities. Applications of RAD-Seq techniques have included generation of genetic linkage maps, performing genome-wide association studies, improvements of reference genome assemblies and, more recently, genomic selection for traits of interest to aquaculture like growth, sex determination or disease resistance. In this review, we briefly discuss the history of GBS, the nuances of the various GBS techniques, bioinformatics approaches and application of these techniques to various aquaculture species.
Collapse
Affiliation(s)
- Diego Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of EdinburghMidlothianUK
| | - Christos Palaiokostas
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of EdinburghMidlothianUK
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food ScienceUniversity of PadovaLegnaroPadovaItaly
| | - Paulino Martínez
- Department of ZoologyGenetics and Physical AnthropologyFaculty of VeterinaryUniversity of Santiago de CompostelaLugoSpain
| | - Ross Houston
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of EdinburghMidlothianUK
| |
Collapse
|
41
|
Gao G, Nome T, Pearse DE, Moen T, Naish KA, Thorgaard GH, Lien S, Palti Y. A New Single Nucleotide Polymorphism Database for Rainbow Trout Generated Through Whole Genome Resequencing. Front Genet 2018; 9:147. [PMID: 29740479 PMCID: PMC5928233 DOI: 10.3389/fgene.2018.00147] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/09/2018] [Indexed: 11/13/2022] Open
Abstract
Single-nucleotide polymorphisms (SNPs) are highly abundant markers, which are broadly distributed in animal genomes. For rainbow trout (Oncorhynchus mykiss), SNP discovery has been previously done through sequencing of restriction-site associated DNA (RAD) libraries, reduced representation libraries (RRL) and RNA sequencing. Recently we have performed high coverage whole genome resequencing with 61 unrelated samples, representing a wide range of rainbow trout and steelhead populations, with 49 new samples added to 12 aquaculture samples from AquaGen (Norway) that we previously used for SNP discovery. Of the 49 new samples, 11 were double-haploid lines from Washington State University (WSU) and 38 represented wild and hatchery populations from a wide range of geographic distribution and with divergent migratory phenotypes. We then mapped the sequences to the new rainbow trout reference genome assembly (GCA_002163495.1) which is based on the Swanson YY doubled haploid line. Variant calling was conducted with FreeBayes and SAMtools mpileup, followed by filtering of SNPs based on quality score, sequence complexity, read depth on the locus, and number of genotyped samples. Results from the two variant calling programs were compared and genotypes of the double haploid samples were used for detecting and filtering putative paralogous sequence variants (PSVs) and multi-sequence variants (MSVs). Overall, 30,302,087 SNPs were identified on the rainbow trout genome 29 chromosomes and 1,139,018 on unplaced scaffolds, with 4,042,723 SNPs having high minor allele frequency (MAF > 0.25). The average SNP density on the chromosomes was one SNP per 64 bp, or 15.6 SNPs per 1 kb. Results from the phylogenetic analysis that we conducted indicate that the SNP markers contain enough population-specific polymorphisms for recovering population relationships despite the small sample size used. Intra-Population polymorphism assessment revealed high level of polymorphism and heterozygosity within each population. We also provide functional annotation based on the genome position of each SNP and evaluate the use of clonal lines for filtering of PSVs and MSVs. These SNPs form a new database, which provides an important resource for a new high density SNP array design and for other SNP genotyping platforms used for genetic and genomics studies of this iconic salmonid fish species.
Collapse
Affiliation(s)
- Guangtu Gao
- National Center for Cool and Cold Water Aquaculture, ARS-USDA, Kearneysville, WV, United States
| | - Torfinn Nome
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Centre of Integrative Genetics, Norwegian University of Life Sciences, Ås, Norway
| | - Devon E Pearse
- Fisheries Ecology Division, Southwest Fisheries Science Center, National Marine Fisheries Service, Santa Cruz, CA, United States
| | | | - Kerry A Naish
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, United States
| | - Gary H Thorgaard
- School of Biological Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA, United States
| | - Sigbjørn Lien
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Centre of Integrative Genetics, Norwegian University of Life Sciences, Ås, Norway
| | - Yniv Palti
- National Center for Cool and Cold Water Aquaculture, ARS-USDA, Kearneysville, WV, United States
| |
Collapse
|
42
|
Abstract
Teleost fish exhibit a remarkable diversity in the control of sex determination, offering the opportunity to identify novel differentiation mechanisms and their ecological consequences. Here, we perform GWAS using 4715 fish and 46,501 SNP to map sex determination to three separate genomic locations in Atlantic salmon (Salmo salar). To characterize each, whole genome sequencing was performed to 30-fold depth of coverage using 20 fish representing each of three identified sex lineages. SNP polymorphism reveals male fish carry a single copy of the male specific region, consistent with an XX/XY or male heterogametric sex system. Haplotype analysis revealed deep divergence between the putatively ancestral locus on chromosome 2, compared with loci on chromosomes 3 and 6. Haplotypes in fish carrying either the chromosome 3 or 6 loci were nearly indistinguishable, indicating a founding event that occurred following the speciation event that defined Salmo salar from other salmonids. These findings highlight the evolutionarily fluid state of sex determination systems in salmonids, and resolve to the sequence level differences in animals with divergent sex lineages.
Collapse
|
43
|
Barría A, Christensen KA, Yoshida GM, Correa K, Jedlicki A, Lhorente JP, Davidson WS, Yáñez JM. Genomic Predictions and Genome-Wide Association Study of Resistance Against Piscirickettsia salmonis in Coho Salmon ( Oncorhynchus kisutch) Using ddRAD Sequencing. G3 (BETHESDA, MD.) 2018; 8:1183-1194. [PMID: 29440129 PMCID: PMC5873909 DOI: 10.1534/g3.118.200053] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 02/01/2018] [Indexed: 01/15/2023]
Abstract
Piscirickettsia salmonis is one of the main infectious diseases affecting coho salmon (Oncorhynchus kisutch) farming, and current treatments have been ineffective for the control of this disease. Genetic improvement for P. salmonis resistance has been proposed as a feasible alternative for the control of this infectious disease in farmed fish. Genotyping by sequencing (GBS) strategies allow genotyping of hundreds of individuals with thousands of single nucleotide polymorphisms (SNPs), which can be used to perform genome wide association studies (GWAS) and predict genetic values using genome-wide information. We used double-digest restriction-site associated DNA (ddRAD) sequencing to dissect the genetic architecture of resistance against P. salmonis in a farmed coho salmon population and to identify molecular markers associated with the trait. We also evaluated genomic selection (GS) models in order to determine the potential to accelerate the genetic improvement of this trait by means of using genome-wide molecular information. A total of 764 individuals from 33 full-sib families (17 highly resistant and 16 highly susceptible) were experimentally challenged against P. salmonis and their genotypes were assayed using ddRAD sequencing. A total of 9,389 SNPs markers were identified in the population. These markers were used to test genomic selection models and compare different GWAS methodologies for resistance measured as day of death (DD) and binary survival (BIN). Genomic selection models showed higher accuracies than the traditional pedigree-based best linear unbiased prediction (PBLUP) method, for both DD and BIN. The models showed an improvement of up to 95% and 155% respectively over PBLUP. One SNP related with B-cell development was identified as a potential functional candidate associated with resistance to P. salmonis defined as DD.
Collapse
Affiliation(s)
- Agustín Barría
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, La Pintana, Santiago 8820808, Chile
- Doctorado en Acuicultura, Programa Cooperativo Universidad de Chile, Universidad Católica del Norte, Pontificia Universidad Católica de Valparaíso, 8820808 Chile
| | - Kris A Christensen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Grazyella M Yoshida
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, La Pintana, Santiago 8820808, Chile
- Animal Science Department, Universidade Estadual Paulista "Júlio de Mesquita Filho", Faculdade de Ciências Agrárias e Veterinárias, Campus Jaboticabal, Jaboticabal 14884-900, Brazil
| | - Katharina Correa
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, La Pintana, Santiago 8820808, Chile
- Aquainnovo S.A., Puerto Montt 5503032, Chile
| | - Ana Jedlicki
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, La Pintana, Santiago 8820808, Chile
| | | | - William S Davidson
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - José M Yáñez
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, La Pintana, Santiago 8820808, Chile
- Aquainnovo S.A., Puerto Montt 5503032, Chile
- Núcleo Milenio INVASAL, Concepción 4070386, Chile
| |
Collapse
|
44
|
Genomic Prediction Accuracy for Resistance Against Piscirickettsia salmonis in Farmed Rainbow Trout. G3-GENES GENOMES GENETICS 2018; 8:719-726. [PMID: 29255117 PMCID: PMC5919750 DOI: 10.1534/g3.117.300499] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Salmonid rickettsial syndrome (SRS), caused by the intracellular bacterium Piscirickettsia salmonis, is one of the main diseases affecting rainbow trout (Oncorhynchus mykiss) farming. To accelerate genetic progress, genomic selection methods can be used as an effective approach to control the disease. The aims of this study were: (i) to compare the accuracy of estimated breeding values using pedigree-based best linear unbiased prediction (PBLUP) with genomic BLUP (GBLUP), single-step GBLUP (ssGBLUP), Bayes C, and Bayesian Lasso (LASSO); and (ii) to test the accuracy of genomic prediction and PBLUP using different marker densities (0.5, 3, 10, 20, and 27 K) for resistance against P. salmonis in rainbow trout. Phenotypes were recorded as number of days to death (DD) and binary survival (BS) from 2416 fish challenged with P. salmonis. A total of 1934 fish were genotyped using a 57 K single-nucleotide polymorphism (SNP) array. All genomic prediction methods achieved higher accuracies than PBLUP. The relative increase in accuracy for different genomic models ranged from 28 to 41% for both DD and BS at 27 K SNP. Between different genomic models, the highest relative increase in accuracy was obtained with Bayes C (∼40%), where 3 K SNP was enough to achieve a similar accuracy to that of the 27 K SNP for both traits. For resistance against P. salmonis in rainbow trout, we showed that genomic predictions using GBLUP, ssGBLUP, Bayes C, and LASSO can increase accuracy compared with PBLUP. Moreover, it is possible to use relatively low-density SNP panels for genomic prediction without compromising accuracy predictions for resistance against P. salmonis in rainbow trout.
Collapse
|
45
|
Pedersen S, Liu L, Glebe B, Leadbeater S, Lien S, Boulding EG. Mapping of quantitative trait loci associated with size, shape, and parr mark traits using first- and second-generation backcrosses between European and North American Atlantic salmon (Salmo salar). Genome 2018; 61:33-42. [DOI: 10.1139/gen-2017-0026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Little is known about the genetic architecture of traits important for salmonid restoration ecology. We mapped quantitative trait loci (QTL) using single nucleotide polymorphisms (SNPs) for juvenile body length, weight, shape, and vertical skin pigmentation patterns (parr marks) within three hybrid backcross families between European and North American subspecies of Atlantic salmon. Amounts of variation in skin colour and pattern quantified in the two second-generation transAtlantic families exceeded the ranges seen in purebred populations. GridQTL analyses using low-density female-specific linkage maps detected QTL showing experiment-wide significance on Ssa02, Ssa03, Ssa09, Ssa11, Ssa19, and Ssa26/28 for both length and weight; on Ssa04 and Ssa23 for parr mark number; on Ssa09 and Ssa13 for parr mark contrast; and on Ssa05, Ssa07, Ssa10, Ssa11, Ssa18, Ssa23, and Ssa26/28 for geometric morphometric shape coordinates. Pleiotrophic QTL on Ssa11 affected length, weight, and shape. No QTL was found that explained more than 10% of the phenotypic variance in pigmentation or shape traits. Each QTL was approximately positioned on the physical map of the Atlantic salmon genome. Some QTL locations confirmed previous studies but many were new. Studies like ours may increase the success of salmon restoration projects by enabling better phenotypic and genetic matching between introduced and extirpated strains.
Collapse
Affiliation(s)
- Stephanie Pedersen
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Lei Liu
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Brian Glebe
- Department of Fisheries and Oceans Canada, St. Andrews Biological Station, St. Andrews, NB E5B 2L9, Canada
| | - Steven Leadbeater
- Department of Fisheries and Oceans Canada, St. Andrews Biological Station, St. Andrews, NB E5B 2L9, Canada
| | - Sigbjørn Lien
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway
| | | |
Collapse
|
46
|
Genotyping and Sequencing Technologies in Population Genetics and Genomics. POPULATION GENOMICS 2018. [DOI: 10.1007/13836_2017_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
47
|
Yoshida GM, Lhorente JP, Carvalheiro R, Yáñez JM. Bayesian genome-wide association analysis for body weight in farmed Atlantic salmon (Salmo salar L.). Anim Genet 2017; 48:698-703. [PMID: 29044715 DOI: 10.1111/age.12621] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2017] [Indexed: 12/15/2022]
Abstract
We performed a genome-wide association study to detect markers associated with growth traits in Atlantic salmon. The analyzed traits included body weight at tagging (BWT) and body weight at 25 months (BW25M). Genotypes of 4662 animals were imputed from the 50K SNP chip to the 200K SNP chip using fimpute software. The markers were simultaneously modeled using Bayes C to identify genomic regions associated with the traits. We identified windows explaining a maximum of 3.71% and 3.61% of the genetic variance for BWT and BW25M respectively. We found potential candidate genes located within the top ten 1-Mb windows for BWT and BW25M. For instance, the vitronectin (VTN) gene, which has been previously reported to be associated with cell growth, was found within one of the top ten 1-Mb windows for BWT. In addition, the WNT1-inducible-signaling pathway protein 3, melanocortin 2 receptor accessory protein 2, myosin light chain kinase, transforming growth factor beta receptor type 3 and myosin light chain 1 genes, which have been reported to be associated with skeletal growth in humans, growth stimulation during the larval stage in zebrafish, body weight in pigs, feed conversion in chickens and growth rate of sheep skeletal muscle respectively, were found within some of the top ten 1-Mb windows for BW25M. These results indicate that growth traits are most likely controlled by many variants with relatively small effects in Atlantic salmon. The genomic regions associated with the traits studied here may provide further insight into the functional regions underlying growth traits in this species.
Collapse
Affiliation(s)
- G M Yoshida
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Av Santa Rosa 11735, La Pintana, Santiago, 8820808, Chile.,Animal Science Department, Faculdade de Ciências Agrárias e Veterinárias (FCAV), Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Campus Jaboticabal, Via de Acesso Prof. Paulo Donato Castellane, 14884-900, Jaboticabal, Brazil
| | | | - R Carvalheiro
- Animal Science Department, Faculdade de Ciências Agrárias e Veterinárias (FCAV), Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Campus Jaboticabal, Via de Acesso Prof. Paulo Donato Castellane, 14884-900, Jaboticabal, Brazil
| | - J M Yáñez
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Av Santa Rosa 11735, La Pintana, Santiago, 8820808, Chile.,Aquainnovo, Cardonal S/N, Puerto Montt, Chile
| |
Collapse
|
48
|
Gutierrez AP, Turner F, Gharbi K, Talbot R, Lowe NR, Peñaloza C, McCullough M, Prodöhl PA, Bean TP, Houston RD. Development of a Medium Density Combined-Species SNP Array for Pacific and European Oysters ( Crassostrea gigas and Ostrea edulis). G3 (BETHESDA, MD.) 2017; 7:2209-2218. [PMID: 28533337 PMCID: PMC5499128 DOI: 10.1534/g3.117.041780] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/06/2017] [Indexed: 01/01/2023]
Abstract
SNP arrays are enabling tools for high-resolution studies of the genetic basis of complex traits in farmed and wild animals. Oysters are of critical importance in many regions from both an ecological and economic perspective, and oyster aquaculture forms a key component of global food security. The aim of our study was to design a combined-species, medium density SNP array for Pacific oyster (Crassostrea gigas) and European flat oyster (Ostrea edulis), and to test the performance of this array on farmed and wild populations from multiple locations, with a focus on European populations. SNP discovery was carried out by whole-genome sequencing (WGS) of pooled genomic DNA samples from eight C. gigas populations, and restriction site-associated DNA sequencing (RAD-Seq) of 11 geographically diverse O. edulis populations. Nearly 12 million candidate SNPs were discovered and filtered based on several criteria, including preference for SNPs segregating in multiple populations and SNPs with monomorphic flanking regions. An Affymetrix Axiom Custom Array was created and tested on a diverse set of samples (n = 219) showing ∼27 K high quality SNPs for C. gigas and ∼11 K high quality SNPs for O. edulis segregating in these populations. A high proportion of SNPs were segregating in each of the populations, and the array was used to detect population structure and levels of linkage disequilibrium (LD). Further testing of the array on three C. gigas nuclear families (n = 165) revealed that the array can be used to clearly distinguish between both families based on identity-by-state (IBS) clustering parental assignment software. This medium density, combined-species array will be publicly available through Affymetrix, and will be applied for genome-wide association and evolutionary genetic studies, and for genomic selection in oyster breeding programs.
Collapse
Affiliation(s)
- Alejandro P Gutierrez
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, United Kingdom
| | - Frances Turner
- Edinburgh Genomics, Ashworth Laboratories, University of Edinburgh, EH9 3FL, United Kingdom
| | - Karim Gharbi
- Edinburgh Genomics, Ashworth Laboratories, University of Edinburgh, EH9 3FL, United Kingdom
| | - Richard Talbot
- Edinburgh Genomics, Ashworth Laboratories, University of Edinburgh, EH9 3FL, United Kingdom
| | - Natalie R Lowe
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, United Kingdom
| | - Carolina Peñaloza
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, United Kingdom
| | - Mark McCullough
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, BT7 1NN, United Kingdom
| | - Paulo A Prodöhl
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, BT7 1NN, United Kingdom
| | - Tim P Bean
- Centre for Environment Fisheries and Aquaculture Science, Cefas Weymouth Laboratory, Dorset DT4 8UB, United Kingdom
| | - Ross D Houston
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, United Kingdom
| |
Collapse
|
49
|
Macqueen DJ, Primmer CR, Houston RD, Nowak BF, Bernatchez L, Bergseth S, Davidson WS, Gallardo-Escárate C, Goldammer T, Guiguen Y, Iturra P, Kijas JW, Koop BF, Lien S, Maass A, Martin SAM, McGinnity P, Montecino M, Naish KA, Nichols KM, Ólafsson K, Omholt SW, Palti Y, Plastow GS, Rexroad CE, Rise ML, Ritchie RJ, Sandve SR, Schulte PM, Tello A, Vidal R, Vik JO, Wargelius A, Yáñez JM. Functional Annotation of All Salmonid Genomes (FAASG): an international initiative supporting future salmonid research, conservation and aquaculture. BMC Genomics 2017; 18:484. [PMID: 28655320 PMCID: PMC5488370 DOI: 10.1186/s12864-017-3862-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 06/14/2017] [Indexed: 11/21/2022] Open
Abstract
We describe an emerging initiative - the 'Functional Annotation of All Salmonid Genomes' (FAASG), which will leverage the extensive trait diversity that has evolved since a whole genome duplication event in the salmonid ancestor, to develop an integrative understanding of the functional genomic basis of phenotypic variation. The outcomes of FAASG will have diverse applications, ranging from improved understanding of genome evolution, to improving the efficiency and sustainability of aquaculture production, supporting the future of fundamental and applied research in an iconic fish lineage of major societal importance.
Collapse
Affiliation(s)
- Daniel J. Macqueen
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 2TZ UK
| | - Craig R. Primmer
- Department of Biology, University of Turku, 20014 Turku, Finland
| | - Ross D. Houston
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, EH25 9RG UK
| | - Barbara F. Nowak
- Institute for Marine and Antarctic Studies, University of Tasmania, Launceston, TAS Australia
| | - Louis Bernatchez
- Département de biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, G1V 0A6 Canada
| | - Steinar Bergseth
- The Research Council of Norway, Drammensveien 288, P.O. Box 564, NO-1327 Lysaker, Norway
| | - William S. Davidson
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6 Canada
| | - Cristian Gallardo-Escárate
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research, Department of Oceanography, Universidad de Concepción, 4030000 Concepción, Chile
| | - Tom Goldammer
- Leibniz Institute for Farm Animal Biology, Institute for Genome Biology, Fish Genetics Unit, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Yann Guiguen
- INRA, UR1037 Fish Physiology and Genomics, Rennes, France
| | - Patricia Iturra
- Human Genetics Program ICBM Faculty of Medicine, University of Chile, Santiago, Chile
| | | | - Ben F. Koop
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5 Canada
| | - Sigbjørn Lien
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, NO-1432 Ås, Norway
| | - Alejandro Maass
- Center for Mathematical Modelling, Department of Mathematical Engineering, University of Chile, 8370456 Santiago, Chile
- Center for Genome Regulation, University of Chile, 8370456 Santiago, Chile
| | - Samuel A. M. Martin
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 2TZ UK
| | - Philip McGinnity
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland
| | - Martin Montecino
- Center for Biomedical Research, Universidad Andres Bello, 8370146 Santiago, Chile
- FONDAP Center for Genome Regulation, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, 8370146 Santiago, Chile
| | - Kerry A. Naish
- School of Aquatic and Fishery Sciences, University of Washington, Box 355020, Seattle, WA 98195 USA
| | - Krista M. Nichols
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd E, Seattle, WA 98112 USA
| | | | - Stig W. Omholt
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, NO-1432 Ås, Norway
- NTNU - Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Yniv Palti
- National Center for Cool and Cold Water Aquaculture, USDA ARS, 11861 Leetown Road, Kearneysville, WV 25430 USA
| | - Graham S. Plastow
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, AB Canada
| | - Caird E. Rexroad
- Office of National Programs, USDA ARS, 5601 Sunnyside Avenue, Beltsville, MD 20705-5148 USA
| | - Matthew L. Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, 1 Marine Lab Road, St. John’s, NL A1C 5S7 Canada
| | - Rachael J. Ritchie
- Genome British Columbia, Suite 400 – 575, West 8th Avenue, Vancouver, BC V5Z 0C4 Canada
| | - Simen R. Sandve
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, NO-1432 Ås, Norway
| | - Patricia M. Schulte
- Department of Zoology, University of British Columbia, 6270 University Blvd, Vancouver, BC V6T 1Z4 Canada
| | - Alfredo Tello
- Instituto Tecnológico del Salmón S.A., INTESAL de SalmonChile, Puerto Montt, Chile
| | - Rodrigo Vidal
- Laboratory of Molecular Ecology, Genomics, and Evolutionary Studies, Department of Biology, University of Santiago, 9170022 Santiago, Chile
| | - Jon Olav Vik
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, NO-1432 Ås, Norway
| | - Anna Wargelius
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817 Bergen, Norway
| | - José Manuel Yáñez
- Faculty of Veterinary and Animal Sciences, University of Chile, Av. Santa Rosa 11735, Santiago, Chile & Aquainnovo, Cardonal s/n, Puerto Montt, Chile
| |
Collapse
|
50
|
Nunes JDRDS, Liu S, Pértille F, Perazza CA, Villela PMS, de Almeida-Val VMF, Hilsdorf AWS, Liu Z, Coutinho LL. Large-scale SNP discovery and construction of a high-density genetic map of Colossoma macropomum through genotyping-by-sequencing. Sci Rep 2017; 7:46112. [PMID: 28387238 PMCID: PMC5384230 DOI: 10.1038/srep46112] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/06/2017] [Indexed: 11/11/2022] Open
Abstract
Colossoma macropomum, or tambaqui, is the largest native Characiform species found in the Amazon and Orinoco river basins, yet few resources for genetic studies and the genetic improvement of tambaqui exist. In this study, we identified a large number of single-nucleotide polymorphisms (SNPs) for tambaqui and constructed a high-resolution genetic linkage map from a full-sib family of 124 individuals and their parents using the genotyping by sequencing method. In all, 68,584 SNPs were initially identified using minimum minor allele frequency (MAF) of 5%. Filtering parameters were used to select high-quality markers for linkage analysis. We selected 7,734 SNPs for linkage mapping, resulting in 27 linkage groups with a minimum logarithm of odds (LOD) of 8 and maximum recombination fraction of 0.35. The final genetic map contains 7,192 successfully mapped markers that span a total of 2,811 cM, with an average marker interval of 0.39 cM. Comparative genomic analysis between tambaqui and zebrafish revealed variable levels of genomic conservation across the 27 linkage groups which allowed for functional SNP annotations. The large-scale SNP discovery obtained here, allowed us to build a high-density linkage map in tambaqui, which will be useful to enhance genetic studies that can be applied in breeding programs.
Collapse
Affiliation(s)
- José de Ribamar da Silva Nunes
- Animal Science department, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo, Brazil.,The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL, 36849, United States of America.,Nature and Culture Institute, Federal University of Amazon (UFAM), Benjamin Constant, Amazonas, Brazil
| | - Shikai Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL, 36849, United States of America
| | - Fábio Pértille
- Animal Science department, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo, Brazil
| | - Caio Augusto Perazza
- Unit of Biotechnology, University of Mogi das Cruzes, P.O. Box 411, 08701-970, Mogi das Cruzes, SP, Brazil
| | - Priscilla Marqui Schmidt Villela
- Animal Science department, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo, Brazil
| | - Vera Maria Fonseca de Almeida-Val
- Brazilian National Institute for Research of the Amazon, Laboratory of Ecophysiology and Molecular Evolution, Manaus, Amazonas, Brazil.,University Nilton Lins, Aquaculture Graduate Program, Manaus, Amazonas, Brazil
| | | | - Zhanjiang Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL, 36849, United States of America
| | - Luiz Lehmann Coutinho
- Animal Science department, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo, Brazil
| |
Collapse
|