1
|
Hu J, Li H, Sakai H, Mukai T, Young Suk H, Li C. Molecular phylogenetics of the fresh water sleepers Odontobutis (Gobiiformes: Odontobutidae) and its implications on biogeography of freshwater ichthyofauna of East Asia. Mol Phylogenet Evol 2023; 186:107871. [PMID: 37422179 DOI: 10.1016/j.ympev.2023.107871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 06/10/2023] [Accepted: 07/03/2023] [Indexed: 07/10/2023]
Abstract
The genus Odontobutis is a group of freshwater fishes endemic to East Asia. Phylogenetic relationships among the Odontobutis species have never been fully tested due to incomplete taxon sampling and that molecular data have not been collected in many Odontobutis species. In the present study, we sampled 51 specimens from all known eight Odontobutis species with two outgroups (Perccottus glenii and Neodontobutis hainanensis). We collected sequence data of 4434 single-copy nuclear coding loci using gene capture and Illumina sequencing. A robust phylogeny of the Odontobutis with many individuals for each species was built, supporting the current taxonomy that all extant Odontobutis species are valid. The two species from Japan (O. hikimius + O. obscurus) formed an independent clade sister to the "continental odontobutids", whereas the species from southern China (O. sinensis + O. haifengensis) separated from the rest species of the genus. Surprisingly species from the lower reaches of the Yangtze River (O. potamophilus) was more closely related to species from the Korean Peninsula and northeastern China than to the middle reaches of the Yangtze River, such that their relationship was ((O. sinensis + O. haifengensis)(O. platycephala + (O. yaluensis + (O. potamophilus + O. interruptus)))). Divergence time among the Odontobutis was estimated using 100 most clock-like loci and three fossil calibration points. The crown group of the Odontobutis was estimated at 9.0 Ma during the late Miocene (5.6-12.7 Ma, 95% HPDs). Ancestral range of the genus was reconstructed using Reconstruct Ancestral States in Phylogenies (RASP) and BioGeoBEARS. The result suggested that the common ancestor of modern Odontobutis probably was distributed in Japan, southern China or the Korean Peninsula. A series of geographical events in East Asia since the late Miocene, such as the opening of the Japan/East Sea, rapid uplift of the Tibetan Plateau and climate change in the northern region of the Yellow River might account for diversification and current distribution pattern of the Odontobutis.
Collapse
Affiliation(s)
- Jiantao Hu
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai 201306, China; Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai 201306, China.
| | - Hongjie Li
- Genoxor Medical & Science Technology Inc.
| | - Harumi Sakai
- National Fisheries University, Yamaguchi 759-6595, Japan.
| | - Takahiko Mukai
- Faculty of Regional Studies, Gifu University, Gifu, 501-1193, Japan.
| | - Ho Young Suk
- Department of Life Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Chenhong Li
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai 201306, China; Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
2
|
Galbreath KE, Makarikov AA, Bell KC, Greiman SE, Allen JM, M S Haas G, Li C, Cook JA, Hoberg EP. Late Cenozoic History And The Role Of Beringia In Assembling A Holarctic Cestode Species Complex. Mol Phylogenet Evol 2023; 183:107775. [PMID: 36972794 DOI: 10.1016/j.ympev.2023.107775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/13/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
The dynamic climate history that drove sea level fluctuation during past glacial periods mediated the movement of organisms between Asia and North America via the Bering Land Bridge. Investigations of the biogeographic histories of small mammals and their parasites demonstrate facets of a complex history of episodic geographic colonization and refugial isolation that structured diversity across the Holarctic. We use a large multi-locus nuclear DNA sequence dataset to robustly resolve relationships within the cestode genus Arostrilepis (Cyclophyllidea: Hymenolepididae), a widespread parasite of predominantly arvicoline rodents (voles, lemmings). Using this phylogeny, we confirm that several Asian Arostrilepis lineages colonized North America during up to four distinct glacial periods in association with different rodent hosts, consistent with taxon-pulse dynamics. A previously inferred westward dispersal across the land bridge is rejected. We also refine interpretations of past host colonization, providing evidence for several distinct episodes of expanding host range, which probably contributed to diversification by Arostrilepis. Finally, Arostrilepis is shown to be paraphyletic with respect to Hymenandrya thomomyis, a parasite of pocket gophers, confirming that ancient Arostrilepis species colonized new host lineages upon arriving in North America.
Collapse
Affiliation(s)
- Kurt E Galbreath
- Northern Michigan University, 1401, Presque Isle Ave, Marquette, MI 49855.
| | - Arseny A Makarikov
- Institute of Systematics and Ecology of Animals, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Kayce C Bell
- Natural History Museum of Los Angeles County, 900, Exposition Blvd., Los Angeles, CA 90007
| | - Stephen E Greiman
- Department of Biology, Georgia Southern University, Statesboro, GA 30458
| | - Julie M Allen
- Biology Department, University of Nevada, Reno, Reno, NV 89557
| | - Genevieve M S Haas
- Northern Michigan University, 1401, Presque Isle Ave, Marquette, MI 49855
| | - Chenhong Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, People's Republic of China
| | - Joseph A Cook
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, USA
| | - Eric P Hoberg
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
3
|
Wang Q, Purrafee Dizaj L, Huang J, Kumar Sarker K, Kevrekidis C, Reichenbacher B, Reza Esmaeili H, Straube N, Moritz T, Li C. Molecular phylogenetics of the Clupeiformes based on exon-capture data and a new classification of the order. Mol Phylogenet Evol 2022; 175:107590. [PMID: 35850406 DOI: 10.1016/j.ympev.2022.107590] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/21/2022] [Accepted: 07/12/2022] [Indexed: 10/17/2022]
Abstract
The Clupeiformes, including among others herrings, anchovies, shads and menhadens are ecologically and commercially important, yet their phylogenetic relationships are still controversial. Previous classification of Clupeiformes were based on morphological characters or lack of synapomorphic characters. More recent studies based on molecular data as well as new morphological evidence are keeping challenging their phylogenetic relations and there is still no consensus on many interrelationships within the Clupeiformes. In this study, we collected nuclear sequence data from 4,434 single-copy protein coding loci using a gene-capture method. We obtained a robust phylogeny based on 1,165 filtered loci with less than 30 % missing data. Our major findings include: 1) reconfirmation of monophyly of the Clupeiformes, that is, Denticipitidae is sister to all other clupeiforms; 2) the polyphyletic nature of dussumieriids and early branching of Spratelloididae from all other clupeoids were confirmed using datasets curated for less missing data and more balanced base composition in the respective taxa. The next branching clade is the monophyletic Engraulidae. Pristigasteridae also is monophyletic, but it was nested in the previously defined "Clupeidae". Within Pristigasteridae there is no support for monophyletic Pelloninae. Chirocentrus is close to Dussumieria and not to engraulids. The miniaturized Sundasalanx is placed close to the ehiravine Clupeonella, however, with a relatively deep split. The genus Clupea, is not part of the diverse "Clupeidae", but part of a clade containing additionally Sprattus and Etrumeus. Within the crown group clades, Alosidae and Dorosomatidae are retrieved as sister clades. Based on new fossil calibration points, we found that major lineages of the clupeiforms diverged in the late Cretaceous and early Paleogene. The extinction event at the end of the Cretaceous may have created ecological niches, which could have fueled the diversification of clupeiform fishes. Based on the strong evidence of the present study, we propose an updated classification of Clupeiformes consisting of ten families: Denticipitidae; Spratelloididae; Engraulidae (Engraulinae + Coiliinae); Clupeidae; Chirocentridae; Dussumieriidae; Pristigasteridae; Ehiravidae; Alosidae, Dorosomatidae.
Collapse
Affiliation(s)
- Qian Wang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai 201306, China.
| | - Leyli Purrafee Dizaj
- Ichthyology and Molecular Systematics Research Laboratory, Zoology Section, Department of Biology, School of Science, Shiraz University, Shiraz, Iran.
| | - Junman Huang
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai 201306, China; Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai 201306, China.
| | - Kishor Kumar Sarker
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai 201306, China; Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai 201306, China.
| | - Charalampos Kevrekidis
- Ludwig-Maximilians-Universität München, Department für Geo- und Umweltwissenschaften, Paläontologie & Geobiologie, Richard-Wagner-Str. 10, 80333 Munich, Germany.
| | - Bettina Reichenbacher
- Ludwig-Maximilians-Universität München, Department für Geo- und Umweltwissenschaften, Paläontologie & Geobiologie, Richard-Wagner-Str. 10, 80333 Munich, Germany; GeoBio-Center, Ludwig-Maximilians-Universität München, Munich, Germany.
| | - Hamid Reza Esmaeili
- Ichthyology and Molecular Systematics Research Laboratory, Zoology Section, Department of Biology, School of Science, Shiraz University, Shiraz, Iran.
| | - Nicolas Straube
- University Museum, Department of Natural History, University of Bergen, Norway.
| | - Timo Moritz
- Deutsches Meeresmuseum, Katharinenberg 14-20, 18439 Stralsund, Germany; Institute of Biological Sciences, University of Rostock, Albert-Einstein-Straße 3, 18059 Rostock, Germany.
| | - Chenhong Li
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai 201306, China; Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
4
|
Zhao L, Nielsen R, Korneliussen TS. distAngsd: Fast and accurate inference of genetic distances for Next Generation Sequencing data. Mol Biol Evol 2022; 39:6596627. [PMID: 35647675 PMCID: PMC9234764 DOI: 10.1093/molbev/msac119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Commonly used methods for inferring phylogenies were designed before the emergence of high throughput sequencing and can generally not accommodate the challenges associated with noisy, diploid sequencing data. In many applications, diploid genomes are still treated as haploid through the use of ambiguity characters; while the uncertainty in genotype calling - arising as a consequence of the sequencing technology - is ignored. In order to address this problem we describe two new probabilistic approaches for estimating genetic distances: distAngsd-geno and distAngsd-nuc, both implemented in a software suite named distAngsd. These methods are specifically designed for next generation sequencing data, utilize the full information from the data, and take uncertainty in genotype calling into account. Through extensive simulations, we show that these new methods are markedly more accurate and have more stable statistical behaviors than other currently available methods for estimating genetic distances - even for very low depth data with high error rates.
Collapse
Affiliation(s)
- Lei Zhao
- Section for Geogenetics, Globe Institute, University of Copenhagen, Oster Voldgade 5-7, 1350 Kobenhavn K
| | - Rasmus Nielsen
- Section for Geogenetics, Globe Institute, University of Copenhagen, Oster Voldgade 5-7, 1350 Kobenhavn K.,Departments of Integrative Biology and Statistics 3040 Valley Life Sciences Building 3140 Berkeley, CA 94720-3140
| | - Thorfinn Sand Korneliussen
- Section for Geogenetics, Globe Institute, University of Copenhagen, Oster Voldgade 5-7, 1350 Kobenhavn K
| |
Collapse
|
5
|
Hu Y, Li H, Xia J, Li C. Population Structure, Genetic Diversity, and Conservation Strategies of a Commercially Important Sleeper Fish, Odontobutis potamophilus (Gobiiformes: Odontobutidae) Based on Gene-Capture Data. Front Genet 2022; 13:843848. [PMID: 35685434 PMCID: PMC9171042 DOI: 10.3389/fgene.2022.843848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
Odontobutis potamophilus is a popular food fish in China, distributed mainly in the middle and lower reaches of the Yangtze River, where it is a famous delicacy and a newly focused species for aquaculture. The wild populations of O. potamophilus are facing the problem of overfishing and habitat degradation. Therefore, it is very necessary to investigate and protect the wild populations of O. potamophilus. In this study, 72 fish were sampled from 18 different sites over its distribution range. Nuclear sequence data of 4,267 loci were collected using a gene-capture method. Phylogenetic reconstruction revealed that there were three major clades: Oujiang clade (OJ), Qiantang and lower Yangtze clade (QY), and middle Yangtze clade (MY). The discriminant analysis of principal components (DAPC) and a STRUCTURE analysis confirmed that there are three major groups within O. potamophilus. A fastsimcoal2 analysis corroborated the population history and suggested that there was discernible gene flow among these three groups, especially between QY and MY. Estimated pairwise F ST suggested that Linhai (LH) and Shexian (SX) populations were the most divergent pair (F ST = 0.7077). Taking the nucleotide diversity, population divergence, and admixture status altogether into consideration, we recommend that the LH, Gaoyou (GY) and Chaohu (CH) populations could be protected as the preferred resource for breeding projects. According to the results of genetic analyses, all populations of O. potamophilus should be protected due to low genetic diversity.
Collapse
Affiliation(s)
- Yun Hu
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai, China
- Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai, China
| | - Hongjie Li
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai, China
- Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai, China
| | - Jianhong Xia
- Shanghai Natural History Museum, Branch of the Shanghai Science and Technology Museum, Shanghai, China
| | - Chenhong Li
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai, China
- Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
6
|
Ai Q, Sang L, Tan H, Huang X, Bao B, Li C. Genetic and morphological differences between yellowtail kingfish (Seriola lalandi) from the Bohai Sea, China and the Southern Ocean, Australia. AQUACULTURE AND FISHERIES 2021. [DOI: 10.1016/j.aaf.2020.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
7
|
Galbreath KE, Toman HM, Li C, Hoberg EP. When parasites persist: tapeworms survive host extinction and reveal waves of dispersal across Beringia. Proc Biol Sci 2020; 287:20201825. [PMID: 33352070 DOI: 10.1098/rspb.2020.1825] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Investigations of intercontinental dispersal between Asia and North America reveal complex patterns of geographic expansion, retraction and isolation, yet historical reconstructions are largely limited by the depth of the record that is retained in patterns of extant diversity. Parasites offer a tool for recovering deep historical insights about the biosphere, improving the resolution of past community-level interactions. We explored biogeographic hypotheses regarding the history of dispersal across Beringia, the region intermittently linking Asia and North America, through large-scale multi-locus phylogenetic analyses of the genus Schizorchis, an assemblage of host-specific cestodes in pikas (Lagomorpha: Ochotonidae). Our genetic data support palaeontological evidence for two separate geographic expansions into North America by Ochotona in the late Tertiary, a history that genomic evidence from extant pikas does not record. Pikas descending from the first colonization of Miocene age persisted into the Pliocene, subsequently coming into contact with a second wave of Nearctic colonists from Eurasia before going extinct. Spatial and temporal overlap of historically independent pika populations provided a window for host colonization, allowing persistence of an early parasite lineage in the contemporary fauna following the extinction of its ancestral hosts. Empirical evidence for ancient 'ghost assemblages' of hosts and parasites demonstrates how complex mosaic faunas are assembled in the biosphere through episodes of faunal mixing encompassing parasite lineages across deep and shallow time.
Collapse
Affiliation(s)
- Kurt E Galbreath
- Department of Biology, Northern Michigan University, 1401 Presque Isle Ave, Marquette, MI 49855, USA
| | - Heather M Toman
- Department of Biology, Northern Michigan University, 1401 Presque Isle Ave, Marquette, MI 49855, USA
| | - Chenhong Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, People's Republic of China
| | - Eric P Hoberg
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, CERIA Building, MSC03 2020, Albuquerque, NM 87131, USA
| |
Collapse
|
8
|
Roa-Varón A, Dikow RB, Carnevale G, Tornabene L, Baldwin CC, Li C, Hilton EJ. Confronting Sources of Systematic Error to Resolve Historically Contentious Relationships: A Case Study Using Gadiform Fishes (Teleostei, Paracanthopterygii, Gadiformes). Syst Biol 2020; 70:739-755. [PMID: 33346841 PMCID: PMC8561434 DOI: 10.1093/sysbio/syaa095] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/27/2020] [Accepted: 12/02/2020] [Indexed: 11/14/2022] Open
Abstract
Reliable estimation of phylogeny is central to avoid inaccuracy in downstream macroevolutionary inferences. However, limitations exist in the implementation of concatenated and summary coalescent approaches, and Bayesian and full coalescent inference methods may not yet be feasible for computation of phylogeny using complicated models and large data sets. Here, we explored methodological (e.g., optimality criteria, character sampling, model selection) and biological (e.g., heterotachy, branch length heterogeneity) sources of systematic error that can result in biased or incorrect parameter estimates when reconstructing phylogeny by using the gadiform fishes as a model clade. Gadiformes include some of the most economically important fishes in the world (e.g., Cods, Hakes, and Rattails). Despite many attempts, a robust higher-level phylogenetic framework was lacking due to limited character and taxonomic sampling, particularly from several species-poor families that have been recalcitrant to phylogenetic placement. We compiled the first phylogenomic data set, including 14,208 loci (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$>$\end{document}2.8 M bp) from 58 species representing all recognized gadiform families, to infer a time-calibrated phylogeny for the group. Data were generated with a gene-capture approach targeting coding DNA sequences from single-copy protein-coding genes. Species-tree and concatenated maximum-likelihood (ML) analyses resolved all family-level relationships within Gadiformes. While there were a few differences between topologies produced by the DNA and the amino acid data sets, most of the historically unresolved relationships among gadiform lineages were consistently well resolved with high support in our analyses regardless of the methodological and biological approaches used. However, at deeper levels, we observed inconsistency in branch support estimates between bootstrap and gene and site coefficient factors (gCF, sCF). Despite numerous short internodes, all relationships received unequivocal bootstrap support while gCF and sCF had very little support, reflecting hidden conflict across loci. Most of the gene-tree and species-tree discordance in our study is a result of short divergence times, and consequent lack of informative characters at deep levels, rather than incomplete lineage sorting. We use this phylogeny to establish a new higher-level classification of Gadiformes as a way of clarifying the evolutionary diversification of the order. We recognize 17 families in five suborders: Bregmacerotoidei, Gadoidei, Ranicipitoidei, Merluccioidei, and Macrouroidei (including two subclades). A time-calibrated analysis using 15 fossil taxa suggests that Gadiformes evolved \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$\sim $\end{document}79.5 Ma in the late Cretaceous, but that most extant lineages diverged after the Cretaceous–Paleogene (K-Pg) mass extinction (66 Ma). Our results reiterate the importance of examining phylogenomic analyses for evidence of systematic error that can emerge as a result of unsuitable modeling of biological factors and/or methodological issues, even when data sets are large and yield high support for phylogenetic relationships. [Branch length heterogeneity; Codfishes; commercial fish species; Cretaceous-Paleogene (K-Pg); heterotachy; systematic error; target enrichment.]
Collapse
Affiliation(s)
- Adela Roa-Varón
- National Systematics Laboratory of the National Oceanic Atmospheric Administration Fisheries Service, 10th St. & Constitution Ave. NW, Washington, DC 20560, USA.,Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, 10th St. & Constitution Ave. NW, Washington, DC 20560, USA.,Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA 23062, USA
| | - Rebecca B Dikow
- Data Science Lab, Office of the Chief Information Officer, Smithsonian Institution, 10th St. & Constitution Ave. NW, Washington, DC 20560, USA
| | - Giorgio Carnevale
- Dipartimento di Scienze della Terra, Università degli Studi di Torino, Via Valperga Caluso, 35, 10125 Torino, Italy
| | - Luke Tornabene
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat Street, Seattle, WA 98105, USA.,Burke Museum of Natural History and Culture, 4300 15th Ave NE, Seattle, WA 98105, USA
| | - Carole C Baldwin
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, 10th St. & Constitution Ave. NW, Washington, DC 20560, USA
| | - Chenhong Li
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, 999 Hucheng Ring Rd, Pudong, Shanghai, China
| | - Eric J Hilton
- Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA 23062, USA
| |
Collapse
|
9
|
Andermann T, Torres Jiménez MF, Matos-Maraví P, Batista R, Blanco-Pastor JL, Gustafsson ALS, Kistler L, Liberal IM, Oxelman B, Bacon CD, Antonelli A. A Guide to Carrying Out a Phylogenomic Target Sequence Capture Project. Front Genet 2020; 10:1407. [PMID: 32153629 PMCID: PMC7047930 DOI: 10.3389/fgene.2019.01407] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/24/2019] [Indexed: 12/17/2022] Open
Abstract
High-throughput DNA sequencing techniques enable time- and cost-effective sequencing of large portions of the genome. Instead of sequencing and annotating whole genomes, many phylogenetic studies focus sequencing effort on large sets of pre-selected loci, which further reduces costs and bioinformatic challenges while increasing coverage. One common approach that enriches loci before sequencing is often referred to as target sequence capture. This technique has been shown to be applicable to phylogenetic studies of greatly varying evolutionary depth. Moreover, it has proven to produce powerful, large multi-locus DNA sequence datasets suitable for phylogenetic analyses. However, target capture requires careful considerations, which may greatly affect the success of experiments. Here we provide a simple flowchart for designing phylogenomic target capture experiments. We discuss necessary decisions from the identification of target loci to the final bioinformatic processing of sequence data. We outline challenges and solutions related to the taxonomic scope, sample quality, and available genomic resources of target capture projects. We hope this review will serve as a useful roadmap for designing and carrying out successful phylogenetic target capture studies.
Collapse
Affiliation(s)
- Tobias Andermann
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | - Maria Fernanda Torres Jiménez
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | - Pável Matos-Maraví
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - Romina Batista
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
- Programa de Pós-Graduação em Genética, Conservação e Biologia Evolutiva, PPG GCBEv–Instituto Nacional de Pesquisas da Amazônia—INPA Campus II, Manaus, Brazil
- Coordenação de Zoologia, Museu Paraense Emílio Goeldi, Belém, Brazil
| | - José L. Blanco-Pastor
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- INRAE, Centre Nouvelle-Aquitaine-Poitiers, Lusignan, France
| | | | - Logan Kistler
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States
| | - Isabel M. Liberal
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Bengt Oxelman
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | - Christine D. Bacon
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | - Alexandre Antonelli
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
- Royal Botanic Gardens, Kew, Richmond-Surrey, United Kingdom
| |
Collapse
|
10
|
Cheng F, Wang Q, Maisano Delser P, Li C. Multiple freshwater invasions of the tapertail anchovy (Clupeiformes: Engraulidae) of the Yangtze River. Ecol Evol 2019; 9:12202-12215. [PMID: 31832154 PMCID: PMC6854117 DOI: 10.1002/ece3.5708] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/05/2019] [Accepted: 09/11/2019] [Indexed: 12/30/2022] Open
Abstract
Freshwater fish evolved from anadromous ancestors can be found in almost all continents. The roles of paleogeographic events and nature selection in speciation process often are under focus of research. We studied genetic diversity of anadromous and resident tapertail anchovies (Coilia nasus species complex) in the Yangtze River Basin using 4,434 nuclear loci, and tested the history of freshwater invasion of C. nasus. We found that both C. brachygnathus and C. nasus were valid species, but the resident C. nasus taihuensis and the anadromous C. nasus were not different genetically based on Bayes factor species delimitation (BFD*). Maximum likelihood tree, Network, PCA and STRUCTURE analyses all corroborated the results of BFD*. Two independent freshwater invasion events of C. nasus were supported, with the first event occurring around 4.07 Ma and the second happened around 3.2 Ka. The time of the two freshwater invasions is consistent with different paleogeographic events. Estimation showed that gene flow was higher within ecotypes than between different ecotypes. F-DIST analyses identified 120 disruptive outliers by comparing C. brachygnathus to anadromous C. nasus, and 21 disruptive outliers by comparing resident C. nasus to anadromous C. nasus. Nine outliers were found to be common between the two comparisons, indicating that independent freshwater invasion of C. nasus might involve similar molecular pathways. The results of this study suggest that adaptation to landlocked freshwater environment of migratory fish can evolve multiple times independently, and morphology of landlocked ecotypes may cause confusion in their taxonomy.
Collapse
Affiliation(s)
- Fangyuan Cheng
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and EvolutionShanghaiChina
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and BreedingShanghaiChina
- Key Laboratory of Exploration and Utilization of Aquatic Genetic ResourcesMinistry of EducationShanghai Ocean UniversityShanghaiChina
| | - Qian Wang
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and EvolutionShanghaiChina
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and BreedingShanghaiChina
- Key Laboratory of Exploration and Utilization of Aquatic Genetic ResourcesMinistry of EducationShanghai Ocean UniversityShanghaiChina
| | - Pierpaolo Maisano Delser
- Department of ZoologyUniversity of CambridgeCambridgeUK
- Smurfit Institute of GeneticsTrinity CollegeUniversity of DublinDublinIreland
| | - Chenhong Li
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and EvolutionShanghaiChina
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and BreedingShanghaiChina
- Key Laboratory of Exploration and Utilization of Aquatic Genetic ResourcesMinistry of EducationShanghai Ocean UniversityShanghaiChina
| |
Collapse
|
11
|
Yuan H, Atta C, Tornabene L, Li C. Assexon: Assembling Exon Using Gene Capture Data. Evol Bioinform Online 2019; 15:1176934319874792. [PMID: 31523128 PMCID: PMC6732846 DOI: 10.1177/1176934319874792] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 08/19/2019] [Indexed: 12/30/2022] Open
Abstract
Exon capture across species has been one of the most broadly applied approaches
to acquire multi-locus data in phylogenomic studies of non-model organisms.
Methods for assembling loci from short-read sequences (eg, Illumina platforms)
that rely on mapping reads to a reference genome may not be suitable for studies
comprising species across a wide phylogenetic spectrum; thus, de novo assembling
methods are more generally applied. Current approaches for assembling targeted
exons from short reads are not particularly optimized as they cannot (1)
assemble loci with low read depth, (2) handle large files efficiently, and (3)
reliably address issues with paralogs. Thus, we present Assexon: a streamlined
pipeline that de novo assembles targeted exons and their flanking sequences from
raw reads. We tested our method using reads from Lepisosteus
osseus (4.37 Gb) and Boleophthalmus pectinirostris
(2.43 Gb), which are captured using baits that were designed based on genome
sequence of Lepisosteus oculatus and Oreochromis
niloticus, respectively. We compared performance of Assexon to
PHYLUCE and HybPiper, which are commonly used pipelines to assemble
ultra-conserved element (UCE) and Hyb-seq data. A custom exon capture analysis
pipeline (CP) developed by Yuan et al was compared as well. Assexon accurately
assembled more than 3400 to 3800 (20%-28%) loci than PHYLUCE and more than 1900
to 2300 (8%-14%) loci than HybPiper across different levels of phylogenetic
divergence. Assexon ran at least twice as fast as PHYLUCE and HybPiper. Number
of loci assembled using CP was comparable with Assexon in both tests, while
Assexon ran at least 7 times faster than CP. In addition, some steps of CP
require the user’s interaction and are not fully automated, and this user time
was not counted in our calculation. Both Assexon and CP retrieved no paralogs in
the testing runs, but PHYLUCE and Hybpiper did. In conclusion, Assexon is a tool
for accurate and efficient assembling of large read sets from exon capture
experiments. Furthermore, Assexon includes scripts to filter poorly aligned
coding regions and flanking regions, calculate summary statistics of loci, and
select loci with reliable phylogenetic signal. Assexon is available at https://github.com/yhadevol/Assexon.
Collapse
Affiliation(s)
- Hao Yuan
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution (Shanghai Ocean University), Shanghai, China.,Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean Universitiy), Ministry of Education, Shanghai, China
| | - Calder Atta
- School of Aquatic and Fishery Sciences and the Burke Museum of Natural History and Culture, University of Washington, Seattle, WA, USA
| | - Luke Tornabene
- School of Aquatic and Fishery Sciences and the Burke Museum of Natural History and Culture, University of Washington, Seattle, WA, USA
| | - Chenhong Li
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution (Shanghai Ocean University), Shanghai, China.,Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean Universitiy), Ministry of Education, Shanghai, China
| |
Collapse
|
12
|
Yin G, Pan Y, Sarker A, Baki MA, Kim JK, Wu H, Li C. Molecular systematics of Pampus (Perciformes: Stromateidae) based on thousands of nuclear loci using target-gene enrichment. Mol Phylogenet Evol 2019; 140:106595. [PMID: 31421244 DOI: 10.1016/j.ympev.2019.106595] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 08/13/2019] [Accepted: 08/13/2019] [Indexed: 12/15/2022]
Abstract
Pomfret fishes of the genus Pampus are commercially important in the Indo-Pacific region, yet the phylogenetic relationships and taxonomy of Pampus remain contentious. Here, we sampled 151 specimens, representing all known species of the genus, as well as two outgroup species (two families). We collected sequences from 17,292 single-copy nuclear coding loci using target-gene enrichment and Illumina sequencing for a subset samples of P. echinogaster, P. argenteus, P. cinereus, P. liuorum, P. chinensis, P. minor, and P. punctatissimus, which were carefully examined according to their species descriptions. Concatenated gene tree and species tree analyses resulted in identical and highly supported phylogenies, in which P. argenteus was sister to P. minor in one clade and P. cinereus sister to P. chinensis and P. punctatissimus in the other clade. Phylogenetic reconstruction using sequences of cytochrome c oxidase subunit I (COI) collected by us and those retrieved from NCBI suggests extensive misidentification of Pampus species in the NCBI database. We also measured morphological characters of each species as well as observed their osteological structure using micro-CT. Both molecular and morphological results suggest that P. echinogaster is a synonym of P. argenteus, and P. liuorum is a synonym of P. cinereus. Pampus cinereus from China, Bangladesh and an uncertain origin were grouped into three clades according to their sampling localities, but we could not find decisive morphological characters to describe the "cryptic species" of P. cinereus. Finally, based on the results of the molecular analyses and morphological reexamination, we created an identification key for the genus of Pampus.
Collapse
Affiliation(s)
- Guoxing Yin
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution (Shanghai Ocean University), Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, (Shanghai Ocean University), Ministry of Education, Shanghai 201306, China
| | - Yiling Pan
- Shanghai Natural History Museum, Branch of the Shanghai Science & Technology Museum, 510 West Beijing Rd, Jing'an District, Shanghai 200041, China
| | - Anirban Sarker
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution (Shanghai Ocean University), Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, (Shanghai Ocean University), Ministry of Education, Shanghai 201306, China; Department of Zoology, Jagannath University, Dhaka 1100, Bangladesh
| | - Mohammad A Baki
- Department of Zoology, Jagannath University, Dhaka 1100, Bangladesh
| | - Jin-Koo Kim
- Department of Marine Biology, Pukyong National University, Busan 608-737, South Korea
| | - Hanlin Wu
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution (Shanghai Ocean University), Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, (Shanghai Ocean University), Ministry of Education, Shanghai 201306, China
| | - Chenhong Li
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution (Shanghai Ocean University), Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, (Shanghai Ocean University), Ministry of Education, Shanghai 201306, China.
| |
Collapse
|
13
|
Jiang J, Yuan H, Zheng X, Wang Q, Kuang T, Li J, Liu J, Song S, Wang W, Cheng F, Li H, Huang J, Li C. Gene markers for exon capture and phylogenomics in ray-finned fishes. Ecol Evol 2019; 9:3973-3983. [PMID: 31015981 PMCID: PMC6468074 DOI: 10.1002/ece3.5026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 12/30/2022] Open
Abstract
Gene capture coupled with the next-generation sequencing has become one of the preferred methods of subsampling genomes for phylogenomic studies. Many exon markers have been developed in plants, sharks, frogs, reptiles, fishes, and others, but no universal exon markers have been tested in ray-finned fishes. Here, we identified a suite of "single-copy" protein-coding sequence (CDS) markers through comparing eight fish genomes, and tested them empirically in 83 species (33 families and nine orders or higher clades: Acipenseriformes, Lepisosteiformes, Elopomorpha, Osteoglossomorpha, Clupeiformes, Cypriniformes, Gobiaria, Carangaria, and Eupercaria; sensu Betancur et al. 2013). Sorting the markers according to their completeness and phylogenetic decisiveness in taxa tested resulted in a selection of 4,434 markers, which were proven to be useful in reconstructing phylogenies of the ray-finned fishes at different taxonomic levels. We also proposed a strategy of refining baits (probes) design a posteriori based on empirical data. The markers that we have developed may greatly enrich the batteries of exon markers for phylogenomic study in ray-finned fishes.
Collapse
Affiliation(s)
- Jiamei Jiang
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, ShanghaiNational Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University)ShanghaiChina
| | - Hao Yuan
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, ShanghaiNational Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University)ShanghaiChina
| | - Xin Zheng
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, ShanghaiNational Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University)ShanghaiChina
| | - Qian Wang
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, ShanghaiNational Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University)ShanghaiChina
| | - Ting Kuang
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, ShanghaiNational Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University)ShanghaiChina
| | - Jingyan Li
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, ShanghaiNational Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University)ShanghaiChina
| | - Junning Liu
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, ShanghaiNational Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University)ShanghaiChina
| | - Shuli Song
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, ShanghaiNational Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University)ShanghaiChina
| | - Weicai Wang
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, ShanghaiNational Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University)ShanghaiChina
| | - Fangyuan Cheng
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, ShanghaiNational Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University)ShanghaiChina
| | - Hongjie Li
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, ShanghaiNational Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University)ShanghaiChina
| | - Junman Huang
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, ShanghaiNational Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University)ShanghaiChina
| | - Chenhong Li
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, ShanghaiNational Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University)ShanghaiChina
| |
Collapse
|
14
|
Straube N, Li C, Mertzen M, Yuan H, Moritz T. A phylogenomic approach to reconstruct interrelationships of main clupeocephalan lineages with a critical discussion of morphological apomorphies. BMC Evol Biol 2018; 18:158. [PMID: 30352561 PMCID: PMC6199709 DOI: 10.1186/s12862-018-1267-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 09/26/2018] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Previous molecular studies on the phylogeny and classification of clupeocephalan fishes revealed numerous new taxonomic entities. For re-analysing these taxa, we perform target gene capturing and subsequent next generation sequencing of putative ortholog exons of major clupeocephalan lineages. Sequence information for the RNA bait design was derived from publicly available genomes of bony fishes. Newly acquired sequence data comprising > 800 exon sequences was subsequently used for phylogenetic reconstructions. RESULTS Our results support monophyletic Otomorpha comprising Alepocephaliformes. Within Ostariophysi, Gonorynchiformes are sister to a clade comprising Cypriniformes, Characiformes, Siluriformes and Gymnotiformes, where the interrelationships of Characiformes, Siluriformes and Gymnotiformes remain enigmatic. Euteleosts comprise four major clades: Lepidogalaxiiformes, Protacanthopterygii, Stomiatii, and Galaxiiformes plus Neoteleostei. The monotypic Lepidogalaxiiformes form the sister-group to all remaining euteleosts. Protacanthopterygii, comprising Argentini-, Esoci- and Salmoniformes, is sister to Stomiatii (Osmeriformes and Stomiatiformes) and Galaxiiformes plus Neoteleostei. CONCLUSIONS Several proposed monophyla defined by morphological apomorphies within the Clupeocephalan phylogeny are confirmed by the phylogenetic estimates presented herein. However, other morphologically described groups cannot be reconciled with molecular phylogenies. Thus, numerous morphological apomoprhies of supposed monophyla are called into question. The interpretation of suggested morphological synapomorphies of otomorph fishes is strongly affected by the inclusion of deep-sea inhabiting, and to that effect morphologically adapted Alepocephaliformes. Our revision of these potential synapomorphies, in the context that Alepocephaliformes are otomorph fishes, reveals that only a single character of the total nine characters proposed as synapomorphic for the group is clearly valid for all otomorphs. Three further characters remain possible apomorphies since their status remains unclear in the deep-sea adapted Alepocephaliformes showing developmental lag and lacking a swim bladder. Further, our analysis places Galaxiiformes as sister group to neoteleosts, which contradicts some previous molecular phylogenetic studies. This needs further investigation from a morphological perspective, as suggested synapomophies for several euteleostean lineages are challenged or still lacking. For the verification of results presented herein, a denser phylogenomic-level taxon sampling should be applied.
Collapse
Affiliation(s)
- Nicolas Straube
- Institut für Zoologie & Evolutionsbiologie, Friedrich-Schiller-Universität Jena, Erbertstraße 1, 07743 Jena, Germany
- Zoologische Staatssammlung München, Staatliche Naturwissenschaftliche Sammlungen Bayerns, Münchhausenstraße 21, 81247 Munich, Germany
| | - Chenhong Li
- Key Laboratory of Exploration and Utilization of Aquatic, Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, 201306 China
| | - Matthias Mertzen
- Institut für Zoologie & Evolutionsbiologie, Friedrich-Schiller-Universität Jena, Erbertstraße 1, 07743 Jena, Germany
- Deutsches Meeresmuseum, Katharinenberg 14-20, 18439 Stralsund, Germany
| | - Hao Yuan
- Key Laboratory of Exploration and Utilization of Aquatic, Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, 201306 China
| | - Timo Moritz
- Institut für Zoologie & Evolutionsbiologie, Friedrich-Schiller-Universität Jena, Erbertstraße 1, 07743 Jena, Germany
- Deutsches Meeresmuseum, Katharinenberg 14-20, 18439 Stralsund, Germany
| |
Collapse
|
15
|
Greiman SE, Cook JA, Tkach VV, Hoberg EP, Menning DM, Hope AG, Sonsthagen SA, Talbot SL. Museum metabarcoding: A novel method revealing gut helminth communities of small mammals across space and time. Int J Parasitol 2018; 48:1061-1070. [PMID: 30315762 DOI: 10.1016/j.ijpara.2018.08.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/02/2018] [Accepted: 08/09/2018] [Indexed: 10/28/2022]
Abstract
Natural history collections spanning multiple decades provide fundamental historical baselines to measure and understand changing biodiversity. New technologies such as next generation DNA sequencing have considerably increased the potential of museum specimens to address significant questions regarding the impact of environmental changes on host and parasite/pathogen dynamics. We developed a new technique to identify intestinal helminth parasites and applied it to shrews (Eulipotyphla: Soricidae) because they are ubiquitous, occupy diverse habitats, and host a diverse and abundant parasite fauna. Notably, we included museum specimens preserved in various ways to explore the efficacy of using metabarcoding analyses that may enable identification of helminth symbiont communities from historical archives. We successfully sequenced the parasite communities (using 12S mtDNA, 16S mtDNA, 28S rDNA) of 23 whole gastrointestinal tracts. All gastrointestinal tracts were obtained from the Museum of Southwestern Biology, USA, and from recent field collections, varying both in time since fixation (ranging from 4 months to 16 years) and preservation method (70% or 95% ethanol stored at room temperature, or flash frozen in liquid nitrogen and stored at -80 °C). Our proof of concept demonstrates the feasibility of applying next generation DNA sequencing techniques to authoritatively identify the parasite/pathogen communities within whole gastrointestinal tracts from museum specimens of varying age and fixation, and the value of future preservation of host-associated whole gastrointestinal tracts in public research archives. This powerful approach facilitates future comparative examinations of the distributions and interactions among multiple associated groups of organisms through time and space.
Collapse
Affiliation(s)
- Stephen E Greiman
- Department of Biology, Georgia Southern University, 4324 Old Register Rd., Statesboro, GA 30460, USA; Department of Biology and Museum of Southwestern Biology, University of New Mexico, CERIA, 302 Yale Blvd NE, Albuquerque, NM 87106, USA.
| | - Joseph A Cook
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, CERIA, 302 Yale Blvd NE, Albuquerque, NM 87106, USA
| | - Vasyl V Tkach
- Department of Biology, University of North Dakota, 10 Cornell St., Grand Forks 58202, ND, USA
| | - Eric P Hoberg
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, CERIA, 302 Yale Blvd NE, Albuquerque, NM 87106, USA
| | - Damian M Menning
- US Geological Survey, Alaska Science Center, 4210 University Dr., Anchorage, AK 99508, USA
| | - Andrew G Hope
- Division of Biology, Kansas State University, 116 Ackert Hall, Manhattan, KS 66506, USA
| | - Sarah A Sonsthagen
- US Geological Survey, Alaska Science Center, 4210 University Dr., Anchorage, AK 99508, USA
| | - Sandra L Talbot
- US Geological Survey, Alaska Science Center, 4210 University Dr., Anchorage, AK 99508, USA
| |
Collapse
|
16
|
Förster DW, Bull JK, Lenz D, Autenrieth M, Paijmans JLA, Kraus RHS, Nowak C, Bayerl H, Kuehn R, Saveljev AP, Sindičić M, Hofreiter M, Schmidt K, Fickel J. Targeted resequencing of coding DNA sequences for SNP discovery in nonmodel species. Mol Ecol Resour 2018; 18:1356-1373. [PMID: 29978939 DOI: 10.1111/1755-0998.12924] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/28/2018] [Accepted: 06/05/2018] [Indexed: 11/29/2022]
Abstract
Targeted capture coupled with high-throughput sequencing can be used to gain information about nuclear sequence variation at hundreds to thousands of loci. Divergent reference capture makes use of molecular data of one species to enrich target loci in other (related) species. This is particularly valuable for nonmodel organisms, for which often no a priori knowledge exists regarding these loci. Here, we have used targeted capture to obtain data for 809 nuclear coding DNA sequences (CDS) in a nonmodel organism, the Eurasian lynx Lynx lynx, using baits designed with the help of the published genome of a related model organism (the domestic cat Felis catus). Using this approach, we were able to survey intraspecific variation at hundreds of nuclear loci in L. lynx across the species' European range. A large set of biallelic candidate SNPs was then evaluated using a high-throughput SNP genotyping platform (Fluidigm), which we then reduced to a final 96 SNP-panel based on assay performance and reliability; validation was carried out with 100 additional Eurasian lynx samples not included in the SNP discovery phase. The 96 SNP-panel developed from CDS performed very successfully in the identification of individuals and in population genetic structure inference (including the assignment of individuals to their source population). In keeping with recent studies, our results show that genic SNPs can be valuable for genetic monitoring of wildlife species.
Collapse
Affiliation(s)
- Daniel W Förster
- Department of Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - James K Bull
- Department of Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Dorina Lenz
- Department of Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Marijke Autenrieth
- Department of Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany.,Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | | | - Robert H S Kraus
- Department of Biology, University of Konstanz, Konstanz, Germany.,Department of Migration and Immuno-Ecology, Max Planck Institute for Ornithology, Radolfzell, Germany
| | - Carsten Nowak
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany
| | - Helmut Bayerl
- Unit of Molecular Zoology, Chair of Zoology, Department of Animal Science, Technical University of Munich, Freising, Germany
| | - Ralph Kuehn
- Unit of Molecular Zoology, Chair of Zoology, Department of Animal Science, Technical University of Munich, Freising, Germany.,Department of Fish, Wildlife and Conservation Ecology, New Mexico State University, Las Cruces, New Mexico
| | - Alexander P Saveljev
- Department of Animal Ecology, Russian Research Institute of Game Management and Fur Farming, Kirov, Russia
| | - Magda Sindičić
- Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Michael Hofreiter
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Krzysztof Schmidt
- Mammal Research Institute, Polish Academy of Sciences, Białowieza, Poland
| | - Jörns Fickel
- Department of Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany.,Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
17
|
Li H, He Y, Jiang J, Liu Z, Li C. Molecular systematics and phylogenetic analysis of the Asian endemic freshwater sleepers (Gobiiformes: Odontobutidae). Mol Phylogenet Evol 2018; 121:1-11. [DOI: 10.1016/j.ympev.2017.12.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 12/18/2017] [Accepted: 12/24/2017] [Indexed: 01/12/2023]
|
18
|
Eriksson JS, de Sousa F, Bertrand YJK, Antonelli A, Oxelman B, Pfeil BE. Allele phasing is critical to revealing a shared allopolyploid origin of Medicago arborea and M. strasseri (Fabaceae). BMC Evol Biol 2018; 18:9. [PMID: 29374461 PMCID: PMC5787288 DOI: 10.1186/s12862-018-1127-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 01/22/2018] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Whole genome duplication plays a central role in plant evolution. There are two main classes of polyploid formation: autopolyploids which arise within one species by doubling of similar homologous genomes; in contrast, allopolyploidy (hybrid polyploidy) arise via hybridization and subsequent doubling of nonhomologous (homoeologous) genomes. The distinction between polyploid origins can be made using gene phylogenies, if alleles from each genome can be correctly retrieved. We examined whether two closely related tetraploid Mediterranean shrubs (Medicago arborea and M. strasseri) have an allopolyploid origin - a question that has remained unsolved despite substantial previous research. We sequenced and analyzed ten low-copy nuclear genes from these and related species, phasing all alleles. To test the efficacy of allele phasing on the ability to recover the evolutionary origin of polyploids, we compared these results to analyses using unphased sequences. RESULTS In eight of the gene trees the alleles inferred from the tetraploids formed two clades, in a non-sister relationship. Each of these clades was more closely related to alleles sampled from other species of Medicago, a pattern typical of allopolyploids. However, we also observed that alleles from one of the remaining genes formed two clades that were sister to one another, as is expected for autopolyploids. Trees inferred from unphased sequences were very different, with the tetraploids often placed in poorly supported and different positions compared to results obtained using phased alleles. CONCLUSIONS The complex phylogenetic history of M. arborea and M. strasseri is explained predominantly by shared allotetraploidy. We also observed that an increase in woodiness is correlated with polyploidy in this group of species and present a new possibility that woodiness could be a transgressive phenotype. Correctly phased homoeologues are likely to be critical for inferring the hybrid origin of allopolyploid species, when most genes retain more than one homoeologue. Ignoring homoeologous variation by merging the homoeologues can obscure the signal of hybrid polyploid origins and produce inaccurate results.
Collapse
Affiliation(s)
- Jonna S Eriksson
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 40530, Gothenburg, Sweden. .,Gothenburg Global Biodiversity Centre, Box 461, SE-405 30, Göteborg, Sweden.
| | - Filipe de Sousa
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 40530, Gothenburg, Sweden
| | - Yann J K Bertrand
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 40530, Gothenburg, Sweden
| | - Alexandre Antonelli
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 40530, Gothenburg, Sweden.,Gothenburg Global Biodiversity Centre, Box 461, SE-405 30, Göteborg, Sweden.,Gothenburg Botanical Garden, SE-41319, Göteborg, Sweden
| | - Bengt Oxelman
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 40530, Gothenburg, Sweden.,Gothenburg Global Biodiversity Centre, Box 461, SE-405 30, Göteborg, Sweden
| | - Bernard E Pfeil
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 40530, Gothenburg, Sweden.,Gothenburg Global Biodiversity Centre, Box 461, SE-405 30, Göteborg, Sweden
| |
Collapse
|
19
|
Liu J, Jiang J, Song S, Tornabene L, Chabarria R, Naylor GJP, Li C. Multilocus DNA barcoding - Species Identification with Multilocus Data. Sci Rep 2017; 7:16601. [PMID: 29192249 PMCID: PMC5709489 DOI: 10.1038/s41598-017-16920-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 11/20/2017] [Indexed: 02/07/2023] Open
Abstract
Species identification using DNA sequences, known as DNA barcoding has been widely used in many applied fields. Current barcoding methods are usually based on a single mitochondrial locus, such as cytochrome c oxidase subunit I (COI). This type of barcoding method does not always work when applied to species separated by short divergence times or that contain introgressed genes from closely related species. Herein we introduce a more effective multi-locus barcoding framework that is based on gene capture and "next-generation" sequencing. We selected 500 independent nuclear markers for ray-finned fishes and designed a three-step pipeline for multilocus DNA barcoding. We applied our method on two exemplar datasets each containing a pair of sister fish species: Siniperca chuatsi vs. Sini. kneri and Sicydium altum vs. Sicy. adelum, where the COI barcoding approach failed. Both of our empirical and simulated results demonstrated that under limited gene flow and enough separation time, we could correctly identify species using multilocus barcoding method. We anticipate that, as the cost of DNA sequencing continues to fall that our multilocus barcoding approach will eclipse existing single-locus DNA barcoding methods as a means to better understand the diversity of the living world.
Collapse
Affiliation(s)
- Junning Liu
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai, 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, 201306, China
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai, 201306, China
| | - Jiamei Jiang
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai, 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, 201306, China
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai, 201306, China
| | - Shuli Song
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai, 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, 201306, China
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai, 201306, China
| | - Luke Tornabene
- School of Aquatic and Fisheries Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Ryan Chabarria
- College of Science & Engineering, Texas A&M University - Corpus Christi, Corpus Christi, TX, 78412-5806, USA
| | | | - Chenhong Li
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai, 201306, China.
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, 201306, China.
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai, 201306, China.
| |
Collapse
|
20
|
Species delimitation and phylogenetic reconstruction of the sinipercids (Perciformes: Sinipercidae) based on target enrichment of thousands of nuclear coding sequences. Mol Phylogenet Evol 2017; 111:44-55. [PMID: 28323053 DOI: 10.1016/j.ympev.2017.03.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 03/02/2017] [Accepted: 03/16/2017] [Indexed: 12/30/2022]
Abstract
The sinipercids are freshwater fishes endemic to East Asia, mainly in China. Phylogenetic studies on the sinipercids have made great progress in the last decades, but interspecific relationships and evolutionary history of the sinipercids remain unresolved. Lack of distinctive morphological characters leads to problems in validating of some species, such as Siniperca loona. Moreover, genetic data are needed to delimitate species pairs with explicit hypothesis testing, such as in S. chuatsi vs. S. kneri and Coreoperca whiteheadi vs. C. liui. Here we reconstructed phylogeny of the sinipercids with an unprecedented scale of data, 16,943 loci of single-copy coding sequence data from nine sinipercid species, eight putative sister taxa and two outgroups. Targeted sequences were collected using gene enrichment and Illumina sequencing, yielding thousands of protein coding sequences and single nucleotide polymorphisms (SNPs) data. Maximum likelihood and coalescent species tree analyses resulted in identical and highly supported trees. We confirmed that the centrarchids are sister to the sinipercids. A monophyletic Sinipercidae with two genera, Siniperca and Coreoperca was also supported. Different from most previous studies, S. scherzeri was found as the most basal taxon to other species of Siniperca, which consists of two clades: a clade having S. roulei sister to S. chuatsi and S. kneri, and a clade consisting S. loona sister to S. obscura and S. undulata. We found that both S. loona and C. liui are valid species using Bayes factor delimitation (BFD∗) based on SNPs data. Species delimitation also provided decisive support for S. chuatsi and S. kneri being two distinct species. We calibrated a chronogram of the sinipercids based on 100 loci and three fossil calibration points using BEAST, and reconstructed ancestral ranges of the sinipercids using Lagrange Analysis (DEC model) and Statistical Dispersal-Vicariance Analysis (S-DIVA) implemented in RASP. Divergence time estimates and ancestral habitat reconstruction suggested a wide-ranging distribution of the common ancestor of the sinipercids in southern China at 53.1 million years ago (CI: 30.4-85.8Ma). The calibrated time tree is consistent with historical climate changes and geological events that might have shaped the current distribution of the sinipercids.
Collapse
|
21
|
Glenn TC, Faircloth BC. Capturing Darwin's dream. Mol Ecol Resour 2016; 16:1051-8. [PMID: 27454358 PMCID: PMC5318190 DOI: 10.1111/1755-0998.12574] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 07/19/2016] [Accepted: 07/20/2016] [Indexed: 01/28/2023]
Abstract
Evolutionary biologists from Darwin forward have dreamed of having data that would elucidate our understanding of evolutionary history and the diversity of life. Sequence capture is a relatively old DNA technology, but its use is growing rapidly due to advances in (i) massively parallel DNA sequencing approaches and instruments, (ii) massively parallel bait construction, (iii) methods to identify target regions and (iv) sample preparation. We give a little historical context to these developments, summarize some of the important advances reported in this special issue and point to further advances that can be made to help fulfill Darwin's dream.
Collapse
Affiliation(s)
- Travis C. Glenn
- Department of Environmental Health Science, University of Georgia, Athens, GA 30602, USA
| | - Brant C. Faircloth
- Department of Biological Sciences and Museum of Natural Science, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|