1
|
Anderson EC, Clemento AJ, Campbell MA, Pearse DE, Beulke AK, Columbus C, Campbell E, Thompson NF, Garza JC. A Multipurpose Microhaplotype Panel for Genetic Analysis of California Chinook Salmon. Evol Appl 2025; 18:e70110. [PMID: 40365168 PMCID: PMC12070256 DOI: 10.1111/eva.70110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/10/2025] [Accepted: 04/17/2025] [Indexed: 05/15/2025] Open
Abstract
Genetic methods have become an essential component of ecological investigation and conservation planning for fish and wildlife. Among these methods is the use of genetic marker data to identify individuals to populations, or stocks, of origin. More recently, methods that involve genetic pedigree reconstruction to identify relationships between individuals within populations have also become common. We present here a novel set of multiallelic microhaplotype genetic markers for Chinook salmon, which provide excellent resolution for population discrimination and relationship identification from a rapidly and economically assayed panel of markers. We show how this set of genetic markers assayed by sequencing 204 amplicons, in tandem with a reference dataset of 1636 individual samples from 17 populations, provides definitive power to identify all known lineages of Chinook salmon in California. The inclusion of genetic loci that have known associations with phenotype and that were identified as outliers in examination of whole-genome sequence data allows resolution of stocks that are not highly genetically differentiated but are phenotypically distinct and managed as such. This same set of multiallelic genetic markers has ample variation to accurately identify parent-offspring and full-sibling pairs in all California populations, including the genetically depauperate winter-run lineage. Validation of this marker panel in coastal salmon populations not previously studied with modern genetic methods also reveals novel biological insights, including the presence of a single copy of a haplotype for a phenotype that has not been documented in that part of the species range, and a clear signal of mixed ancestry for a salmon population that is on the geographic margins of the primary evolutionary lineages present in California.
Collapse
Affiliation(s)
- Eric C. Anderson
- Southwest Fisheries Science CenterNational Marine Fisheries Service, NOAASanta CruzCaliforniaUSA
- Institute for Marine SciencesUniversity of CaliforniaSanta CruzCaliforniaUSA
| | - Anthony J. Clemento
- Southwest Fisheries Science CenterNational Marine Fisheries Service, NOAASanta CruzCaliforniaUSA
- Institute for Marine SciencesUniversity of CaliforniaSanta CruzCaliforniaUSA
| | - Matthew A. Campbell
- Southwest Fisheries Science CenterNational Marine Fisheries Service, NOAASanta CruzCaliforniaUSA
- Institute for Marine SciencesUniversity of CaliforniaSanta CruzCaliforniaUSA
| | - Devon E. Pearse
- Southwest Fisheries Science CenterNational Marine Fisheries Service, NOAASanta CruzCaliforniaUSA
- Institute for Marine SciencesUniversity of CaliforniaSanta CruzCaliforniaUSA
| | - Anne K. Beulke
- Southwest Fisheries Science CenterNational Marine Fisheries Service, NOAASanta CruzCaliforniaUSA
- Department of Ocean SciencesUniversity of CaliforniaSanta CruzCaliforniaUSA
| | - Cassie Columbus
- Southwest Fisheries Science CenterNational Marine Fisheries Service, NOAASanta CruzCaliforniaUSA
- Institute for Marine SciencesUniversity of CaliforniaSanta CruzCaliforniaUSA
| | - Ellen Campbell
- Southwest Fisheries Science CenterNational Marine Fisheries Service, NOAASanta CruzCaliforniaUSA
- Institute for Marine SciencesUniversity of CaliforniaSanta CruzCaliforniaUSA
| | - Neil F. Thompson
- Southwest Fisheries Science CenterNational Marine Fisheries Service, NOAASanta CruzCaliforniaUSA
- Institute for Marine SciencesUniversity of CaliforniaSanta CruzCaliforniaUSA
| | - John Carlos Garza
- Southwest Fisheries Science CenterNational Marine Fisheries Service, NOAASanta CruzCaliforniaUSA
- Institute for Marine SciencesUniversity of CaliforniaSanta CruzCaliforniaUSA
| |
Collapse
|
2
|
Davis RP, Simmons LM, Shaw SL, Sass GG, Sard NM, Isermann DA, Larson WA, Homola JJ. Demographic patterns of walleye ( Sander vitreus) reproductive success in a Wisconsin population. Evol Appl 2024; 17:e13665. [PMID: 38468712 PMCID: PMC10925830 DOI: 10.1111/eva.13665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/21/2023] [Accepted: 01/17/2024] [Indexed: 03/13/2024] Open
Abstract
Harvest in walleye Sander vitreus fisheries is size-selective and could influence phenotypic traits of spawners; however, contributions of individual spawners to recruitment are unknown. We used parentage analyses using single nucleotide polymorphisms to test whether parental traits were related to the probability of offspring survival in Escanaba Lake, Wisconsin. From 2017 to 2020, 1339 adults and 1138 juveniles were genotyped and 66% of the offspring were assigned to at least one parent. Logistic regression indicated the probability of reproductive success (survival of age-0 to first fall) was positively (but weakly) related to total length and growth rate in females, but not age. No traits analyzed were related to reproductive success for males. Our analysis identified the model with the predictors' growth rate and year for females and the models with year and age and year for males as the most likely models to explain variation in reproductive success. Our findings indicate that interannual variation (i.e., environmental conditions) likely plays a key role in determining the probability of reproductive success in this population and provide limited support that female age, length, and growth rate influence recruitment.
Collapse
Affiliation(s)
- Robert P. Davis
- Wisconsin Cooperative Fishery Research UnitUniversity of Wisconsin‐Stevens PointStevens PointWisconsinUSA
| | - Levi M. Simmons
- Wisconsin Cooperative Fishery Research UnitUniversity of Wisconsin‐Stevens PointStevens PointWisconsinUSA
| | - Stephanie L. Shaw
- Office of Applied Science, Wisconsin Department of Natural ResourcesEscanaba Lake Research StationBoulder JunctionWisconsinUSA
| | - Greg G. Sass
- Office of Applied Science, Wisconsin Department of Natural ResourcesEscanaba Lake Research StationBoulder JunctionWisconsinUSA
| | - Nicholas M. Sard
- Department of Biological SciencesState University of New York‐OswegoOswegoNew YorkUSA
| | - Daniel A. Isermann
- U.S. Geological Survey, Wisconsin Cooperative Fishery Research UnitUniversity of Wisconsin‐Stevens PointStevens PointWisconsinUSA
| | - Wesley A. Larson
- National Marine Fisheries Service, Alaska Fisheries Science Center, Auke Bay LaboratoriesNational Oceanic and Atmospheric AdministrationJuneauAlaskaUSA
| | - Jared J. Homola
- U.S. Geological Survey, Wisconsin Cooperative Fishery Research UnitUniversity of Wisconsin‐Stevens PointStevens PointWisconsinUSA
| |
Collapse
|
3
|
Euclide PT, Larson WA, Bootsma M, Miller LM, Scribner KT, Stott W, Wilson CC, Latch EK. A new GTSeq resource to facilitate multijurisdictional research and management of walleye Sander vitreus. Ecol Evol 2022; 12:e9591. [PMID: 36532137 PMCID: PMC9750844 DOI: 10.1002/ece3.9591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 12/23/2022] Open
Abstract
Conservation and management professionals often work across jurisdictional boundaries to identify broad ecological patterns. These collaborations help to protect populations whose distributions span political borders. One common limitation to multijurisdictional collaboration is consistency in data recording and reporting. This limitation can impact genetic research, which relies on data about specific markers in an organism's genome. Incomplete overlap of markers between separate studies can prevent direct comparisons of results. Standardized marker panels can reduce the impact of this issue and provide a common starting place for new research. Genotyping-in-thousands (GTSeq) is one approach used to create standardized marker panels for nonmodel organisms. Here, we describe the development, optimization, and early assessments of a new GTSeq panel for use with walleye (Sander vitreus) from the Great Lakes region of North America. High genome-coverage sequencing conducted using RAD capture provided genotypes for thousands of single nucleotide polymorphisms (SNPs). From these markers, SNP and microhaplotype markers were chosen, which were informative for genetic stock identification (GSI) and kinship analysis. The final GTSeq panel contained 500 markers, including 197 microhaplotypes and 303 SNPs. Leave-one-out GSI simulations indicated that GSI accuracy should be greater than 80% in most jurisdictions. The false-positive rates of parent-offspring and full-sibling kinship identification were found to be low. Finally, genotypes could be consistently scored among separate sequencing runs >94% of the time. Results indicate that the GTSeq panel that we developed should perform well for multijurisdictional walleye research throughout the Great Lakes region.
Collapse
Affiliation(s)
- Peter T. Euclide
- Department of Forestry and Natural ResourcesPurdue UniversityWest LafayetteIndianaUSA
| | - Wesley A. Larson
- College of Natural ResourcesUniversity of Wisconsin‐Stevens PointStevens PointWisconsinUSA
- National Marine Fisheries Service, Alaska Fisheries Science CenterNational Oceanographic and Atmospheric AdministrationJuneauAlaskaUSA
| | - Matthew Bootsma
- College of Natural ResourcesUniversity of Wisconsin‐Stevens PointStevens PointWisconsinUSA
| | - Loren M. Miller
- Minnesota Department of Natural ResourcesSt. PaulMinnesotaUSA
| | - Kim T. Scribner
- Department of Fish and WildlifeDepartment of Integrative BiologyMichigan State UniversityEast LansingMichiganUSA
| | - Wendylee Stott
- Department of Fisheries and Oceans, Artic and Aquatic Research DivisionWinnipegManitobaCanada
| | - Chris C. Wilson
- Ontario Ministry of Natural Resources and ForestryTrent UniversityPeterboroughOntarioCanada
| | - Emily K. Latch
- Department of Biological SciencesUniversity of Wisconsin‐MilwaukeeMilwaukeeWisconsinUSA
| |
Collapse
|
4
|
Microhaplotype and Y-SNP/STR (MY): A novel MPS-based system for genotype pattern recognition in two-person DNA mixtures. Forensic Sci Int Genet 2022; 59:102705. [DOI: 10.1016/j.fsigen.2022.102705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 03/10/2022] [Accepted: 04/10/2022] [Indexed: 12/13/2022]
|
5
|
Chang SL, Ward HGM, Russello MA. Genotyping-in-Thousands by sequencing panel development and application to inform kokanee salmon (Oncorhynchus nerka) fisheries management at multiple scales. PLoS One 2021; 16:e0261966. [PMID: 34941943 PMCID: PMC8699693 DOI: 10.1371/journal.pone.0261966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 12/14/2021] [Indexed: 11/19/2022] Open
Abstract
The ability to differentiate life history variants is vital for estimating fisheries management parameters, yet traditional survey methods can be inaccurate in mixed-stock fisheries. Such is the case for kokanee, the freshwater resident form of sockeye salmon (Oncorhynchus nerka), which exhibits various reproductive ecotypes (stream-, shore-, deep-spawning) that co-occur with each other and/or anadromous O. nerka in some systems across their pan-Pacific distribution. Here, we developed a multi-purpose Genotyping-in-Thousands by sequencing (GT-seq) panel of 288 targeted single nucleotide polymorphisms (SNPs) to enable accurate kokanee stock identification by geographic basin, migratory form, and reproductive ecotype across British Columbia, Canada. The GT-seq panel exhibited high self-assignment accuracy (93.3%) and perfect assignment of individuals not included in the baseline to their geographic basin, migratory form, and reproductive ecotype of origin. The GT-seq panel was subsequently applied to Wood Lake, a valuable mixed-stock fishery, revealing high concordance (>98%) with previous assignments to ecotype using microsatellites and TaqMan® SNP genotyping assays, while improving resolution, extending a long-term time-series, and demonstrating the scalability of this approach for this system and others.
Collapse
Affiliation(s)
- Sarah L. Chang
- Department of Biology, University of British Columbia, Kelowna, BC, Canada
| | - Hillary G. M. Ward
- British Columbia Ministry of Forests, Lands, Natural Resource Operations and Rural Development, Penticton, BC, Canada
| | - Michael A. Russello
- Department of Biology, University of British Columbia, Kelowna, BC, Canada
- * E-mail:
| |
Collapse
|
6
|
Ackiss AS, Magee MR, Sass GG, Turnquist K, McIntyre PB, Larson WA. Genomic and environmental influences on resilience in a cold-water fish near the edge of its range. Evol Appl 2021; 14:2794-2814. [PMID: 34950230 PMCID: PMC8674893 DOI: 10.1111/eva.13313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 02/06/2023] Open
Abstract
Small, isolated populations present a challenge for conservation. The dueling effects of selection and drift in a limited pool of genetic diversity make the responses of small populations to environmental perturbations erratic and difficult to predict. This is particularly true at the edge of a species range, where populations often persist at the limits of their environmental tolerances. Populations of cisco, Coregonus artedi, in inland lakes have experienced numerous extirpations along the southern edge of their range in recent decades, which are thought to result from environmental degradation and loss of cold, well-oxygenated habitat as lakes warm. Yet, cisco extirpations do not show a clear latitudinal pattern, suggesting that local environmental factors and potentially local adaptation may influence resilience. Here, we used genomic tools to investigate the nature of this pattern of resilience. We used restriction site-associated DNA capture (Rapture) sequencing to survey genomic diversity and differentiation in southern inland lake cisco populations and compared the frequency of deleterious mutations that potentially influence fitness across lakes. We also examined haplotype diversity in a region of the major histocompatibility complex involved in stress and immune system response. We correlated these metrics to spatial and environmental factors including latitude, lake size, and measures of oxythermal habitat and found significant relationships between genetic metrics and broad and local factors. High levels of genetic differentiation among populations were punctuated by a phylogeographic break and residual patterns of isolation-by-distance. Although the prevalence of deleterious mutations and inbreeding coefficients was significantly correlated with latitude, neutral and non-neutral genetic diversity were most strongly correlated with lake surface area. Notably, differences among lakes in the availability of estimated oxythermal habitat left no clear population genomic signature. Our results shed light on the complex dynamics influencing these isolated populations and provide valuable information for their conservation.
Collapse
Affiliation(s)
- Amanda S. Ackiss
- Wisconsin Cooperative Fishery Research UnitCollege of Natural ResourcesUniversity of Wisconsin‐Stevens PointStevens PointWisconsinUSA
- U.S. Geological SurveyGreat Lakes Science CenterAnn ArborMichiganUSA
| | | | - Greg G. Sass
- Escanaba Lake Research StationWisconsin Department of Natural ResourcesBoulder JunctionWisconsinUSA
| | - Keith Turnquist
- Wisconsin Cooperative Fishery Research UnitCollege of Natural ResourcesUniversity of Wisconsin‐Stevens PointStevens PointWisconsinUSA
| | - Peter B. McIntyre
- Department of Natural Resources and the EnvironmentCornell UniversityIthacaNew YorkUSA
| | - Wesley A. Larson
- U.S. Geological SurveyWisconsin Cooperative Fishery Research UnitCollege of Natural ResourcesUniversity of Wisconsin‐Stevens PointStevens PointWisconsinUSA
- National Oceanographic and Atmospheric AdministrationNational Marine Fisheries ServiceAlaska Fisheries Science CenterAuke Bay LaboratoriesJuneauAlaskaUSA
| |
Collapse
|
7
|
Gai Z, Zhai J, Chen X, Jiao P, Zhang S, Sun J, Qin R, Liu H, Wu Z, Li Z. Phylogeography Reveals Geographic and Environmental Factors Driving Genetic Differentiation of Populus sect. Turanga in Northwest China. FRONTIERS IN PLANT SCIENCE 2021; 12:705083. [PMID: 34456946 PMCID: PMC8385373 DOI: 10.3389/fpls.2021.705083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/14/2021] [Indexed: 05/28/2023]
Abstract
Populus sect. Turanga (hereafter referred to as "Populus"), including Populus euphratica and Populus pruinosa, are the predominant tree species in desert riparian forests in northwestern China. These trees play key roles in maintaining ecosystem balance, curbing desertification, and protecting biodiversity. However, the distribution area of Populus forests has been severely diminished and degraded in recent years due to increased habitat destruction and human activity. Understanding the genetic diversity among Populus individuals and populations is essential for designing conservation strategies, but comprehensive studies of their genetic diversity in northwest China are lacking. Here, we assessed the population structures and genetic diversity of 1,620 samples from 85 natural populations of Populus (59 P. euphratica and 26 P. pruinosa populations) covering all of northwestern China using 120 single nucleotide polymorphism (SNP) markers. Analysis of population structure revealed significant differentiation between these two sister species and indicated that strong geographical distribution patterns, a geographical barrier, and environmental heterogeneity shaped the extant genetic patterns of Populus. Both P. euphratica and P. pruinosa populations in southern Xinjiang had higher genetic diversity than populations in other clades, perhaps contributing to local geographic structure and strong gene flow. Analysis of molecular variance (AMOVA) identified 15% variance among and 85% variance within subpopulations. Mantel tests suggested that the genetic variation among P. euphratica and P. pruinosa populations could be explained by both geographical and environmental distance. The genetic diversity of P. euphratica showed a significant negative correlation with latitude and longitude and a positive correlation with various environmental factors, such as precipitation of warmest quarter and driest month, temperature seasonality, and annual mean temperature. These findings provide insights into how the genetic differentiation of endangered Populus species was driven by geographical and environmental factors, which should be helpful for designing strategies to protect these genetic resources in the future.
Collapse
Affiliation(s)
- Zhongshuai Gai
- Key Laboratory of Biological Resource Protection and Utilization of Tarim Basin, Xinjiang Production and Construction Group, Alar, China
- College of Life Sciences, Tarim University, Alar, China
- Desert Poplar Research Center of Tarim University, Alar, China
| | - Juntuan Zhai
- Key Laboratory of Biological Resource Protection and Utilization of Tarim Basin, Xinjiang Production and Construction Group, Alar, China
- College of Life Sciences, Tarim University, Alar, China
- Desert Poplar Research Center of Tarim University, Alar, China
| | - Xiangxiang Chen
- Key Laboratory of Biological Resource Protection and Utilization of Tarim Basin, Xinjiang Production and Construction Group, Alar, China
- College of Life Sciences, Tarim University, Alar, China
- Desert Poplar Research Center of Tarim University, Alar, China
| | - Peipei Jiao
- Key Laboratory of Biological Resource Protection and Utilization of Tarim Basin, Xinjiang Production and Construction Group, Alar, China
- College of Life Sciences, Tarim University, Alar, China
- Desert Poplar Research Center of Tarim University, Alar, China
| | - Shanhe Zhang
- Key Laboratory of Biological Resource Protection and Utilization of Tarim Basin, Xinjiang Production and Construction Group, Alar, China
- College of Life Sciences, Tarim University, Alar, China
- Desert Poplar Research Center of Tarim University, Alar, China
| | - Jianhao Sun
- Key Laboratory of Biological Resource Protection and Utilization of Tarim Basin, Xinjiang Production and Construction Group, Alar, China
- College of Life Sciences, Tarim University, Alar, China
- Desert Poplar Research Center of Tarim University, Alar, China
| | - Rui Qin
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Hong Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Zhihua Wu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Zhijun Li
- Key Laboratory of Biological Resource Protection and Utilization of Tarim Basin, Xinjiang Production and Construction Group, Alar, China
- College of Life Sciences, Tarim University, Alar, China
- Desert Poplar Research Center of Tarim University, Alar, China
| |
Collapse
|
8
|
Gehri RR, Gruenthal K, Larson WA. It's complicated: Heterogeneous patterns of genetic structure in five fish species from a fragmented river suggest multiple processes can drive differentiation. Evol Appl 2021; 14:2079-2097. [PMID: 34429750 PMCID: PMC8372089 DOI: 10.1111/eva.13268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 05/26/2021] [Indexed: 11/28/2022] Open
Abstract
Fragmentation of river systems by dams can have substantial genetic impacts on fish populations. However, genetic structure can exist naturally at small scales through processes other than isolation by physical barriers. We sampled individuals from five native fish species with varying life histories above and below a dam in the lower Boardman River, Michigan, USA, and used RADseq to investigate processes influencing genetic structure in this system. Species assessed were white sucker Catostomus commersonii, yellow perch Perca flavescens, walleye Sander vitreus, smallmouth bass Micropterus dolomieu, and rock bass Ambloplites rupestris. We detected significant differentiation within each species, but patterns of population structure varied substantially. Interestingly, genetic structure did not appear to be solely the result of fragmentation by the dam. While genetic structure in yellow perch and walleye generally coincided with "above dam" and "below dam" sampling locations, samples from our other three species did not. Specifically, samples from rock bass, smallmouth bass, and, to a much lesser extent, white sucker, aligned with a putative Great Lakes (GL) group that contained mostly individuals sampled below the dam and a putative Boardman River (BR) group that contained individuals sampled both above and below the dam, with some evidence of admixture among groups. We hypothesize that the GL and BR groups formed prior to dam construction and our samples largely represent a mixed stock that was sampled sympatrically outside of the spawning season. Support for this hypothesis is especially strong in smallmouth bass, where GL fish were 151 mm smaller than BR fish on average, suggesting a potential ontogenetic habitat shift of young GL fish into the lower river for feeding and/or refuge. Our study illuminates the complex dynamics shaping genetic structure in fragmented river systems and indicates that conclusions drawn for a single species cannot be generalized.
Collapse
Affiliation(s)
- Rebecca R. Gehri
- Wisconsin Cooperative Fishery Research UnitCollege of Natural ResourcesUniversity of Wisconsin‐Stevens PointStevens PointWIUSA
| | - Kristen Gruenthal
- Office of Applied ScienceWisconsin Department of Natural ResourcesCollege of Natural ResourcesUniversity of Wisconsin‐Stevens PointStevens PointWIUSA
- Alaska Department of Fish and GameGene Conservation LaboratoryJuneauAKUSA
| | - Wesley A. Larson
- U.S. Geological SurveyWisconsin Cooperative Fishery Research UnitCollege of Natural ResourcesUniversity of Wisconsin‐Stevens PointStevens PointWIUSA
- National Oceanographic and Atmospheric AdministrationNational Marine Fisheries ServiceAlaska Fisheries Science CenterAuke Bay LaboratoriesJuneauAKUSA
| |
Collapse
|
9
|
Kessler C, Brambilla A, Waldvogel D, Camenisch G, Biebach I, Leigh DM, Grossen C, Croll D. A robust sequencing assay of a thousand amplicons for the high-throughput population monitoring of Alpine ibex immunogenetics. Mol Ecol Resour 2021; 22:66-85. [PMID: 34152681 PMCID: PMC9292246 DOI: 10.1111/1755-0998.13452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 11/27/2022]
Abstract
Polymorphism for immune functions can explain significant variation in health and reproductive success within species. Drastic loss in genetic diversity at such loci constitutes an extinction risk and should be monitored in species of conservation concern. However, effective implementations of genome‐wide immune polymorphism sets into high‐throughput genotyping assays are scarce. Here, we report the design and validation of a microfluidics‐based amplicon sequencing assay to comprehensively capture genetic variation in Alpine ibex (Capra ibex). This species represents one of the most successful large mammal restorations recovering from a severely depressed census size and a massive loss in diversity at the major histocompatibility complex (MHC). We analysed 65 whole‐genome sequencing sets of the Alpine ibex and related species to select the most representative markers and to prevent primer binding failures. In total, we designed ~1,000 amplicons densely covering the MHC, further immunity‐related genes as well as randomly selected genome‐wide markers for the assessment of neutral population structure. Our analysis of 158 individuals shows that the genome‐wide markers perform equally well at resolving population structure as RAD‐sequencing or low‐coverage genome sequencing data sets. Immunity‐related loci show unexpectedly high degrees of genetic differentiation within the species. Such information can now be used to define highly targeted individual translocations. Our design strategy can be realistically implemented into genetic surveys of a large range of species. In conclusion, leveraging whole‐genome sequencing data sets to design targeted amplicon assays allows the simultaneous monitoring of multiple genetic risk factors and can be translated into species conservation recommendations.
Collapse
Affiliation(s)
- Camille Kessler
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Alice Brambilla
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland.,Alpine Wildlife Research Center, Gran Paradiso National Park, Italy
| | - Dominique Waldvogel
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland
| | - Glauco Camenisch
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland
| | - Iris Biebach
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland
| | - Deborah M Leigh
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland.,WSL Swiss Federal Research Institute, Birmensdorf, Switzerland
| | - Christine Grossen
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
10
|
Schweizer RM, Saarman N, Ramstad KM, Forester BR, Kelley JL, Hand BK, Malison RL, Ackiss AS, Watsa M, Nelson TC, Beja-Pereira A, Waples RS, Funk WC, Luikart G. Big Data in Conservation Genomics: Boosting Skills, Hedging Bets, and Staying Current in the Field. J Hered 2021; 112:313-327. [PMID: 33860294 DOI: 10.1093/jhered/esab019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/13/2021] [Indexed: 02/07/2023] Open
Abstract
A current challenge in the fields of evolutionary, ecological, and conservation genomics is balancing production of large-scale datasets with additional training often required to handle such datasets. Thus, there is an increasing need for conservation geneticists to continually learn and train to stay up-to-date through avenues such as symposia, meetings, and workshops. The ConGen meeting is a near-annual workshop that strives to guide participants in understanding population genetics principles, study design, data processing, analysis, interpretation, and applications to real-world conservation issues. Each year of ConGen gathers a diverse set of instructors, students, and resulting lectures, hands-on sessions, and discussions. Here, we summarize key lessons learned from the 2019 meeting and more recent updates to the field with a focus on big data in conservation genomics. First, we highlight classical and contemporary issues in study design that are especially relevant to working with big datasets, including the intricacies of data filtering. We next emphasize the importance of building analytical skills and simulating data, and how these skills have applications within and outside of conservation genetics careers. We also highlight recent technological advances and novel applications to conservation of wild populations. Finally, we provide data and recommendations to support ongoing efforts by ConGen organizers and instructors-and beyond-to increase participation of underrepresented minorities in conservation and eco-evolutionary sciences. The future success of conservation genetics requires both continual training in handling big data and a diverse group of people and approaches to tackle key issues, including the global biodiversity-loss crisis.
Collapse
Affiliation(s)
- Rena M Schweizer
- Division of Biological Sciences, University of Montana, Missoula, MT
| | - Norah Saarman
- Department of Biology, Utah State University, Logan, UT
| | - Kristina M Ramstad
- Department of Biology and Geology, University of South Carolina Aiken, Aiken, SC
| | | | - Joanna L Kelley
- School of Biological Sciences, Washington State University, Pullman, WA
| | - Brian K Hand
- Division of Biological Sciences, University of Montana, Missoula, MT.,Flathead Lake Biological Station, University of Montana, Polson, MT
| | - Rachel L Malison
- Flathead Lake Biological Station, University of Montana, Polson, MT
| | - Amanda S Ackiss
- Wisconsin Cooperative Fishery Research Unit, University of Wisconsin Stevens Point, Stevens Point, WI
| | | | | | - Albano Beja-Pereira
- Centro de Investigação em Biodiversidade e Recursos Genéticos (CIBIO-UP), InBIO, Universidade do Porto, Vairão, Portugal.,DGAOT, Faculty of Sciences, University of Porto, Porto, Portugal.,Sustainable Agrifood Production Research Centre (GreenUPorto), Faculty of Sciences, University of Porto, Porto, Portugal
| | - Robin S Waples
- Northwest Fisheries Science Center, NOAA Fisheries, Seattle, WA
| | - W Chris Funk
- Department of Biology, Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO
| | - Gordon Luikart
- Division of Biological Sciences, University of Montana, Missoula, MT.,Flathead Lake Biological Station, University of Montana, Polson, MT
| |
Collapse
|
11
|
Bootsma ML, Miller L, Sass GG, Euclide PT, Larson WA. The ghosts of propagation past: haplotype information clarifies the relative influence of stocking history and phylogeographic processes on contemporary population structure of walleye ( Sander vitreus). Evol Appl 2021; 14:1124-1144. [PMID: 33897825 PMCID: PMC8061267 DOI: 10.1111/eva.13186] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022] Open
Abstract
Stocking of fish is an important tool for maintaining fisheries but can also significantly alter population genetic structure and erode the portfolio of within-species diversity that is important for promoting resilience and adaptability. Walleye (Sander vitreus) are a highly valued sportfish in the midwestern United States, a region characterized by postglacial recolonization from multiple lineages and an extensive history of stocking. We leveraged genomic data and recently developed analytical approaches to explore the population structure of walleye from two midwestern states, Minnesota and Wisconsin. We genotyped 954 walleye from 23 populations at ~20,000 loci using genotyping by sequencing and tested for patterns of population structure with single-SNP and microhaplotype data. Populations from Minnesota and Wisconsin were highly differentiated from each other, with additional substructure found in each state. Population structure did not consistently adhere to drainage boundaries, as cases of high intra-drainage and low inter-drainage differentiation were observed. Low genetic structure was observed between populations from the upper Wisconsin and upper Chippewa river watersheds, which are found as few as 50 km apart and were likely homogenized through historical stocking. Nevertheless, we were able to differentiate these populations using microhaplotype-based co-ancestry analysis, providing increased resolution over previous microsatellite studies and our other single SNP-based analyses. Although our results illustrate that walleye population structure has been influenced by past stocking practices, native ancestry still exists in most populations and walleye populations may be able to purge non-native alleles and haplotypes in the absence of stocking. Our study is one of the first to use genomic tools to investigate the influence of stocking on population structure in a nonsalmonid fish and outlines a workflow leveraging recently developed analytical methods to improve resolution of complex population structure that will be highly applicable in many species and systems.
Collapse
Affiliation(s)
- Matthew L. Bootsma
- Wisconsin Cooperative Fishery Research UnitCollege of Natural ResourcesUniversity of Wisconsin‐Stevens PointStevens PointWIUSA
| | - Loren Miller
- Minnesota Department of Natural ResourcesUniversity of MinnesotaSt. PaulMNUSA
| | - Greg G. Sass
- Office of Applied ScienceWisconsin Department of Natural ResourcesEscanaba Lake Research StationBoulder JunctionWIUSA
| | - Peter T. Euclide
- Wisconsin Cooperative Fishery Research UnitCollege of Natural ResourcesUniversity of Wisconsin‐Stevens PointStevens PointWIUSA
| | - Wesley A. Larson
- U.S. Geological SurveyWisconsin Cooperative Fishery Research UnitCollege of Natural ResourcesUniversity of Wisconsin‐Stevens PointStevens PointWIUSA
- Present address:
Ted Stevens Marine Research InstituteAlaska Fisheries Science CenterNational Marine Fisheries ServiceNational Oceanic and Atmospheric AdministrationJuneauAKUSA
| |
Collapse
|
12
|
Gruenthal KM, Larson WA. Efficient genotyping with backwards compatibility: converting a legacy microsatellite panel for muskellunge (Esox masquinongy) to genotyping-by-sequencing chemistry. CONSERV GENET RESOUR 2021. [DOI: 10.1007/s12686-020-01185-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Jo J, Kim Y, Kim GW, Kwon JK, Kang BC. Development of a Panel of Genotyping-in-Thousands by Sequencing in Capsicum. FRONTIERS IN PLANT SCIENCE 2021; 12:769473. [PMID: 34764974 PMCID: PMC8576353 DOI: 10.3389/fpls.2021.769473] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/07/2021] [Indexed: 05/05/2023]
Abstract
Genotyping by sequencing (GBS) enables genotyping of multiple loci at low cost. However, the single nucleotide polymorphisms (SNPs) revealed by GBS tend to be randomly distributed between individuals, limiting their direct comparisons without applying the various filter options to obtain a comparable dataset of SNPs. Here, we developed a panel of a multiplex targeted sequencing method, genotyping-in-thousands by sequencing (GT-seq), to genotype SNPs in Capsicum spp. Previously developed Fluidigm® SNP markers were converted to GT-seq markers and combined with new GT-seq markers developed using SNP information obtained through GBS. We then optimized multiplex PCR conditions: we obtained the highest genotyping rate when the first PCR consisted of 25 cycles. In addition, we determined that 101 primer pairs performed best when amplifying target sequences of 79 bp. We minimized interference of multiplex PCR by primer dimer formation using the PrimerPooler program. Using our GT-seq pipeline on Illumina Miseq and Nextseq platforms, we genotyped up to 1,500 (Miseq) and 1,300 (Nextseq) samples for the optimum panel size of 100 loci. To allow the genotyping of Capsicum species, we designed 332 informative GT-seq markers from Fluidigm SNP markers and GBS-derived SNPs. This study illustrates the first application of GT-seq in crop plants. The GT-seq marker set developed here will be a useful tool for molecular breeding of peppers in the future.
Collapse
|