1
|
Yohe LR, Krell NT. An updated synthesis of and outstanding questions in the olfactory and vomeronasal systems in bats: Genetics asks questions only anatomy can answer. Anat Rec (Hoboken) 2023; 306:2765-2780. [PMID: 37523493 DOI: 10.1002/ar.25290] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 06/23/2023] [Accepted: 07/05/2023] [Indexed: 08/02/2023]
Abstract
The extensive diversity observed in bat nasal chemosensory systems has been well-documented at the histological level. Understanding how this diversity evolved and developing hypotheses as to why particular patterns exist require a phylogenetic perspective, which was first outlined in the work of anatomist Kunwar Bhatnagar. With the onset of genetics and genomics, it might be assumed that the puzzling patterns observed in the morphological data have been clarified. However, there is still a widespread mismatch of genetic and morphological correlations among bat chemosensory systems. Novel genomic evidence has set up new avenues to explore that demand more evidence from anatomical structures. Here, we outline the progress that has been made in both morphological and molecular studies on the olfactory and vomeronasal systems in bats since the work of Bhatnagar. Genomic data of olfactory and vomeronasal receptors demonstrate the strong need for further morphological sampling, with a particular focus on receiving brain regions, glands, and ducts.
Collapse
Affiliation(s)
- Laurel R Yohe
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
- North Carolina Research Campus, Kannapolis, North Carolina, USA
| | - Nicholas T Krell
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| |
Collapse
|
2
|
Su H, Xu J, Li J, Yi Z. Four ciliate-specific expansion events occurred during actin gene family evolution of eukaryotes. Mol Phylogenet Evol 2023; 184:107789. [PMID: 37105243 DOI: 10.1016/j.ympev.2023.107789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/21/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023]
Abstract
Actin gene family is a divergent and ancient eukaryotic cellular cytoskeletal gene family, and participates in many essential cellular processes. Ciliated protists offer us an excellent opportunity to investigate gene family evolution, since their gene families evolved faster in ciliates than in other eukaryotes. Nonetheless, actin gene family is well studied in few model ciliate species but little is known about its evolutionary patterns in ciliates. Here, we analyzed the evolutionary pattern of eukaryotic actin gene family based on genomes/transcriptomes of 36 species covering ten ciliate classes, as well as those of nine non-ciliate eukaryotic species. Results showed: (1) Except for conventional actins and actin-related proteins (Arps) shared by various eukaryotes, at least four ciliate-specific subfamilies occurred during evolution of actin gene family. Expansions of Act2 and ArpC were supposed to have happen in the ciliate common ancestor, while expansions of ActI and ActII may have occurred in the ancestor of Armophorea, Muranotrichea, and Spirotrichea. (2) The number of actin isoforms varied greatly among ciliate species. Environmental adaptability, whole genome duplication (WGD) or segmental duplication events, distinct spatial and temporal patterns of expression might play driving forces for the increasement of isoform numbers. (3) The 'birth and death' model of evolution could explain the evolution of actin gene family in ciliates. And actin genes have been generally under strong negative selection to maintain protein structures and physiological functions. Collectively, we provided meaningful information for understanding the evolution of eukaryotic actin gene family.
Collapse
Affiliation(s)
- Hua Su
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Jiahui Xu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Jia Li
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Zhenzhen Yi
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
3
|
Baldoni C, Thomas WR, von Elverfeldt D, Reisert M, Làzaro J, Muturi M, Dávalos LM, Nieland JD, Dechmann DKN. Histological and MRI brain atlas of the common shrew, Sorex araneus, with brain region-specific gene expression profiles. Front Neuroanat 2023; 17:1168523. [PMID: 37206998 PMCID: PMC10188933 DOI: 10.3389/fnana.2023.1168523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/13/2023] [Indexed: 05/21/2023] Open
Abstract
The common shrew, Sorex araneus, is a small mammal of growing interest in neuroscience research, as it exhibits dramatic and reversible seasonal changes in individual brain size and organization (a process known as Dehnel's phenomenon). Despite decades of studies on this system, the mechanisms behind the structural changes during Dehnel's phenomenon are not yet understood. To resolve these questions and foster research on this unique species, we present the first combined histological, magnetic resonance imaging (MRI), and transcriptomic atlas of the common shrew brain. Our integrated morphometric brain atlas provides easily obtainable and comparable anatomic structures, while transcriptomic mapping identified distinct expression profiles across most brain regions. These results suggest that high-resolution morphological and genetic research is pivotal for elucidating the mechanisms underlying Dehnel's phenomenon while providing a communal resource for continued research on a model of natural mammalian regeneration. Morphometric and NCBI Sequencing Read Archive are available at https://doi.org/10.17617/3.HVW8ZN.
Collapse
Affiliation(s)
- Cecilia Baldoni
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell am Bodensee, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
- International Max Planck Research School for Quantitative Behaviour Ecology and Evolution, Konstanz, Germany
- *Correspondence: Cecilia Baldoni,
| | - William R. Thomas
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, United States
| | - Dominik von Elverfeldt
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Marco Reisert
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Javier Làzaro
- Javier Lázaro Scientific and Wildlife Illustration, Noasca, Italy
| | - Marion Muturi
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell am Bodensee, Germany
| | - Liliana M. Dávalos
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, United States
- Consortium for Inter-Disciplinary Environmental Research, Stony Brook University, Stony Brook, NY, United States
| | - John D. Nieland
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Dina K. N. Dechmann
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell am Bodensee, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
4
|
Yohe LR, Fabbri M, Lee D, Davies KTJ, Yohe TP, Sánchez MKR, Rengifo EM, Hall RP, Mutumi G, Hedrick BP, Sadier A, Simmons NB, Sears KE, Dumont E, Rossiter SJ, Bhullar BAS, Dávalos LM. Ecological constraints on highly evolvable olfactory receptor genes and morphology in neotropical bats. Evolution 2022; 76:2347-2360. [PMID: 35904467 DOI: 10.1111/evo.14591] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 05/06/2022] [Accepted: 05/13/2022] [Indexed: 01/22/2023]
Abstract
Although evolvability of genes and traits may promote specialization during species diversification, how ecology subsequently restricts such variation remains unclear. Chemosensation requires animals to decipher a complex chemical background to locate fitness-related resources, and thus the underlying genomic architecture and morphology must cope with constant exposure to a changing odorant landscape; detecting adaptation amidst extensive chemosensory diversity is an open challenge. In phyllostomid bats, an ecologically diverse clade that evolved plant visiting from a presumed insectivorous ancestor, the evolution of novel food detection mechanisms is suggested to be a key innovation, as plant-visiting species rely strongly on olfaction, supplementarily using echolocation. If this is true, exceptional variation in underlying olfactory genes and phenotypes may have preceded dietary diversification. We compared olfactory receptor (OR) genes sequenced from olfactory epithelium transcriptomes and olfactory epithelium surface area of bats with differing diets. Surprisingly, although OR evolution rates were quite variable and generally high, they are largely independent of diet. Olfactory epithelial surface area, however, is relatively larger in plant-visiting bats and there is an inverse relationship between OR evolution rates and surface area. Relatively larger surface areas suggest greater reliance on olfactory detection and stronger constraint on maintaining an already diverse OR repertoire. Instead of the typical case in which specialization and elaboration are coupled with rapid diversification of associated genes, here the relevant genes are already evolving so quickly that increased reliance on smell has led to stabilizing selection, presumably to maintain the ability to consistently discriminate among specific odorants-a potential ecological constraint on sensory evolution.
Collapse
Affiliation(s)
- Laurel R Yohe
- Department of Earth and Planetary Sciences, Yale University, New Haven, Connecticut, 06511, USA.,Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, 11794, USA.,Deaprtment of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina, 28223, USA.,North Carolina Research Campus, Kannapolis, North Carolina, 28081, USA
| | - Matteo Fabbri
- Department of Earth and Planetary Sciences, Yale University, New Haven, Connecticut, 06511, USA.,Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, Illinois, 60605, USA
| | - Daniela Lee
- Department of Earth and Planetary Sciences, Yale University, New Haven, Connecticut, 06511, USA.,Harvard School of Medicine, Cambridge, Massachusetts, 02115, USA
| | - Kalina T J Davies
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, United Kingdom
| | | | - Miluska K R Sánchez
- Escuela Profesional de Ciencias Biológicas, Universidad Nacional de Piura, Piura, 20004, Peru
| | - Edgardo M Rengifo
- Programa de Pós-Graduação Interunidades em Ecologia Aplicada, Escola Superior de Agricultura 'Luiz de Queiroz', Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, 13416-970, Brazil.,Centro de Investigación Biodiversidad Sostenible (BioS), Lima, 15073, Peru
| | - Ronald P Hall
- School of Natural Sciences, University of California, Merced, Merced, California, 95344, USA
| | - Gregory Mutumi
- School of Natural Sciences, University of California, Merced, Merced, California, 95344, USA
| | - Brandon P Hedrick
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, 14853, USA
| | - Alexa Sadier
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, California, 90095, USA
| | - Nancy B Simmons
- Department of Mammalogy, American Museum of Natural History, New York, New York, 10024, USA
| | - Karen E Sears
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, California, 90095, USA
| | - Elizabeth Dumont
- School of Natural Sciences, University of California, Merced, Merced, California, 95344, USA
| | - Stephen J Rossiter
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, United Kingdom
| | - Bhart-Anjan S Bhullar
- Department of Earth and Planetary Sciences, Yale University, New Haven, Connecticut, 06511, USA.,Yale Peabody Museum of Natural History, Yale University, New Haven, Connecticut, 06511, USA
| | - Liliana M Dávalos
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, 11794, USA.,Center for Inter-Disciplinary Environmental Research, Stony Brook University, Stony Brook, New York, 11794, USA
| |
Collapse
|
5
|
AKHTAR MUHAMMADSHOAIB, ASHINO RYUICHI, OOTA HIROKI, ISHIDA HAJIME, NIIMURA YOSHIHITO, TOUHARA KAZUSHIGE, MELIN AMANDAD, KAWAMURA SHOJI. Genetic variation of olfactory receptor gene family in a Japanese population. ANTHROPOL SCI 2022. [DOI: 10.1537/ase.211024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- MUHAMMAD SHOAIB AKHTAR
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa
| | - RYUICHI ASHINO
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa
| | - HIROKI OOTA
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo
| | - HAJIME ISHIDA
- Department of Human Biology and Anatomy, Faculty of Medicine, University of the Ryukyus, Nishihara
| | - YOSHIHITO NIIMURA
- Department of Veterinary Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki
| | - KAZUSHIGE TOUHARA
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo
| | - AMANDA D. MELIN
- Department of Anthropology and Archaeology & Department of Medical Genetics, University of Calgary, Calgary
| | - SHOJI KAWAMURA
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa
| |
Collapse
|
6
|
Yohe LR, Leiser-Miller LB, Kaliszewska ZA, Donat P, Santana SE, Dávalos LM. Diversity in olfactory receptor repertoires is associated with dietary specialization in a genus of frugivorous bat. G3 (BETHESDA, MD.) 2021; 11:jkab260. [PMID: 34568918 PMCID: PMC8473985 DOI: 10.1093/g3journal/jkab260] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/19/2021] [Indexed: 11/30/2022]
Abstract
Mammalian olfactory receptor genes (ORs) are a diverse family of genes encoding proteins that directly interact with environmental chemical cues. ORs evolve via gene duplication in a birth-death fashion, neofunctionalizing and pseudogenizing over time. Olfaction is a primary sense used for food detection in plant-visiting bats, but the relationship between dietary specialization and OR repertoire diversity is unclear. Within neotropical Leaf-nosed bats (Phyllostomidae), many lineages are plant specialists, and some have a distinct OR repertoire compared to insectivorous species. Yet, whether specialization on particular plant genera is associated with the evolution of specialized, less diverse OR repertoires has never been tested. Using targeted sequence capture, we sequenced the OR repertoires of three sympatric species of short-tailed fruit bats (Carollia), which vary in their degree of specialization on the fruits of Piper plants. We characterized orthologous vs duplicated receptors among Carollia species, and explored the diversity and redundancy of the receptor gene repertoire. At the species level, the most dedicated Piper specialist, Carollia castanea, had lower OR diversity compared to the two generalists (C. sowelli and C. perspicillata), but we discovered a few unique sets of ORs within C. castanea with high redundancy of similar gene duplicates. These unique receptors potentially enable C. castanea to detect Piper fruit odorants better than its two congeners. Carollia perspicillata, the species with the most generalist diet, had a higher diversity of intact receptors, suggesting the ability to detect a wider range of odorant molecules. Variation among ORs may be a factor in the coexistence of these sympatric species, facilitating the exploitation of different plant resources. Our study sheds light on how gene duplication and changes in OR diversity may play a role in dietary adaptations and underlie ecological interactions between bats and plants.
Collapse
Affiliation(s)
- Laurel R Yohe
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT 06511, USA
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA
| | | | | | - Paul Donat
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA
| | - Sharlene E Santana
- Department of Biology, University of Washington, Seattle, WA 98195, USA
- Burke Museum of Natural History and Culture, University of Washington, Seattle, WA 98105, USA
| | - Liliana M Dávalos
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA
- Consortium for Inter-Disciplinary Environmental Research, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
7
|
Yohe LR, Fabbri M, Hanson M, Bhullar BAS. Olfactory receptor gene evolution is unusually rapid across Tetrapoda and outpaces chemosensory phenotypic change. Curr Zool 2021; 66:505-514. [PMID: 34484311 DOI: 10.1093/cz/zoaa051] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/28/2020] [Indexed: 12/15/2022] Open
Abstract
Chemosensation is the most ubiquitous sense in animals, enacted by the products of complex gene families that detect environmental chemical cues and larger-scale sensory structures that process these cues. While there is a general conception that olfactory receptor (OR) genes evolve rapidly, the universality of this phenomenon across vertebrates, and its magnitude, are unclear. The supposed correlation between molecular rates of chemosensory evolution and phenotypic diversity of chemosensory systems is largely untested. We combine comparative genomics and sensory morphology to test whether OR genes and olfactory phenotypic traits evolve at faster rates than other genes or traits. Using published genomes, we identified ORs in 21 tetrapods, including amphibians, reptiles, birds, and mammals and compared their rates of evolution to those of orthologous non-OR protein-coding genes. We found that, for all clades investigated, most OR genes evolve nearly an order of magnitude faster than other protein-coding genes, with many OR genes showing signatures of diversifying selection across nearly all taxa in this study. This rapid rate of evolution suggests that chemoreceptor genes are in "evolutionary overdrive," perhaps evolving in response to the ever-changing chemical space of the environment. To obtain complementary morphological data, we stained whole fixed specimens with iodine, µCT-scanned the specimens, and digitally segmented chemosensory and nonchemosensory brain regions. We then estimated phenotypic variation within traits and among tetrapods. While we found considerable variation in chemosensory structures, they were no more diverse than nonchemosensory regions. We suggest chemoreceptor genes evolve quickly in reflection of an ever-changing chemical space, whereas chemosensory phenotypes and processing regions are more conserved because they use a standardized or constrained architecture to receive and process a range of chemical cues.
Collapse
Affiliation(s)
- Laurel R Yohe
- Department of Earth & Planetary Science, Peabody Museum of Natural History, Yale University, New Haven, CT, 06511, USA
| | - Matteo Fabbri
- Department of Earth & Planetary Science, Peabody Museum of Natural History, Yale University, New Haven, CT, 06511, USA
| | - Michael Hanson
- Department of Earth & Planetary Science, Peabody Museum of Natural History, Yale University, New Haven, CT, 06511, USA
| | - Bhart-Anjan S Bhullar
- Department of Earth & Planetary Science, Peabody Museum of Natural History, Yale University, New Haven, CT, 06511, USA
| |
Collapse
|
8
|
Hall RP, Mutumi GL, Hedrick BP, Yohe LR, Sadier A, Davies KTJ, Rossiter SJ, Sears K, Dávalos LM, Dumont ER. Find the food first: An omnivorous sensory morphotype predates biomechanical specialization for plant based diets in phyllostomid bats. Evolution 2021; 75:2791-2801. [PMID: 34021589 DOI: 10.1111/evo.14270] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 03/03/2021] [Accepted: 04/05/2021] [Indexed: 11/30/2022]
Abstract
The role of mechanical morphologies in the exploitation of novel niche space is well characterized; however, the role of sensory structures in unlocking new niches is less clear. Here, we investigate the relationship between the evolution of sensory structures and diet during the radiation of noctilionoid bats. With a broad range of foraging ecologies and a well-supported phylogeny, noctilionoids constitute an ideal group for studying this relationship. We used diffusible iodine-based contrast enhanced computed tomography scans of 44 noctilionoid species to analyze relationships between the relative volumes of three sensory structures (olfactory bulbs, orbits, and cochleae) and diet. We found a positive relationship between frugivory and both olfactory and orbit size. However, we also found a negative relationship between nectarivory and cochlea size. Ancestral state estimates suggest that larger orbits and olfactory bulbs were present in the common ancestor of family Phyllostomidae, but not in other noctilionoid. This constellation of traits indicates a shift toward omnivory at the base of Phyllostomidae, predating their radiation into an exceptionally broad range of dietary niches. This is consistent with a scenario in which changes in sensory systems associated with foraging and feeding set the stage for subsequent morphological modification and diversification.
Collapse
Affiliation(s)
- Ronald P Hall
- Life and Environmental Sciences, University of California-Merced, Merced, California
| | - Gregory L Mutumi
- Life and Environmental Sciences, University of California-Merced, Merced, California
| | - Brandon P Hedrick
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Laurel R Yohe
- Department of Geology and Geophysics, Yale University, New Haven, Connecticut
| | - Alexa Sadier
- Department of Ecology and Evolutionary Biology, University of California-Los Angeles, Los Angeles, California
| | - Kalina T J Davies
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Stephen J Rossiter
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Karen Sears
- Department of Ecology and Evolutionary Biology, University of California-Los Angeles, Los Angeles, California
| | - Liliana M Dávalos
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York.,Consortium for Inter-Disciplinary Environmental Research, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York
| | - Elizabeth R Dumont
- Life and Environmental Sciences, University of California-Merced, Merced, California
| |
Collapse
|
9
|
Wang K, Tian S, Galindo-González J, Dávalos LM, Zhang Y, Zhao H. Molecular adaptation and convergent evolution of frugivory in Old World and neotropical fruit bats. Mol Ecol 2020; 29:4366-4381. [PMID: 32633855 DOI: 10.1111/mec.15542] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/22/2020] [Accepted: 06/30/2020] [Indexed: 12/21/2022]
Abstract
Although cases of independent adaptation to the same dietary niche have been documented in mammalian ecology, the molecular correlates of such shifts are seldom known. Here, we used genomewide analyses of molecular evolution to examine two lineages of bats that, from an insectivorous ancestor, have both independently evolved obligate frugivory: the Old World family Pteropodidae and the neotropical subfamily Stenodermatinae. New genome assemblies from two neotropical fruit bats (Artibeus jamaicensis and Sturnira hondurensis) provide a framework for comparisons with Old World fruit bats. Comparative genomics of 10 bat species encompassing dietary diversity across the phylogeny revealed convergent molecular signatures of frugivory in both multigene family evolution and single-copy genes. Evidence for convergent molecular adaptations associated with frugivorous diets includes the composition of three subfamilies of olfactory receptor genes, losses of three bitter taste receptor genes, losses of two digestive enzyme genes and convergent amino acid substitutions in several metabolic genes. By identifying suites of adaptations associated with the convergent evolution of frugivory, our analyses both reveal the extent of molecular mechanisms under selection in dietary shifts and will facilitate future studies of molecular ecology in mammals.
Collapse
Affiliation(s)
- Kai Wang
- Department of Ecology, Tibetan Centre for Ecology and Conservation at WHU-TU, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China.,The State Key Laboratory of Biocatalysis and Enzyme Engineering of China, College of Life Sciences, Hubei University, Wuhan, China
| | - Shilin Tian
- Department of Ecology, Tibetan Centre for Ecology and Conservation at WHU-TU, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China.,Novogene Bioinformatics Institute, Beijing, China
| | - Jorge Galindo-González
- Biotechnology and Applied Ecology Institute (INBIOTECA), Universidad Veracruzana, Xalapa,Veracruz, Mexico
| | - Liliana M Dávalos
- Department of Ecology and Evolution and Center for Inter-Disciplinary Environmental Research, State University of New York at Stony Brook, Stony Brook, NY, USA
| | - Yuzhi Zhang
- Department of Ecology, Tibetan Centre for Ecology and Conservation at WHU-TU, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Huabin Zhao
- Department of Ecology, Tibetan Centre for Ecology and Conservation at WHU-TU, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China.,College of Science, Tibet University, Lhasa, China
| |
Collapse
|
10
|
Vizueta J, Sánchez‐Gracia A, Rozas J. bitacora
: A comprehensive tool for the identification and annotation of gene families in genome assemblies. Mol Ecol Resour 2020; 20:1445-1452. [DOI: 10.1111/1755-0998.13202] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 05/17/2020] [Accepted: 05/27/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Joel Vizueta
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio) Universitat de Barcelona Barcelona Spain
| | - Alejandro Sánchez‐Gracia
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio) Universitat de Barcelona Barcelona Spain
| | - Julio Rozas
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio) Universitat de Barcelona Barcelona Spain
| |
Collapse
|
11
|
Freeman AR, Ophir AG, Sheehan MJ. The giant pouched rat (Cricetomys ansorgei) olfactory receptor repertoire. PLoS One 2020; 15:e0221981. [PMID: 32240170 PMCID: PMC7117715 DOI: 10.1371/journal.pone.0221981] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 03/06/2020] [Indexed: 12/12/2022] Open
Abstract
For rodents, olfaction is essential for locating food, recognizing mates and competitors, avoiding predators, and navigating their environment. It is thought that rodents may have expanded olfactory receptor repertoires in order to specialize in olfactory behavior. Despite being the largest clade of mammals and depending on olfaction relatively little work has documented olfactory repertoires outside of conventional laboratory species. Here we report the olfactory receptor repertoire of the African giant pouched rat (Cricetomys ansorgei), a Muroid rodent distantly related to mice and rats. The African giant pouched rat is notable for its large cortex and olfactory bulbs relative to its body size compared to other sympatric rodents, which suggests anatomical elaboration of olfactory capabilities. We hypothesized that in addition to anatomical elaboration for olfaction, these pouched rats might also have an expanded olfactory receptor repertoire to enable their olfactory behavior. We examined the composition of the olfactory receptor repertoire to better understand how their sensory capabilities have evolved. We identified 1145 intact olfactory genes, and 260 additional pseudogenes within 301 subfamilies from the African giant pouched rat genome. This repertoire is similar to mice and rats in terms of size, pseudogene percentage and number of subfamilies. Analyses of olfactory receptor gene trees revealed that the pouched rat has 6 expansions in different subfamilies compared to mice, rats and squirrels. We identified 81 orthologous genes conserved among 4 rodent species and an additional 147 conserved genes within the Muroid rodents. The orthologous genes shared within Muroidea suggests that there may be a conserved Muroid-specific olfactory receptor repertoire. We also note that the description of this repertoire can serve as a complement to other studies of rodent olfaction, as the pouched rat is an outgroup within Muroidea. Thus, our data suggest that African giant pouched rats are capable of both natural and trained olfactory behaviors with a typical Muriod olfactory receptor repertoire.
Collapse
Affiliation(s)
- Angela R. Freeman
- Department of Psychology, Cornell University, Ithaca, NY, United States of America
- * E-mail:
| | - Alexander G. Ophir
- Department of Psychology, Cornell University, Ithaca, NY, United States of America
| | - Michael J. Sheehan
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, United States of America
| |
Collapse
|
12
|
Jouanin A, Tenorio-Berrio R, Schaart JG, Leigh F, Visser RG, Smulders MJ. Optimisation of droplet digital PCR for determining copy number variation of α-gliadin genes in mutant and gene-edited polyploid bread wheat. J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2019.102903] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|