1
|
Mawass W, Milot E. Assessing the impact of pedigree attributes on the validity of quantitative genetic parameter estimates. J Evol Biol 2025; 38:439-456. [PMID: 39903138 DOI: 10.1093/jeb/voaf010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/06/2024] [Accepted: 01/31/2025] [Indexed: 02/06/2025]
Abstract
Investigating the evolution of complex traits in nature requires accurate assessment of their genetic basis. Quantitative genetic (QG) modeling is frequently applied to estimate the additive genetic variance (VA) in traits, combining phenotypic and pedigree data from a sample of individuals. Whether reconstructed from social links or molecular markers, empirical pedigrees differ in completeness, genealogical error rates, and other attributes that can impact QG estimation. Here we investigate this impact using human genealogical data for 6 French-Canadian (FC) populations originating from the same genetic founding source but differing in their pedigrees' attributes. First, we simulated phenotypic values along pedigrees and under different trait architectures and "true" parameter values (e.g., VA). Then we fitted mixed effects "animal" models to these simulated data, to assess how QG estimation was impacted by pedigree attributes. Our results show that pedigree size and depth were important determinants of the precision, but not accuracy, of genetic parameter estimates. In contrast, pedigree completeness and entropy, 2 attributes related to the density of genealogical links, were not clearly associated with the performance of parameter estimation. Noticeably, a slight increase in the genealogical error rate was sufficient to cause a detectable underestimation of VA. Including maternal genetic effects in the simulations led to a slight underestimation of VA with pedigrees of smaller size and depth. Despite originating from the same genetic source, the 6 pedigrees yielded wide variations in QG estimates under identical conditions. These findings highlight the importance of sensitivity analyses in pedigree-based genetic studies on natural populations.
Collapse
Affiliation(s)
- Walid Mawass
- Department of Human Genetics, University of Chicago, Chicago, IL, United States
| | - Emmanuel Milot
- Department of Chemistry, Biochemistry, Physics and Forensic Science, University of Québec at Trois-Rivières, Québec, Canada
| |
Collapse
|
2
|
Wilson CS, Taylor JB, Notter DR, Murphy TW, Stewart WC, Lewis RM. Benchmarking performance in Targhee sheep in development of a genetic reference flock. Transl Anim Sci 2024; 8:txae176. [PMID: 39749213 PMCID: PMC11694661 DOI: 10.1093/tas/txae176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 12/14/2024] [Indexed: 01/04/2025] Open
Abstract
The Targhee breed is important to range sheep production in the Western United States. The objective of this research was to integrate industry sires participating in national genetic evaluation through the National Sheep Improvement Program (NSIP) into the U.S. Sheep Experiment Station (USSES) flock, where the breed originated, to benchmark sire performance. Estimated breeding values (EBV) of industry sires (n = 16) and USSES sires (n = 12) from the 2023 NSIP Targhee genetic evaluation differed (P < 0.05) only for the NSIP Number Born EBV. This difference, and small (nonsignificant) differences favoring industry sires for maternal weaning weight, yearling fiber diameter, and yearling staple length EBV also resulted in greater (P < 0.05) Western Range Index scores for industry sires. The performance of sires' direct progeny born 2016 to 2018 was compared for 17 traits. After data cleaning, there were 664 progeny (417 from industry sires and 247 from USSES sires) with 146 to 664 records per trait. Least squares means differed (P < 0.05) for grease fleece weight, side fiber diameter, and britch fiber diameter in favor of the industry sires. Production traits were measured from the progeny and other retained descendants of both sire genetic groups from 2016 through 2022. After data cleaning, there was a range of 1,138 to 1,493 records per trait. A three-generation pedigree was constructed and the proportional assignment of each lamb to each genetic group (e.g., 0.5 industry, 0.5 USSES) was included in an augmented relationship matrix. A univariate animal model was fitted for each lamb trait and a repeated measures model for each of the three ewe traits was fitted to estimate variance components and predict breeding values. Genetic group solutions did not differ (P > 0.05) for any of these traits but provided a means by which to compare the two groups. Establishment of a Targhee genetic reference flock at USSES has been initiated, which can be used to address issues of importance to the industry.
Collapse
Affiliation(s)
- Carrie S Wilson
- USDA, ARS, Range Sheep Production Efficiency Research Unit, U.S. Sheep Experiment Station, Dubois, ID
| | - J Bret Taylor
- USDA, ARS, Range Sheep Production Efficiency Research Unit, U.S. Sheep Experiment Station, Dubois, ID
| | - David R Notter
- School of Animal Sciences, Virginia Tech, Blacksburg, VA
| | - Thomas W Murphy
- USDA, ARS, Livestock Bio-Systems Research Unit, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, NE
| | | | - Ronald M Lewis
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| |
Collapse
|
3
|
James C, Pemberton JM, Navarro P, Knott S. Investigating pedigree- and SNP-associated components of heritability in a wild population of Soay sheep. Heredity (Edinb) 2024; 132:202-210. [PMID: 38341521 PMCID: PMC10997785 DOI: 10.1038/s41437-024-00673-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Estimates of narrow sense heritability derived from genomic data that contain related individuals may be biased due to the within-family effects such as dominance, epistasis and common environmental factors. However, for many wild populations, removal of related individuals from the data would result in small sample sizes. In 2013, Zaitlen et al. proposed a method to estimate heritability in populations that include close relatives by simultaneously fitting an identity-by-state (IBS) genomic relatedness matrix (GRM) and an identity-by-descent (IBD) GRM. The IBD GRM is identical to the IBS GRM, except relatedness estimates below a specified threshold are set to 0. We applied this method to a sample of 8557 wild Soay sheep from St. Kilda, with genotypic information for 419,281 single nucleotide polymorphisms. We aimed to see how this method would partition heritability into population-level (IBS) and family-associated (IBD) variance for a range of genetic architectures, and so we focused on a mixture of polygenic and monogenic traits. We also implemented a variant of the model in which the IBD GRM was replaced by a GRM constructed from SNPs with low minor allele frequency to examine whether any additive genetic variance is captured by rare alleles. Whilst the inclusion of the IBD GRM did not significantly improve the fit of the model for the monogenic traits, it improved the fit for some of the polygenic traits, suggesting that dominance, epistasis and/or common environment not already captured by the non-genetic random effects fitted in our models may influence these traits.
Collapse
Affiliation(s)
- Caelinn James
- Institute of Ecology and Evolution, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK.
- Scotland's Rural College (SRUC), The Roslin Institute Building, Easter Bush, Midlothian, UK.
| | - Josephine M Pemberton
- Institute of Ecology and Evolution, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Pau Navarro
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Sara Knott
- Institute of Ecology and Evolution, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
4
|
Fraimout A, Guillaume F, Li Z, Sillanpää MJ, Rastas P, Merilä J. Dissecting the genetic architecture of quantitative traits using genome-wide identity-by-descent sharing. Mol Ecol 2024; 33:e17299. [PMID: 38380534 DOI: 10.1111/mec.17299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/08/2024] [Accepted: 01/22/2024] [Indexed: 02/22/2024]
Abstract
Additive and dominance genetic variances underlying the expression of quantitative traits are important quantities for predicting short-term responses to selection, but they are notoriously challenging to estimate in most non-model wild populations. Specifically, large-sized or panmictic populations may be characterized by low variance in genetic relatedness among individuals which, in turn, can prevent accurate estimation of quantitative genetic parameters. We used estimates of genome-wide identity-by-descent (IBD) sharing from autosomal SNP loci to estimate quantitative genetic parameters for ecologically important traits in nine-spined sticklebacks (Pungitius pungitius) from a large, outbred population. Using empirical and simulated datasets, with varying sample sizes and pedigree complexity, we assessed the performance of different crossing schemes in estimating additive genetic variance and heritability for all traits. We found that low variance in relatedness characteristic of wild outbred populations with high migration rate can impair the estimation of quantitative genetic parameters and bias heritability estimates downwards. On the other hand, the use of a half-sib/full-sib design allowed precise estimation of genetic variance components and revealed significant additive variance and heritability for all measured traits, with negligible dominance contributions. Genome-partitioning and QTL mapping analyses revealed that most traits had a polygenic basis and were controlled by genes at multiple chromosomes. Furthermore, different QTL contributed to variation in the same traits in different populations suggesting heterogeneous underpinnings of parallel evolution at the phenotypic level. Our results provide important guidelines for future studies aimed at estimating adaptive potential in the wild, particularly for those conducted in outbred large-sized populations.
Collapse
Affiliation(s)
- Antoine Fraimout
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, FI-00014 University of Helsinki, Helsinki, Finland
| | - Frédéric Guillaume
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, FI-00014 University of Helsinki, Helsinki, Finland
| | - Zitong Li
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, FI-00014 University of Helsinki, Helsinki, Finland
| | - Mikko J Sillanpää
- Research Unit of Mathematical Sciences, FI-90014 University of Oulu, Oulu, Finland
| | - Pasi Rastas
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, FI-00014 University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, FI-00014 University of Helsinki, Helsinki, Finland
| | - Juha Merilä
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, FI-00014 University of Helsinki, Helsinki, Finland
- Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
5
|
Abstract
Genomic data are becoming increasingly affordable and easy to collect, and new tools for their analysis are appearing rapidly. Conservation biologists are interested in using this information to assist in management and planning but are typically limited financially and by the lack of genomic resources available for non-model taxa. It is therefore important to be aware of the pitfalls as well as the benefits of applying genomic approaches. Here, we highlight recent methods aimed at standardizing population assessments of genetic variation, inbreeding, and forms of genetic load and methods that help identify past and ongoing patterns of genetic interchange between populations, including those subjected to recent disturbance. We emphasize challenges in applying some of these methods and the need for adequate bioinformatic support. We also consider the promises and challenges of applying genomic approaches to understand adaptive changes in natural populations to predict their future adaptive capacity.
Collapse
Affiliation(s)
- Thomas L Schmidt
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia;
| | - Joshua A Thia
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia;
| | - Ary A Hoffmann
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia;
| |
Collapse
|
6
|
Di Lecce I, Perrier C, Szulkin M, Sudyka J. Extra-pair paternity, breeding density, and synchrony in natural cavities versus nestboxes in two passerine birds. Ecol Evol 2023; 13:e10163. [PMID: 37304370 PMCID: PMC10249044 DOI: 10.1002/ece3.10163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/13/2023] Open
Abstract
Most of what is known about extra-pair paternity in hole-nesting birds derives from studies using artificial nesting sites, such as nestboxes. However, it has rarely been investigated whether inference drawn from breeding events taking place in nestboxes matches what would be observed under natural conditions, that is, in natural cavities. We here report on a variation in promiscuity in blue tits and great tits nesting in natural cavities and nestboxes in an urban forest in Warsaw, Poland. Specifically, we tested whether local breeding density, local breeding synchrony, and extra-pair paternity (inferred from SNP data generated with a high-throughput genotyping by sequencing method) differed between birds nesting in natural cavities and nestboxes. In both blue tits and great tits, the frequency of extra-pair paternity was similar between the two cavity types. In blue tits, we observed shorter nearest neighbor distance, higher neighbor density, and higher synchronous neighbor density (i.e., density of fertile females) in nestboxes relative to natural cavities. No such pattern was found in great tits. Moreover, we detected a positive relationship between the proportion of extra-pair offspring in the nest and neighbor density around the nest in blue tits. Our results revealed that the provisioning of nestboxes did not change rates of extra-pair paternity, suggesting that conclusions drawn from nestbox studies might adequately represent the natural variation in extra-pair matings in some species or sites. However, the observed differences in spatiotemporal components of breeding dynamics highlight the fact that these parameters should be carefully considered when comparing mating behavior across studies and/or sites.
Collapse
Affiliation(s)
- Irene Di Lecce
- Institute of Evolutionary BiologyBiological and Chemical Research CentreFaculty of BiologyUniversity of WarsawWarsawPoland
| | - Charles Perrier
- CBGP, INRAe, CIRAD, IRD, Montpellier SupAgroUniversity of MontpellierMontpellierFrance
| | - Marta Szulkin
- Institute of Evolutionary BiologyBiological and Chemical Research CentreFaculty of BiologyUniversity of WarsawWarsawPoland
| | - Joanna Sudyka
- Institute of Environmental SciencesJagiellonian UniversityKrakówPoland
- Groningen Institute for Evolutionary Life Sciences (GELIFES)GroningenNetherlands
| |
Collapse
|
7
|
Castellanos MC, Montero-Pau J, Ziarsolo P, Blanca JM, Cañizares J, Pausas JG. Quantitative genetic analysis of floral traits shows current limits but potential evolution in the wild. Proc Biol Sci 2023; 290:20230141. [PMID: 37122252 PMCID: PMC10130720 DOI: 10.1098/rspb.2023.0141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/22/2023] [Indexed: 05/02/2023] Open
Abstract
The vast variation in floral traits across angiosperms is often interpreted as the result of adaptation to pollinators. However, studies in wild populations often find no evidence of pollinator-mediated selection on flowers. Evolutionary theory predicts this could be the outcome of periods of stasis under stable conditions, followed by shorter periods of pollinator change that provide selection for innovative phenotypes. We asked if periods of stasis are caused by stabilizing selection, absence of other forms of selection or by low trait ability to respond even if selection is present. We studied a plant predominantly pollinated by one bee species across its range. We measured heritability and evolvability of traits, using genome-wide relatedness in a large wild population, and combined this with estimates of selection on the same individuals. We found evidence for both stabilizing selection and low trait heritability as potential explanations for stasis in flowers. The area of the standard petal is under stabilizing selection, but the variability is not heritable. A separate trait, floral weight, presents high heritability, but is not currently under selection. We show how a simple pollination environment coincides with the absence of current prerequisites for adaptive evolutionary change, while heritable variation remains to respond to future selection pressures.
Collapse
Affiliation(s)
- Maria Clara Castellanos
- School of Life Sciences, Universityof Sussex, Brighton BN1 9QG, UK
- CIDE-CSIC, Montcada, Valencia, Spain
| | - Javier Montero-Pau
- COMAV, Universitat Politècnica de València, Valencia, Spain
- Cavanilles Institute of Biodiversity and Evolutionary Biology, Universitat de València, Valencia, Spain
| | - Peio Ziarsolo
- COMAV, Universitat Politècnica de València, Valencia, Spain
| | | | | | | |
Collapse
|
8
|
Gauzere J, Pemberton JM, Slate J, Morris A, Morris S, Walling CA, Johnston SE. A polygenic basis for birth weight in a wild population of red deer (Cervus elaphus). G3 (BETHESDA, MD.) 2023; 13:jkad018. [PMID: 36652410 PMCID: PMC10085764 DOI: 10.1093/g3journal/jkad018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
The genetic architecture of traits under selection has important consequences for the response to selection and potentially for population viability. Early QTL mapping studies in wild populations have reported loci with large effect on trait variation. However, these results are contradicted by more recent genome-wide association analyses, which strongly support the idea that most quantitative traits have a polygenic basis. This study aims to re-evaluate the genetic architecture of a key morphological trait, birth weight, in a wild population of red deer (Cervus elaphus), using genomic approaches. A previous study using 93 microsatellite and allozyme markers and linkage mapping on a kindred of 364 deer detected a pronounced QTL on chromosome 21 explaining 29% of the variance in birth weight, suggesting that this trait is partly controlled by genes with large effects. Here, we used data for more than 2,300 calves genotyped at >39,000 SNP markers and two approaches to characterise the genetic architecture of birth weight. First, we performed a genome-wide association (GWA) analysis, using a genomic relatedness matrix to account for population structure. We found no SNPs significantly associated with birth weight. Second, we used genomic prediction to estimate the proportion of variance explained by each SNP and chromosome. This analysis confirmed that most genetic variance in birth weight was explained by loci with very small effect sizes. Third, we found that the proportion of variance explained by each chromosome was slightly positively correlated with its size. These three findings highlight a highly polygenic architecture for birth weight, which contradicts the previous QTL study. These results are probably explained by the differences in how associations are modelled between QTL mapping and GWA. Our study suggests that models of polygenic adaptation are the most appropriate to study the evolutionary trajectory of this trait.
Collapse
Affiliation(s)
- Julie Gauzere
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK
- AGAP, Université Montpellier, CIRAD, INRAE, Institut Agro, 34090 Montpellier, France
| | | | - Jon Slate
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Alison Morris
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Sean Morris
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Craig A Walling
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Susan E Johnston
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK
| |
Collapse
|
9
|
Johnston SE, Chen N, Josephs EB. Taking quantitative genomics into the wild. Proc Biol Sci 2022; 289:20221930. [PMID: 36541172 PMCID: PMC9768650 DOI: 10.1098/rspb.2022.1930] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022] Open
Abstract
We organized this special issue to highlight new work and review recent advances at the cutting edge of 'wild quantitative genomics'. In this editorial, we will present some history of wild quantitative genetic and genomic studies, before discussing the main themes in the papers published in this special issue and highlighting the future outlook of this dynamic field.
Collapse
Affiliation(s)
- Susan E. Johnston
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, Edinburgh EH9 3FL, UK
| | - Nancy Chen
- Department of Biology, University of Rochester, Rochester, 14627, NY, USA
| | - Emily B. Josephs
- Department of Plant Biology and Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, 48824, MI, USA
| |
Collapse
|
10
|
James C, Pemberton JM, Navarro P, Knott S. The impact of SNP density on quantitative genetic analyses of body size traits in a wild population of Soay sheep. Ecol Evol 2022; 12:e9639. [PMID: 36532132 PMCID: PMC9750819 DOI: 10.1002/ece3.9639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/01/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Understanding the genetic architecture underpinning quantitative traits in wild populations is pivotal to understanding the processes behind trait evolution. The 'animal model' is a popular method for estimating quantitative genetic parameters such as heritability and genetic correlation and involves fitting an estimate of relatedness between individuals in the study population. Genotypes at genome-wide markers can be used to estimate relatedness; however, relatedness estimates vary with marker density, potentially affecting results. Increasing density of markers is also expected to increase the power to detect quantitative trait loci (QTL). In order to understand how the density of genetic markers affects the results of quantitative genetic analyses, we estimated heritability and performed genome-wide association studies (GWAS) on five body size traits in an unmanaged population of Soay sheep using two different SNP densities: a dataset of 37,037 genotyped SNPs and an imputed dataset of 417,373 SNPs. Heritability estimates did not differ between the two SNP densities, but the high-density imputed SNP dataset revealed four new SNP-trait associations that were not found with the lower density dataset, as well as confirming all previously-found QTL. We also demonstrated that fitting fixed and random effects in the same step as performing GWAS is a more powerful approach than pre-correcting for covariates in a separate model.
Collapse
Affiliation(s)
- Caelinn James
- Institute of Ecology and EvolutionSchool of Biological SciencesThe University of EdinburghEdinburghScotland
| | - Josephine M. Pemberton
- Institute of Ecology and EvolutionSchool of Biological SciencesThe University of EdinburghEdinburghScotland
| | - Pau Navarro
- MRC Human Genetics UnitInstitute of Genetics and CancerThe University of EdinburghEdinburghScotland
| | - Sara Knott
- Institute of Ecology and EvolutionSchool of Biological SciencesThe University of EdinburghEdinburghScotland
| |
Collapse
|
11
|
Jackson N, Littleford-Colquhoun BL, Strickland K, Class B, Frere CH. Selection in the city: Rapid and fine-scale evolution of urban eastern water dragons. Evolution 2022; 76:2302-2314. [PMID: 35971751 DOI: 10.1111/evo.14596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 06/27/2022] [Accepted: 07/18/2022] [Indexed: 01/22/2023]
Abstract
Oceanic archipelagos have long been treated as a Petri dish for studies of evolutionary and ecological processes. Like archipelagos, cities exhibit similar patterns and processes, such as the rapid phenotypic divergence of a species between urban and nonurban environments. However, on a local scale, cities can be highly heterogenous, where geographically close populations can experience dramatically different environmental conditions. Nevertheless, we are yet to understand the evolutionary and ecological implications for populations spread across a heterogenous cityscape. To address this, we compared neutral genetic divergence to quantitative trait divergence within three native riparian and four city park populations of an iconic urban adapter, the eastern water dragon. We demonstrated that selection is likely acting to drive divergence of snout-vent length and jaw width across native riparian populations that are geographically isolated and across city park populations that are geographically close yet isolated by urbanization. City park populations as close as 0.9 km exhibited signs of selection-driven divergence to the same extent as native riparian populations isolated by up to 114.5 km. These findings suggest that local adaptation may be occurring over exceptionally small geographic and temporal scales within a single metropolis, demonstrating that city parks can act as archipelagos for the study of rapid evolution.
Collapse
Affiliation(s)
- Nicola Jackson
- Global Change Ecology Research Group, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia
| | - Bethan L Littleford-Colquhoun
- Global Change Ecology Research Group, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia.,Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, Rhode Island, 02912, US.,Institute at Brown for Environment and Society, Brown University, Providence, Rhode Island, 02912, US
| | - Kasha Strickland
- Global Change Ecology Research Group, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia.,Department of Aquaculture and Fish Biology, Hólar University, Sauðarkrókur, 550, Iceland
| | - Barbara Class
- Global Change Ecology Research Group, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia
| | - Celine H Frere
- Global Change Ecology Research Group, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia.,School of Biological Sciences, University of Queensland, St. Lucia, QLD, 4072, Australia
| |
Collapse
|
12
|
Bonnet T, Morrissey MB, de Villemereuil P, Alberts SC, Arcese P, Bailey LD, Boutin S, Brekke P, Brent LJN, Camenisch G, Charmantier A, Clutton-Brock TH, Cockburn A, Coltman DW, Courtiol A, Davidian E, Evans SR, Ewen JG, Festa-Bianchet M, de Franceschi C, Gustafsson L, Höner OP, Houslay TM, Keller LF, Manser M, McAdam AG, McLean E, Nietlisbach P, Osmond HL, Pemberton JM, Postma E, Reid JM, Rutschmann A, Santure AW, Sheldon BC, Slate J, Teplitsky C, Visser ME, Wachter B, Kruuk LEB. Genetic variance in fitness indicates rapid contemporary adaptive evolution in wild animals. Science 2022; 376:1012-1016. [PMID: 35617403 DOI: 10.1126/science.abk0853] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The rate of adaptive evolution, the contribution of selection to genetic changes that increase mean fitness, is determined by the additive genetic variance in individual relative fitness. To date, there are few robust estimates of this parameter for natural populations, and it is therefore unclear whether adaptive evolution can play a meaningful role in short-term population dynamics. We developed and applied quantitative genetic methods to long-term datasets from 19 wild bird and mammal populations and found that, while estimates vary between populations, additive genetic variance in relative fitness is often substantial and, on average, twice that of previous estimates. We show that these rates of contemporary adaptive evolution can affect population dynamics and hence that natural selection has the potential to partly mitigate effects of current environmental change.
Collapse
Affiliation(s)
- Timothée Bonnet
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | | | - Pierre de Villemereuil
- Institut de Systématique, Évolution, Biodiversité (ISYEB), École Pratique des Hautes Études, PSL, MNHN, CNRS, SU, UA, Paris, France.,School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Susan C Alberts
- Departments of Biology and Evolutionary Anthropology, Duke University, Durham, NC, USA
| | - Peter Arcese
- Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Liam D Bailey
- Departments of Evolutionary Ecology and Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Stan Boutin
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Patricia Brekke
- Institute of Zoology, Zoological Society of London, Regents Park, London, UK
| | - Lauren J N Brent
- Centre for Research in Animal Behaviour, University of Exeter, Penryn, UK
| | - Glauco Camenisch
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Anne Charmantier
- Centre d'Écologie Fonctionnelle et Évolutive, Université de Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Tim H Clutton-Brock
- Department of Zoology, University of Cambridge, Cambridge, UK.,Mammal Research Institute, University of Pretoria, Pretoria, South Africa
| | - Andrew Cockburn
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - David W Coltman
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Alexandre Courtiol
- Departments of Evolutionary Ecology and Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Eve Davidian
- Departments of Evolutionary Ecology and Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Simon R Evans
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, UK.,Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden.,Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| | - John G Ewen
- Institute of Zoology, Zoological Society of London, Regents Park, London, UK
| | | | - Christophe de Franceschi
- Centre d'Écologie Fonctionnelle et Évolutive, Université de Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Lars Gustafsson
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Oliver P Höner
- Departments of Evolutionary Ecology and Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Thomas M Houslay
- Department of Zoology, University of Cambridge, Cambridge, UK.,Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| | - Lukas F Keller
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.,Zoological Museum, University of Zurich,, Zurich, Switzerland
| | - Marta Manser
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.,Mammal Research Institute, University of Pretoria, Pretoria, South Africa
| | - Andrew G McAdam
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Emily McLean
- Biology Department, Oxford College, Emory University, Oxford, GA, USA
| | - Pirmin Nietlisbach
- School of Biological Sciences, Illinois State University, Normal, IL, USA
| | - Helen L Osmond
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | | | - Erik Postma
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| | - Jane M Reid
- Centre for Biodiversity Dynamics, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Alexis Rutschmann
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Anna W Santure
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Ben C Sheldon
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, UK
| | - Jon Slate
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Céline Teplitsky
- Centre d'Écologie Fonctionnelle et Évolutive, Université de Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Marcel E Visser
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| | - Bettina Wachter
- Departments of Evolutionary Ecology and Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Loeske E B Kruuk
- Research School of Biology, Australian National University, Canberra, ACT, Australia.,Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
13
|
Patrick SC, Réale D, Potts JR, Wilson AJ, Doutrelant C, Teplitsky C, Charmantier A. Differences in the temporal scale of reproductive investment across the slow-fast continuum in a passerine. Ecol Lett 2022; 25:1139-1151. [PMID: 35235709 PMCID: PMC9541748 DOI: 10.1111/ele.13982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 11/29/2022]
Abstract
Life-history strategies differ with respect to investment in current versus 'future' reproduction, but when is this future? Under the novel 'temporality in reproductive investment hypothesis', we postulate variation should exist in the time frame over which reproductive costs are paid. Slow-paced individuals should pay reproductive costs over short (e.g. inter-annual) time scales to prevent reproductive costs accumulating, whereas fast-paced individuals should allow costs to accumulate (i.e. senescence). Using Fourier transforms, we quantify adjustments in clutch size with age, across four populations of blue tits (Cyanistes caeruleus). Fast populations had more prevalent and stronger long-term changes in reproductive investment, whereas slower populations had more prevalent short-term adjustments. Inter-annual environmental variation partly accounted for short-, but not long-term changes in reproductive investment. Our study reveals individuals differ in when they pay the cost of reproduction and that failure to partition this variation across different temporal scales and environments could underestimate reproductive trade-offs.
Collapse
Affiliation(s)
- Samantha C Patrick
- School of Environmental Sciences, University of Liverpool, Liverpool, UK
| | - Denis Réale
- Département des Sciences Biologiques, Université du Québec A Montréal, Québec, Canada
| | - Jonathan R Potts
- School of Mathematics and Statistics, University of Sheffield, Sheffield, UK
| | - Alastair J Wilson
- Centre for Ecology and Conservation, University of Exeter (Penryn Campus), Cornwall, UK
| | | | | | | |
Collapse
|
14
|
Linking genetic, morphological, and behavioural divergence between inland island and mainland deer mice. Heredity (Edinb) 2022; 128:97-106. [PMID: 34952930 PMCID: PMC8814197 DOI: 10.1038/s41437-021-00492-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 02/03/2023] Open
Abstract
The island syndrome hypothesis (ISH) stipulates that, as a result of local selection pressures and restricted gene flow, individuals from island populations should differ from individuals within mainland populations. Specifically, island populations are predicted to contain individuals that are larger, less aggressive, more sociable, and that invest more in their offspring. To date, tests of the ISH have mainly compared oceanic islands to continental sites, and rarely smaller spatial scales such as inland watersheds. Here, using a novel set of genome-wide SNP markers in wild deer mice (Peromyscus maniculatus) we conducted a genomic assessment of predictions underlying the ISH in an inland riverine island system: analysing island-mainland population structure, and quantifying heritability of phenotypes thought to underlie the ISH. We found clear genomic differentiation between the island and mainland populations and moderate to high marker-based heritability estimates for overall variation in traits previously found to differ in line with the ISH between mainland and island locations. FST outlier analyses highlighted 12 loci associated with differentiation between mainland and island populations. Together these results suggest that the island populations examined are on independent evolutionary trajectories, the traits considered have a genetic basis (rather than phenotypic variation being solely due to phenotypic plasticity). Coupled with the previous results showing significant phenotypic differentiation between the island and mainland groups in this system, this study suggests that the ISH can hold even on a small spatial scale.
Collapse
|
15
|
Differential effects of steroid hormones on levels of broad-sense heritability in a wild bird: possible mechanism of environment × genetic variance interaction? Heredity (Edinb) 2022; 128:63-76. [PMID: 34921237 PMCID: PMC8733014 DOI: 10.1038/s41437-021-00490-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 11/27/2021] [Accepted: 11/30/2021] [Indexed: 01/03/2023] Open
Abstract
Genetic variation is one of the key concepts in evolutionary biology and an important prerequisite of evolutionary change. However, we know very little about processes that modulate its levels in wild populations. In particular, we still are to understand why genetic variances often depend on environmental conditions. One of possible environment-sensitive modulators of observed levels of genetic variance are maternal effects. In this study we attempt to experimentally test the hypothesis that maternally transmitted agents (e.g. hormones) may influence the expression of genetic variance in quantitative traits in the offspring. We manipulated the levels of steroid hormones (testosterone and corticosterone) in eggs laid by blue tits in a wild population. Our experimental setup allowed for full crossing of genetic and rearing effects with the experimental manipulation. We observed that birds treated with corticosterone exhibited a significant decrease in broad-sense genetic variance of tarsus length, and an increase in this component in body mass on the 2nd day post-hatching. Our study indicates, that maternally transmitted substances such as hormones may have measurable impact on the levels of genetic variance and hence, on the evolutionary potential of quantitative traits.
Collapse
|
16
|
Evaluation of novel genomic markers for pedigree construction in an isolated population of Weddell Seals (Leptonychotes weddellii) at White Island, Antarctica. CONSERV GENET RESOUR 2021. [DOI: 10.1007/s12686-021-01237-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Estimating the Additive Heritability of Historiometric Eminence in a Super-Pedigree Comprised of Four Prominent Families. Twin Res Hum Genet 2021; 24:191-199. [PMID: 34511158 DOI: 10.1017/thg.2021.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
By merging analytical approaches from the fields of historiometrics and behavior genetics, a social pedigree-based estimate of the heritability of eminence is generated. Eminent individuals are identified using the Pantheon dataset. A single super-pedigree, comprised of four prominent and interrelated families (including the Wedgwood-Darwin, Arnold-Huxley, Keynes-Baha'u'lláh, and Benn-Rutherford pedigrees) is assembled, containing 30 eminent individuals out of 301 in total. Each eminent individual in the super-pedigree is assigned a relative measure of historical eminence (scaled from 1 to 100) with noneminent individuals assigned a score of 0. Utilizing a Bayesian pedigree-based heritability estimation procedure employing an informed prior, an additive heritability of eminence of .507 (95% CI [.434, .578]) was found. The finding that eminence is additively heritable is consistent with expectations from behavior-genetic studies of factors that are thought to underlie extraordinary accomplishment, which indicate that they are substantially additively heritable. Owing to the limited types of intermarriage present in the data, it was not possible to estimate the impact of nonadditive genetic contributions to heritability. Gene-by-environment interactions could not be estimated in the present analysis either; therefore, the finding that eminence is simply a function of additive genetic and nonshared environmental variance should be interpreted cautiously.
Collapse
|
18
|
Paril JF, Balding DJ, Fournier-Level A. Optimizing sampling design and sequencing strategy for the genomic analysis of quantitative traits in natural populations. Mol Ecol Resour 2021; 22:137-152. [PMID: 34192415 DOI: 10.1111/1755-0998.13458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 05/02/2021] [Accepted: 06/25/2021] [Indexed: 11/27/2022]
Abstract
Mapping the genes underlying ecologically relevant traits in natural populations is fundamental to develop a molecular understanding of species adaptation. Current sequencing technologies enable the characterization of a species' genetic diversity across the landscape or even over its whole range. The relevant capture of the genetic diversity across the landscape is critical for a successful genetic mapping of traits and there are no clear guidelines on how to achieve an optimal sampling and which sequencing strategy to implement. Here we determine, through simulation, the sampling scheme that maximizes the power to map the genetic basis of a complex trait in an outbreeding species across an idealized landscape and draw genomic predictions for the trait, comparing individual and pool sequencing strategies. Our results show that quantitative trait locus detection power and prediction accuracy are higher when more populations over the landscape are sampled and this is more cost-effectively done with pool sequencing than with individual sequencing. Additionally, we recommend sampling populations from areas of high genetic diversity. As progress in sequencing enables the integration of trait-based functional ecology into landscape genomics studies, these findings will guide study designs allowing direct measures of genetic effects in natural populations across the environment.
Collapse
Affiliation(s)
- Jefferson F Paril
- School of Biosciences, The University of Melbourne, Parkville, Victoria, Australia
| | - David J Balding
- School of Biosciences, The University of Melbourne, Parkville, Victoria, Australia.,Melbourne Integrative Genomics, The University of Melbourne, Parkville, Victoria, Australia.,School of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria, Australia
| | - Alexandre Fournier-Level
- School of Biosciences, The University of Melbourne, Parkville, Victoria, Australia.,Melbourne Integrative Genomics, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
19
|
Alexandre H, Truffaut L, Klein E, Ducousso A, Chancerel E, Lesur I, Dencausse B, Louvet J, Nepveu G, Torres‐Ruiz JM, Lagane F, Musch B, Delzon S, Kremer A. How does contemporary selection shape oak phenotypes? Evol Appl 2020; 13:2772-2790. [PMID: 33294022 PMCID: PMC7691464 DOI: 10.1111/eva.13082] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/09/2020] [Accepted: 07/13/2020] [Indexed: 01/12/2023] Open
Abstract
Most existing forests are subjected to natural and human-mediated selection pressures, which have increased due to climate change and the increasing needs of human societies for wood, fibre and fuel resources. It remains largely unknown how these pressures trigger evolutionary changes. We address this issue here for temperate European oaks (Quercus petraea and Q. robur), which grow in mixed stands, under even-aged management regimes. We screened numerous functional traits for univariate selection gradients and for expected and observed genetic changes over two successive generations. In both species, growth, leaf morphology and physiology, and defence-related traits displayed significant selection gradients and predicted shifts, whereas phenology, water metabolism, structure and resilience-related traits did not. However, the direction of the selection response and the potential for adaptive evolution differed between the two species. Quercus petraea had a much larger phenotypic and genetic variance of fitness than Q. robur. This difference raises concerns about the adaptive response of Q. robur to contemporary selection pressures. Our investigations suggest that Q. robur will probably decline steadily, particularly in mixed stands with Q. petraea, consistent with the contrasting demographic dynamics of the two species.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - José M. Torres‐Ruiz
- INRAEUniversity of BordeauxBIOGECOCestasFrance
- INRAEUniversity of Clermont‐AuvergnePIAFClermont‐FerrandFrance
| | | | | | | | | |
Collapse
|
20
|
Koch EL, Sbilordo SH, Guillaume F. Genetic variance in fitness and its cross‐sex covariance predict adaptation during experimental evolution. Evolution 2020; 74:2725-2740. [DOI: 10.1111/evo.14119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 09/29/2020] [Accepted: 10/25/2020] [Indexed: 01/05/2023]
Affiliation(s)
- Eva L. Koch
- Department of Evolutionary Biology and Environmental Studies University of Zürich Winterthurerstr. 190 Zürich 8057 Switzerland
- Department of Animal and Plant Science University of Sheffield Western Bank Sheffield S10 2TN United Kingdom
| | - Sonja H. Sbilordo
- Department of Evolutionary Biology and Environmental Studies University of Zürich Winterthurerstr. 190 Zürich 8057 Switzerland
| | - Frédéric Guillaume
- Department of Evolutionary Biology and Environmental Studies University of Zürich Winterthurerstr. 190 Zürich 8057 Switzerland
| |
Collapse
|
21
|
Jamieson A, Anderson SJ, Fuller J, Côté SD, Northrup JM, Shafer ABA. Heritability Estimates of Antler and Body Traits in White-Tailed Deer (Odocoileus virginianus) From Genomic-Relatedness Matrices. J Hered 2020; 111:429-435. [PMID: 32692835 DOI: 10.1093/jhered/esaa023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/09/2020] [Indexed: 12/23/2022] Open
Abstract
Estimating heritability (h2) is required to predict the response to selection and is useful in species that are managed or farmed using trait information. Estimating h2 in free-ranging populations is challenging due to the need for pedigrees; genomic-relatedness matrices (GRMs) circumvent this need and can be implemented in nearly any system where phenotypic and genome-wide single-nucleotide polymorphism (SNP) data are available. We estimated the heritability of 5 body and 3 antler traits in a free-ranging population of white-tailed deer (Odocoileus virginianus) on Anticosti Island, Quebec, Canada. We generated classic and robust GRMs from >10,000 SNPs: hind foot length, dressed body mass, and peroneus muscle mass had high h2 values of 0.62, 0.44, and 0.55, respectively. Heritability in male-only antler features ranged from 0.07 to 0.33. We explored the influence of filtering by minor allele frequency and data completion on h2: GRMs derived from fewer SNPs had reduced h2 estimates and the relatedness coefficients significantly deviated from those generated with more SNPs. As a corollary, we discussed limitations to the application of GRMs in the wild, notably how skewed GRMs, specifically many unrelated individuals, can increase variance around h2 estimates. This is the first study to estimate h2 on a free-ranging population of white-tailed deer and should be informative for breeding designs and management as these traits could respond to selection.
Collapse
Affiliation(s)
- Aidan Jamieson
- Department of Biology, Trent University, Peterborough, ON, Canada
| | - Spencer J Anderson
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada
| | - Jérémie Fuller
- Département de biologie, Centre d'études nordiques and NSERC Industrial Research Chair in Integrated Resource Management of Anticosti Island, Université Laval, Québec City, QC, Canada
| | - Steeve D Côté
- Département de biologie, Centre d'études nordiques and NSERC Industrial Research Chair in Integrated Resource Management of Anticosti Island, Université Laval, Québec City, QC, Canada
| | - Joseph M Northrup
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada.,Wildlife Research and Monitoring Section, Ontario Ministry of Natural Resources and Forestry, Trent University, Peterborough, ON, Canada
| | - Aaron B A Shafer
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada.,Forensics Program Trent University, Peterborough, ON, Canada
| |
Collapse
|
22
|
Duntsch L, Tomotani BM, de Villemereuil P, Brekke P, Lee KD, Ewen JG, Santure AW. Polygenic basis for adaptive morphological variation in a threatened Aotearoa | New Zealand bird, the hihi ( Notiomystis cincta). Proc Biol Sci 2020; 287:20200948. [PMID: 32842928 PMCID: PMC7482260 DOI: 10.1098/rspb.2020.0948] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/30/2020] [Indexed: 12/26/2022] Open
Abstract
To predict if a threatened species can adapt to changing selective pressures, it is crucial to understand the genetic basis of adaptive traits, especially in species historically affected by severe bottlenecks. We estimated the heritability of three hihi (Notiomystis cincta) morphological traits known to be under selection (nestling tarsus length, body mass and head-bill length) using 523 individuals and 39 699 single nucleotide polymorphisms (SNPs) from a 50 K Affymetrix SNP chip. We then examined the genetic architecture of the traits via chromosome partitioning analyses and genome-wide association scans (GWAS). Heritabilities estimated using pedigree relatedness or genomic relatedness were low. For tarsus length, the proportion of genetic variance explained by each chromosome was positively correlated with its size, and more than one chromosome explained significant variation for body mass and head-bill length. Finally, GWAS analyses suggested many loci of small effect contributing to trait variation for all three traits, although one locus (an SNP within an intron of the transcription factor HEY2) was tentatively associated with tarsus length. Our findings suggest a polygenic nature for the morphological traits, with many small effect size loci contributing to the majority of the variation, similar to results from many other wild populations. However, the small effective population size, polygenic architecture and already low heritabilities suggest that both the total response and rate of response to selection are likely to be limited in hihi.
Collapse
Affiliation(s)
- Laura Duntsch
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | | - Pierre de Villemereuil
- Institut de Systématique, Évolution, Biodiversité (ISYEB), École Pratique des Hautes Études PSL, MNHN, CNRS, Sorbonne Université, Université des Antilles, Paris, France
| | - Patricia Brekke
- Institute of Zoology, Zoological Society of London, Regents Park, London, UK
| | - Kate D. Lee
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - John G. Ewen
- Institute of Zoology, Zoological Society of London, Regents Park, London, UK
| | - Anna W. Santure
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
23
|
Perrier C, Rougemont Q, Charmantier A. Demographic history and genomics of local adaptation in blue tit populations. Evol Appl 2020; 13:1145-1165. [PMID: 32684952 PMCID: PMC7359843 DOI: 10.1111/eva.13035] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 05/11/2020] [Accepted: 05/18/2020] [Indexed: 12/24/2022] Open
Abstract
Understanding the genomic processes underlying local adaptation is a central aim of modern evolutionary biology. This task requires identifying footprints of local selection but also estimating spatio‐temporal variations in population demography and variations in recombination rate and in diversity along the genome. Here, we investigated these parameters in blue tit populations inhabiting deciduous versus evergreen forests, and insular versus mainland areas, in the context of a previously described strong phenotypic differentiation. Neighboring population pairs of deciduous and evergreen habitats were weakly genetically differentiated (FST = 0.003 on average), nevertheless with a statistically significant effect of habitat type on the overall genetic structure. This low differentiation was consistent with the strong and long‐lasting gene flow between populations inferred by demographic modeling. In turn, insular and mainland populations were moderately differentiated (FST = 0.08 on average), in line with the inference of moderate ancestral migration, followed by isolation since the end of the last glaciation. Effective population sizes were large, yet smaller on the island than on the mainland. Weak and nonparallel footprints of divergent selection between deciduous and evergreen populations were consistent with their high connectivity and the probable polygenic nature of local adaptation in these habitats. In turn, stronger footprints of divergent selection were identified between long isolated insular versus mainland birds and were more often found in regions of low recombination, as expected from theory. Lastly, we identified a genomic inversion on the mainland, spanning 2.8 Mb. These results provide insights into the demographic history and genetic architecture of local adaptation in blue tit populations at multiple geographic scales.
Collapse
Affiliation(s)
- Charles Perrier
- Centre d'Ecologie Fonctionnelle et Evolutive UMR 5175 CNRS Univ Montpellier CNRS EPHE IRD Univ Paul Valéry Montpellier 3 Montpellier France.,Centre de Biologie pour la Gestion des Populations UMR CBGP INRAE CIRAD IRD Montpellier SupAgro Univ Montpellier Montpellier France
| | - Quentin Rougemont
- Département de Biologie Institut de Biologie Intégrative et des Systèmes (IBIS) Université Laval Québec Québec Canada
| | - Anne Charmantier
- Centre d'Ecologie Fonctionnelle et Evolutive UMR 5175 CNRS Univ Montpellier CNRS EPHE IRD Univ Paul Valéry Montpellier 3 Montpellier France
| |
Collapse
|
24
|
Evans SR, Postma E, Sheldon BC. It takes two: Heritable male effects on reproductive timing but not clutch size in a wild bird population*. Evolution 2020; 74:2320-2331. [DOI: 10.1111/evo.13980] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 03/19/2020] [Accepted: 04/02/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Simon R. Evans
- Edward Grey Institute, Department of Zoology University of Oxford Oxford OX1 3SZ UK
- Centre for Ecology and Conservation University of Exeter Penryn TR10 9FE UK
| | - Erik Postma
- Centre for Ecology and Conservation University of Exeter Penryn TR10 9FE UK
| | - Ben C. Sheldon
- Edward Grey Institute, Department of Zoology University of Oxford Oxford OX1 3SZ UK
| |
Collapse
|
25
|
Alexandre H, Truffaut L, Ducousso A, Louvet JM, Nepveu G, Torres-Ruiz JM, Lagane F, Firmat C, Musch B, Delzon S, Kremer A. In situ estimation of genetic variation of functional and ecological traits in Quercus petraea and Q.robur. TREE GENETICS & GENOMES 2020; 16:32. [PMID: 32256274 PMCID: PMC7136077 DOI: 10.1007/s11295-019-1407-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 10/10/2019] [Accepted: 12/08/2019] [Indexed: 05/25/2023]
Abstract
BACKGROUND Predicting the evolutionary potential of natural tree populations requires the estimation of heritability and genetic correlations among traits on which selection acts, as differences in evolutionary success between species may rely on differences for these genetic parameters. In situ estimates are expected to be more accurate than measures done under controlled conditions which do not reflect the natural environmental variance. AIMS The aim of the current study was to estimate three genetic parameters (i.e. heritability, evolvability and genetic correlations) in a natural mixed oak stand composed of Quercus petraea and Quercus robur about 100 years old, for 58 traits of ecological and functional relevance (growth, reproduction, phenology, physiology, resilience, structure, morphology and defence). METHODS First we estimated genetic parameters directly in situ using realized genomic relatedness of adult trees and parentage relationships over two generations to estimate the traits additive variance. Secondly, we benefited from existing ex situ experiments (progeny tests and conservation collection) installed with the same populations, thus allowing comparisons of in situ heritability estimates with more traditional methods. RESULTS Heritability and evolvability estimates obtained with different methods varied substantially and showed large confidence intervals, however we found that in situ were less precise than ex situ estimates, and assessments over two generations (with deeper relatedness) improved estimates of heritability while large sampling sizes are needed for accurate estimations. At the biological level, heritability values varied moderately across different ecological and functional categories of traits, and genetic correlations among traits were conserved over the two species. CONCLUSION We identified limits for using realized genomic relatedness in natural stands to estimate the genetic variance, given the overall low variance of genetic relatedness and the rather low sampling sizes of currently used long term genetic plots in forestry. These limits can be overcome if larger sample sizes are considered, or if the approach is extended over the next generation.
Collapse
Affiliation(s)
| | | | | | | | | | - José M. Torres-Ruiz
- BIOGECO, INRA, Univ. Bordeaux, 33610 Cestas, France
- PIAF, Univ. Clermont-Auvergne, INRA, 63000 Clermont-Ferrand, France
| | | | - Cyril Firmat
- BIOGECO, INRA, Univ. Bordeaux, 33610 Cestas, France
- URP3F, INRA, 86600 Lusignan, France
| | - Brigitte Musch
- BIOFORA, INRA, ONF, CS 40001 Ardon 45075 Orléans Cedex 2, France
| | | | | |
Collapse
|
26
|
Gervais L, Hewison AJM, Morellet N, Bernard M, Merlet J, Cargnelutti B, Chaval Y, Pujol B, Quéméré E. Pedigree-free quantitative genetic approach provides evidence for heritability of movement tactics in wild roe deer. J Evol Biol 2020; 33:595-607. [PMID: 31985133 DOI: 10.1111/jeb.13594] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 01/07/2020] [Accepted: 01/13/2020] [Indexed: 11/30/2022]
Abstract
Assessing the evolutionary potential of animal populations in the wild is crucial to understanding how they may respond to selection mediated by rapid environmental change (e.g. habitat loss and fragmentation). A growing number of studies have investigated the adaptive role of behaviour, but assessments of its genetic basis in a natural setting remain scarce. We combined intensive biologging technology with genome-wide data and a pedigree-free quantitative genetic approach to quantify repeatability, heritability and evolvability for a suite of behaviours related to the risk avoidance-resource acquisition trade-off in a wild roe deer (Capreolus capreolus) population inhabiting a heterogeneous, human-dominated landscape. These traits, linked to the stress response, movement and space-use behaviour, were all moderately to highly repeatable. Furthermore, the repeatable among-individual component of variation in these traits was partly due to additive genetic variance, with heritability estimates ranging from 0.21 ± 0.08 to 0.70 ± 0.11 and evolvability ranging from 1.1% to 4.3%. Changes in the trait mean can therefore occur under hypothetical directional selection over just a few generations. To the best of our knowledge, this is the first empirical demonstration of additive genetic variation in space-use behaviour in a free-ranging population based on genomic relatedness data. We conclude that wild animal populations may have the potential to adjust their spatial behaviour to human-driven environmental modifications through microevolutionary change.
Collapse
Affiliation(s)
- Laura Gervais
- CEFS, INRAE, Université de Toulouse, Castanet-Tolosan, France.,LTSER ZA PYRénées GARonne, Auzeville-Tolosane, France.,Laboratoire Évolution & Diversité Biologique (EDB UMR 5174), CNRS, IRD, UPS, Université Fédérale de Toulouse Midi-Pyrénées, Toulouse, France
| | - Aidan J M Hewison
- CEFS, INRAE, Université de Toulouse, Castanet-Tolosan, France.,LTSER ZA PYRénées GARonne, Auzeville-Tolosane, France
| | - Nicolas Morellet
- CEFS, INRAE, Université de Toulouse, Castanet-Tolosan, France.,LTSER ZA PYRénées GARonne, Auzeville-Tolosane, France
| | - Maria Bernard
- INRAE, GABI, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France.,INRAE, SIGENAE, Jouy-en-Josas, France
| | - Joël Merlet
- CEFS, INRAE, Université de Toulouse, Castanet-Tolosan, France.,LTSER ZA PYRénées GARonne, Auzeville-Tolosane, France
| | - Bruno Cargnelutti
- CEFS, INRAE, Université de Toulouse, Castanet-Tolosan, France.,LTSER ZA PYRénées GARonne, Auzeville-Tolosane, France
| | - Yannick Chaval
- CEFS, INRAE, Université de Toulouse, Castanet-Tolosan, France.,LTSER ZA PYRénées GARonne, Auzeville-Tolosane, France
| | - Benoit Pujol
- Laboratoire Évolution & Diversité Biologique (EDB UMR 5174), CNRS, IRD, UPS, Université Fédérale de Toulouse Midi-Pyrénées, Toulouse, France.,USR 3278 CRIOBE, PSL Université Paris: EPHE-UPVD-CNRS, Université de Perpignan, Perpignan Cedex, France
| | - Erwan Quéméré
- CEFS, INRAE, Université de Toulouse, Castanet-Tolosan, France.,LTSER ZA PYRénées GARonne, Auzeville-Tolosane, France.,ESE, Ecology and Ecosystems Health, Ouest, INRAE, Rennes, France
| |
Collapse
|
27
|
Gervais L, Perrier C, Bernard M, Merlet J, Pemberton JM, Pujol B, Quéméré E. RAD-sequencing for estimating genomic relatedness matrix-based heritability in the wild: A case study in roe deer. Mol Ecol Resour 2019; 19:1205-1217. [PMID: 31058463 DOI: 10.1111/1755-0998.13031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/19/2019] [Accepted: 04/23/2019] [Indexed: 01/02/2023]
Abstract
Estimating the evolutionary potential of quantitative traits and reliably predicting responses to selection in wild populations are important challenges in evolutionary biology. The genomic revolution has opened up opportunities for measuring relatedness among individuals with precision, enabling pedigree-free estimation of trait heritabilities in wild populations. However, until now, most quantitative genetic studies based on a genomic relatedness matrix (GRM) have focused on long-term monitored populations for which traditional pedigrees were also available, and have often had access to knowledge of genome sequence and variability. Here, we investigated the potential of RAD-sequencing for estimating heritability in a free-ranging roe deer (Capreolous capreolus) population for which no prior genomic resources were available. We propose a step-by-step analytical framework to optimize the quality and quantity of the genomic data and explore the impact of the single nucleotide polymorphism (SNP) calling and filtering processes on the GRM structure and GRM-based heritability estimates. As expected, our results show that sequence coverage strongly affects the number of recovered loci, the genotyping error rate and the amount of missing data. Ultimately, this had little effect on heritability estimates and their standard errors, provided that the GRM was built from a minimum number of loci (above 7,000). Genomic relatedness matrix-based heritability estimates thus appear robust to a moderate level of genotyping errors in the SNP data set. We also showed that quality filters, such as the removal of low-frequency variants, affect the relatedness structure of the GRM, generating lower h2 estimates. Our work illustrates the huge potential of RAD-sequencing for estimating GRM-based heritability in virtually any natural population.
Collapse
Affiliation(s)
- Laura Gervais
- CEFS, INRA, Université de Toulouse, Castanet-Tolosan, Cedex, France.,Laboratoire Évolution & Diversité Biologique (EDB UMR 5174), CNRS, IRD, UPS, Université Fédérale de Toulouse Midi-Pyrénées, Toulouse, France
| | | | - Maria Bernard
- SIGENAE, INRA, Jouy-en-Josas, France.,GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Joël Merlet
- CEFS, INRA, Université de Toulouse, Castanet-Tolosan, Cedex, France
| | - Josephine M Pemberton
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Benoit Pujol
- Laboratoire Évolution & Diversité Biologique (EDB UMR 5174), CNRS, IRD, UPS, Université Fédérale de Toulouse Midi-Pyrénées, Toulouse, France.,PSL Université Paris: EPHE-UPVD-CNRS, Université de Perpignan, Perpignan, France
| | - Erwan Quéméré
- CEFS, INRA, Université de Toulouse, Castanet-Tolosan, Cedex, France
| |
Collapse
|
28
|
de Villemereuil P, Rutschmann A, Lee KD, Ewen JG, Brekke P, Santure AW. Little Adaptive Potential in a Threatened Passerine Bird. Curr Biol 2019; 29:889-894.e3. [DOI: 10.1016/j.cub.2019.01.072] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/18/2018] [Accepted: 01/28/2019] [Indexed: 11/29/2022]
|
29
|
Santure AW, Garant D. Wild GWAS-association mapping in natural populations. Mol Ecol Resour 2018; 18:729-738. [PMID: 29782705 DOI: 10.1111/1755-0998.12901] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 12/27/2022]
Abstract
The increasing affordability of sequencing and genotyping technologies has transformed the field of molecular ecology in recent decades. By correlating marker variants with trait variation using association analysis, large-scale genotyping and phenotyping of individuals from wild populations has enabled the identification of genomic regions that contribute to phenotypic differences among individuals. Such "gene mapping" studies are enabling us to better predict evolutionary potential and the ability of populations to adapt to challenges, such as changing environment. These studies are also allowing us to gain insight into the evolutionary processes maintaining variation in natural populations, to better understand genotype-by-environment and epistatic interactions and to track the dynamics of allele frequency change at loci contributing to traits under selection. Gene mapping in the wild using genomewide association scans (GWAS) do, however, come with a number of methodological challenges, not least the population structure in space and time inherent to natural populations. We here provide an overview of these challenges, summarize the exciting methodological advances and applications of association mapping in natural populations reported in this special issue and provide some guidelines for future "wild GWAS" research.
Collapse
Affiliation(s)
- Anna W Santure
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Dany Garant
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
30
|
Improving conservation policy with genomics: a guide to integrating adaptive potential into U.S. Endangered Species Act decisions for conservation practitioners and geneticists. CONSERV GENET 2018. [DOI: 10.1007/s10592-018-1096-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|