1
|
Zhang Y, Li Y, Shan Y, Han H, Bai P, Xu L, Zhao Q, Liu N, Wang Y, Wang Y, Ga L, Xu L, Gao S, Lin K. A chromosome-level genome assembly of beet webworm, Loxostege sticticalis Linnaeus (Lepidoptera: Pyralidae). Sci Data 2025; 12:869. [PMID: 40419506 DOI: 10.1038/s41597-025-04371-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 01/01/2025] [Indexed: 05/28/2025] Open
Abstract
The beet webworm, Loxostege sticticalis Linnaeus (Lepidoptera, Pyralidae), is a major pest in agriculture and livestock production. However, the L. sticticalis genome has not yet been sequenced, limiting exploration of its biological features and population genetics. In this study, the genome of L. sticticalis was sequenced on the Illumina Novaseq. 6000 and PacBio Sequel II platforms, and chromosome conformation capture (Hi-C) methods were used to generate the high-quality chromosome-level genome, assessed at 98.7% by the Benchmarking Universal Single-Copy Orthologs (BUSCO) tool. The L. sticticalis genome showed an assembly of 485.9 Mb with a contig N50 of 16.4 Mb, a scaffold N50 of 16.6 Mb, and a GC content of 37.85%, with over 98.67% of the assembled bases located on 31 chromosomes. Repeat sequences accounted for 41.71% of the genome and 15 913 protein-coding genes were identified. Comparison of the genome of L. sticticalis with other closely related species indicated high chromosomal synteny. The sequencing of this genome contributes to research on the genetics and evolution of the Lepidoptera.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research of Chinese Academy of Agricultural Sciences, Hohhot, 010010, P. R. China
| | - Yanyan Li
- Research Center for Grassland Entomology, Inner Mongolia Agricultural University, Hohhot, 010020, P. R. China
| | - Yanmin Shan
- Inner Mongolia Forestry and Grassland Pest Control and Qurantine, Hohhot, 010051, P. R. China
| | - Haibin Han
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research of Chinese Academy of Agricultural Sciences, Hohhot, 010010, P. R. China
| | - Penghua Bai
- Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin, 300384, P. R. China
| | - Linbo Xu
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research of Chinese Academy of Agricultural Sciences, Hohhot, 010010, P. R. China
| | - Qing Zhao
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research of Chinese Academy of Agricultural Sciences, Hohhot, 010010, P. R. China
| | - Ningyun Liu
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research of Chinese Academy of Agricultural Sciences, Hohhot, 010010, P. R. China
| | - Yuanyuan Wang
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research of Chinese Academy of Agricultural Sciences, Hohhot, 010010, P. R. China
| | - Ying Wang
- Ordos Natural Resources Bureau Kangbashi Branch, Ordos, 017010, P. R. China
| | - Liwa Ga
- Inner Mongolia Forestry and Grassland Pest Control and Qurantine, Hohhot, 010051, P. R. China
| | - Lei Xu
- Nanjing Genepioneer Biotechnologies Co., Ltd., Nanjing, 210000, P. R. China
| | - Shujing Gao
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research of Chinese Academy of Agricultural Sciences, Hohhot, 010010, P. R. China.
| | - Kejian Lin
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research of Chinese Academy of Agricultural Sciences, Hohhot, 010010, P. R. China.
| |
Collapse
|
2
|
Xiong M, Cheng R, He B, Wu CS, Zhu CD, Luo A, Zhou QS. Chromosome-level genome assembly of Parotis chlorochroalis (Lepidoptera: Crambidae: Spilomelinae). Sci Data 2025; 12:743. [PMID: 40328770 PMCID: PMC12056075 DOI: 10.1038/s41597-025-05053-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 04/23/2025] [Indexed: 05/08/2025] Open
Abstract
Parotis Hübner, 1831 is a genus within the family Crambidae, which is recognized as one of the most diverse families of Lepidoptera. Species within the genus Parotis can be readily distinguished from other closely related genera by their distinctive green or yellow-green body coloration. However, the genus Parotis has received relatively limited research attention, and the scarcity of genome-wide molecular resources has impeded a more comprehensive understanding of its evolution, adaptation, and phylogenetic relationships. This study reports the first genome assembly for Parotis chlorochroalis (Hampson, 1912), generated through PacBio Hi-Fi and Hi-C sequencing technologies. The assembled genome has a size of 456.23 Mb, comprising 31 chromosomes. Approximately 181.82 Mb, which constitutes 39.85% of the genome, has been identified as repetitive sequences. The genome assembly includes 16,299 protein-coding genes, of which 94.82% have been functionally annotated. This chromosome-level genome assembly not only advance understanding of P. chlorochroalis but also has the potential to facilitate genomic studies of other lepidopteran species.
Collapse
Affiliation(s)
- Mei Xiong
- State Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rui Cheng
- State Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bo He
- School of Life Sciences, Jinggangshan University, Ji'an, Jiangxi, 343009, China
| | - Chun-Sheng Wu
- State Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chao-Dong Zhu
- State Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Arong Luo
- State Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Qing-Song Zhou
- State Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
3
|
He B, Zuo Z, Xu H, He K, Li F, Liu Y. Deep Insight into the genome of a major rice pest, Scripophaga incertulas. Sci Data 2025; 12:642. [PMID: 40240760 PMCID: PMC12003773 DOI: 10.1038/s41597-025-04867-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
The yellow stem borer, Scripophaga incertulas (Crambidae, Lepidoptera), is a highly destructive pest damaging rice crops. Here, we combined Illumina, PacBio sequencing and Hi-C scaffolding to generate a high-quality chromosome-level genome assembly of S. incertulas. We initially obtained an 839.78 Mb assembly with scoffold N50 of 1.13 Mb. Benchmarking Universal Single-Copy Orthologs (BUSCO) analysis demonstrated that this genome assembly has a high-level completeness of 97.5% gene coverage. The assembly contained 45.67% repetitive sequences (383.50 Mb), and has been annotated with 19,874 protein-coding genes. Next, 3,369 scaffolds were anchored to 26 chromosomes, resulting in an increase of the N50 to 32.16 Mb. Our research provides insights into the evolution and ecology of S. incertulas, offering valuable resources for future pest management.
Collapse
Affiliation(s)
- Bingbing He
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects & Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Zhangqi Zuo
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects & Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Hongxing Xu
- State Key Laboratory for Quality and Safety of Agro - Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| | - Kang He
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects & Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China.
| | - Fei Li
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects & Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Ying Liu
- Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests of Yunnan Province and Agricultural Environment/ Agriculture Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China.
| |
Collapse
|
4
|
Yu XR, Chen X, Bai QR, Mu MY, Tang LD, Smagghe G, Zang LS. Chromosome-level genome assembly and sex chromosome identification of the pink stem borer, Sesamia inferens (Lepidoptera: Noctuidae). Sci Data 2024; 11:810. [PMID: 39039110 PMCID: PMC11263549 DOI: 10.1038/s41597-024-03625-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 07/09/2024] [Indexed: 07/24/2024] Open
Abstract
The pink stem borer, Sesamia inferens Walker (Lepidoptera: Noctuidae), is one of the most notorious pest insects of rice and maize crops in the world. Here, we generated a high-quality chromosome-level genome assembly of S. inferens, using a combination of Illumina, PacBio HiFi and Hi-C technologies. The total assembly size was 973.18 Mb with a contig N50 of 33.39 Mb, anchored to 31 chromosomes, revealing a karyotype of 30 + Z. The BUSCO analysis indicated a high completeness of 98.90% (n = 5286), including 5172 (97.8%) single-copy BUSCOs and 58 (1.1%) duplicated BUSCOs. The genome contains 58.59% (564.58 Mb) repeat elements and 26628 predicted protein-coding genes. The chromosome-level genome assembly of S. inferens provides in-depth knowledge and will be a helpful resource for the Lepidoptera and pest control research communities.
Collapse
Affiliation(s)
- Xiao-Rui Yu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Xu Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Qing-Rong Bai
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
| | | | - Liang-De Tang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Guy Smagghe
- Institute of Entomology, Guizhou University, Guiyang, 550025, China
| | - Lian-Sheng Zang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
5
|
Han MJ, Luo C, Hu H, Lin M, Lu K, Shen J, Ren J, Ye Y, Westhof E, Tong X, Dai F. Multiple independent origins of the female W chromosome in moths and butterflies. SCIENCE ADVANCES 2024; 10:eadm9851. [PMID: 38896616 PMCID: PMC11186504 DOI: 10.1126/sciadv.adm9851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
Lepidoptera, the most diverse group of insects, exhibit female heterogamy (Z0 or ZW), which is different from most other insects (male heterogamy, XY). Previous studies suggest a single origin of the Z chromosome. However, the origin of the lepidopteran W chromosome remains poorly understood. Here, we assemble the genome from females down to the chromosome level of a model insect (Bombyx mori) and identify a W chromosome of approximately 10.1 megabase using a newly developed tool. In addition, we identify 3593 genes that were not previously annotated in the genomes of B. mori. Comparisons of 21 lepidopteran species (including 17 ZW and four Z0 systems) and three trichopteran species (Z0 system) reveal that the formation of Ditrysia W involves multiple mechanisms, including previously proposed canonical and noncanonical models, as well as a newly proposed mechanism called single-Z turnover. We conclude that there are multiple independent origins of the W chromosome in the Ditrysia (most moths and all butterflies) of Lepidoptera.
Collapse
Affiliation(s)
- Min-Jin Han
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Chaorui Luo
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Hai Hu
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Meixing Lin
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Kunpeng Lu
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Jianghong Shen
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Jianyu Ren
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Yanzhuo Ye
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Eric Westhof
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
- Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire, UPR9002 CNRS, Université de Strasbourg, Strasbourg 67084, France
| | - Xiaoling Tong
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Fangyin Dai
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
6
|
Liu Y, Chen X, Yin Y, Li X, He K, Zhao X, Li X, Luo X, Mei Y, Wang Z, Shu R, Cheng Z, Gebretsadik KG, Luo C, Wang R, Lv Y, Chen A, Li F. A chromosome-level genome assembly of tomato pinworm, Tuta absoluta. Sci Data 2023; 10:390. [PMID: 37330594 PMCID: PMC10276875 DOI: 10.1038/s41597-023-02299-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 06/09/2023] [Indexed: 06/19/2023] Open
Abstract
The tomato pinworm, Tuta absoluta, or Phthorimaea absouta, is native to South America, but quickly spread to other regions of world, including Europe, Africa, and Asia, devastating to global tomato production. However, a lack of high-quality genome resources makes it difficult to understand its high invasiveness and ecological adaptation. Here, we sequenced the genome of the tomato pinworm using Nanopore platforms, yielding a genome assembly of 564.5 Mb with contig N50 of 3.33 Mb. BUSCO analysis demonstrated that this genome assembly has a high-level completeness of 98.0% gene coverage. In total, 310 Mb are repeating sequences accounting for 54.8% of genome assembly, and 21,979 protein-coding genes are annotated. Next, we used the Hi-C technique to anchor 295 contigs to 29 chromosomes, yielding a chromosome-level genome assembly with a scaffold N50 of 20.7 Mb. In sum, the high-quality genome assembly of the tomato pinworm is a useful gene resource that contributes to a better understanding of the biological characteristics of its invasiveness and will help in developing an efficient control policy.
Collapse
Affiliation(s)
- Ying Liu
- Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests of Yunnan Province and Agricultural Environment/ Agriculture Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China.
| | - Xi Chen
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects & Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yanqiong Yin
- Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests of Yunnan Province and Agricultural Environment/ Agriculture Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China
| | - Xiaowei Li
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Kang He
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects & Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xueqing Zhao
- Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests of Yunnan Province and Agricultural Environment/ Agriculture Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China
| | - Xiangyong Li
- Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests of Yunnan Province and Agricultural Environment/ Agriculture Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China
| | - Xiyan Luo
- Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests of Yunnan Province and Agricultural Environment/ Agriculture Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China
| | - Yang Mei
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects & Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zuoqi Wang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects & Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Runguo Shu
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects & Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ziqi Cheng
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects & Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Kifle Gebreegziabiher Gebretsadik
- Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests of Yunnan Province and Agricultural Environment/ Agriculture Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China
- Tigray Agricultural Research Institute (TARI), Mek'ele, Tigray, +492, Ethiopia
| | - Chen Luo
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Ran Wang
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Yaobin Lv
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Aidong Chen
- Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests of Yunnan Province and Agricultural Environment/ Agriculture Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China.
| | - Fei Li
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects & Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
7
|
Liu K, Chen Q, Huang GH. An Efficient Feature Selection Algorithm for Gene Families Using NMF and ReliefF. Genes (Basel) 2023; 14:421. [PMID: 36833348 PMCID: PMC9957060 DOI: 10.3390/genes14020421] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/10/2023] Open
Abstract
Gene families, which are parts of a genome's information storage hierarchy, play a significant role in the development and diversity of multicellular organisms. Several studies have focused on the characteristics of gene families, such as function, homology, or phenotype. However, statistical and correlation analyses on the distribution of gene family members in the genome have yet to be conducted. Here, a novel framework incorporating gene family analysis and genome selection based on NMF-ReliefF is reported. Specifically, the proposed method starts by obtaining gene families from the TreeFam database and determining the number of gene families within the feature matrix. Then, NMF-ReliefF is used to select features from the gene feature matrix, which is a new feature selection algorithm that overcomes the inefficiencies of traditional methods. Finally, a support vector machine is utilized to classify the acquired features. The results show that the framework achieved an accuracy of 89.1% and an AUC of 0.919 on the insect genome test set. We also employed four microarray gene data sets to evaluate the performance of the NMF-ReliefF algorithm. The outcomes show that the proposed method may strike a delicate balance between robustness and discrimination. Additionally, the proposed method's categorization is superior to state-of-the-art feature selection approaches.
Collapse
Affiliation(s)
- Kai Liu
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road, Furong District, Changsha 410128, China
- College of Information and Intelligence, Hunan Agricultural University, Changsha 410128, China
| | - Qi Chen
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road, Furong District, Changsha 410128, China
| | - Guo-Hua Huang
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road, Furong District, Changsha 410128, China
| |
Collapse
|
8
|
Law STS, Nong W, So WL, Baril T, Swale T, Chan CB, Tobe SS, Kai ZP, Bendena WG, Hayward A, Hui JHL. Chromosomal-level reference genome of the moth Heortia vitessoides (Lepidoptera: Crambidae), a major pest of agarwood-producing trees. Genomics 2022; 114:110440. [PMID: 35905835 DOI: 10.1016/j.ygeno.2022.110440] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/13/2022] [Accepted: 07/24/2022] [Indexed: 11/04/2022]
Abstract
The moth Heortia vitessoides Moore (Lepidoptera: Crambidae) is a major pest of ecologically, commercially and culturally important agarwood-producing trees in the genus Aquilaria. In particular, H. vitessoides is one of the most destructive defoliating pests of the incense tree Aquilaria sinesis, which produces a valuable fragrant wood used as incense and in traditional Chinese medicine [33]. Nevertheless, a genomic resource for H. vitessoides is lacking. Here, we present a chromosomal-level assembly for H. vitessoides, consisting of a 517 megabase (Mb) genome assembly with high physical contiguity (scaffold N50 of 18.2 Mb) and high completeness (97.9% complete BUSCO score). To aid gene annotation, 8 messenger RNA transcriptomes from different developmental stages were generated, and a total of 16,421 gene models were predicted. Expansion of gene families involved in xenobiotic metabolism and development were detected, including duplications of cytosolic sulfotransferase (SULT) genes shared among lepidopterans. In addition, small RNA sequencing of 5 developmental stages of H. vitessoides facilitated the identification of 85 lepidopteran conserved microRNAs, 94 lineage-specific microRNAs, as well as several microRNA clusters. A large proportion of the H. vitessoides genome consists of repeats, with a 29.12% total genomic contribution from transposable elements, of which long interspersed nuclear elements (LINEs) are the dominant component (17.41%). A sharp decrease in the genome-wide percentage of LINEs with lower levels of genetic distance to family consensus sequences suggests that LINE activity has peaked in H. vitessoides. In contrast, opposing patterns suggest a substantial recent increase in DNA and LTR element activity. Together with annotations of essential sesquiterpenoid hormonal pathways, neuropeptides, microRNAs and transposable elements, the high-quality genomic and transcriptomic resources we provide for the economically important moth H. vitessoides provide a platform for the development of genomic approaches to pest management, and contribute to addressing fundamental research questions in Lepidoptera.
Collapse
Affiliation(s)
- Sean T S Law
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China.
| | - Wenyan Nong
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Wai Lok So
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | | | | | - Chi Bun Chan
- School of Biological Science, The University of Hong Kong, Hong Kong, China
| | - Stephen S Tobe
- Department of Cell and Systems Biology, University of Toronto, Canada
| | - Zhen-Peng Kai
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | | | | | - Jerome H L Hui
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
9
|
Chen X, Zhu W, Wang B, Wang Y, You P. A chromosome-level genome assembly of Paracymoriza distinctalis (Lepidoptera: Crambidae: Acentropinae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 110:e21883. [PMID: 35294789 DOI: 10.1002/arch.21883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/20/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Paracymoriza distinctalis is a semiaquatic lepidopteran insect, which is of great value for studying the differentiation of the Pyraloidea superfamily. However, the understanding of heredity, evolution, and functional genomics of P. distinctalis are limited by few genome-wide resources. Here, we applied PacBio sequencing and the chromosome capture technique to assemble the first P. distinctalis genome from a single female individual. The genome size is 1.2 Gb with 32 chromosomes and the N50 is 38.91 Mb. Approximately 576.37 Mb, accounting for 48.93% of the genome, was identified as repeats. The genome comprises 39,003 protein-coding genes, 66.56% of which were functionally annotated. Comparative genomics analysis suggested that the common ancestor of P. distinctalis and Chilo suppressalis lived ~83.5 million years ago. This chromosome-level genome assembly work is not only conducive to the understanding of P. distinctalis, but also may promote the study of the genomes of other lepidopteran species.
Collapse
Affiliation(s)
- Xiaoning Chen
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
- Shaanxi Key Laboratory for Animal Conservation, Shaanxi Institute of Zoology, Xi'an, Shaanxi, China
| | - Wenbo Zhu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Biao Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yuqi Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Ping You
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| |
Collapse
|