1
|
Varga Z, Kagan F, Maegawa S, Nagy Á, Okendo J, Burgess SM, Weinberg ES, Varga M. Transposon insertion causes ctnnb2 transcript instability that results in the maternal effect zebrafish ichabod ( ich) mutation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.28.640854. [PMID: 40093107 PMCID: PMC11908130 DOI: 10.1101/2025.02.28.640854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
The maternal-effect mutation ichabod (ich) results in ventralized zebrafish embryos due to impaired induction of the dorsal canonical Wnt-signaling pathway. While previous studies linked the phenotype to reduced ctnnb2 transcript levels, the causative mutation remained unidentified. Using long-read sequencing, we discovered that the ich phenotype stems from the insertion of a non-autonomous CMC-Enhancer/Suppressor-mutator (CMC-EnSpm) transposon in the 3'UTR of the gene. Through reporter assays, we demonstrate that while wild type ctnnb2 mRNAs exhibit remarkably high stability throughout the early stages of development, the insertion of the transposon dramatically reduces transcript stability. Genome-wide mapping of the CMC-EnSpm transposons across multiple zebrafish strains also indicated ongoing transposition activity in the zebrafish genome. Our findings not only resolve the molecular basis of the ich mutation but also highlight the continuing mutagenic potential of endogenous transposons and reveal unexpected aspects of maternal transcript regulation during early zebrafish development.
Collapse
Affiliation(s)
- Zsombor Varga
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Ferenc Kagan
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Shingo Maegawa
- Department of Intelligence Science and Technology, Graduate School of Informatics, Kyoto University, Japan
| | - Ágnes Nagy
- Hungarian Defence Forces Medical Centre, Budapest, Hungary
| | - Javan Okendo
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Shawn M Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Eric S Weinberg
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Máté Varga
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
2
|
Langan LM, Baettig CG, Cole AR, Lovin L, Scarlett K, Wronski AR, O'Brien ME, Shmaitelly Y, Brooks BW. Experimental reporting of fish transcriptomic responses in environmental toxicology and ecotoxicology. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025:vgae077. [PMID: 39965138 DOI: 10.1093/etojnl/vgae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 02/20/2025]
Abstract
Due to its increasing affordability and efforts to understand transcriptional responses of organisms to biotic and abiotic stimuli, transcriptomics has become an important tool with significant impact on toxicological investigations and hazard and risk assessments, especially during development and application of new approach methodologies (NAMs). Data generated using transcriptomic methodologies have directly informed adverse outcome pathway frameworks, chemical and biological read across, and aided in the identification of points of departure. Using data reporting frameworks for transcriptomics data offers improved transparency and reproducibility of research and an opportunity to identify barriers to adoption of these NAMs, especially in environmental toxicology and ecotoxicology with aquatic models. Improved reporting also allows for reexamination of existing data, limiting needs for experiment replication and further reducing animal experimentation. Here, we use a standardized form of data reporting for omics-based studies, the Organisation for Economic Co-operation and Development omics reporting framework, which specifically reports on a list of parameters that should be included in transcriptomics studies used in a regulatory context. We focused specifically on fish studies using RNA- Sequencing (Seq)/microarray technologies within a toxicology context. Inconsistencies in reporting and methodologies among the experimental designs (toxicology vs. molecular characterization) were observed in addition to foundational differences in reporting of sample concentration or preparation or quality assessments, which can affect reproducibility and read across, confidence in results, and contribute substantially to understanding molecular mechanisms of toxicants and toxins. Our findings present an opportunity for improved research reporting. We also provide several recommendations as logical steps to reduce barriers to adoption of transcriptomics within environmental toxicology and ecotoxicology.
Collapse
Affiliation(s)
- Laura M Langan
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, United States
| | - Camille G Baettig
- Department of Environmental Science, Baylor University, Waco, TX, United States
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, United States
| | - Alexander R Cole
- Department of Environmental Science, Baylor University, Waco, TX, United States
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, United States
| | - Lea Lovin
- Department of Environmental Science, Baylor University, Waco, TX, United States
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, United States
| | - Kendall Scarlett
- Department of Environmental Science, Baylor University, Waco, TX, United States
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, United States
| | - Adam R Wronski
- Department of Environmental Science, Baylor University, Waco, TX, United States
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, United States
| | - Megan E O'Brien
- Department of Environmental Science, Baylor University, Waco, TX, United States
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, United States
| | - Yesmeena Shmaitelly
- Department of Environmental Science, Baylor University, Waco, TX, United States
| | - Bryan W Brooks
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, United States
- Department of Environmental Science, Baylor University, Waco, TX, United States
- Department of Public Health, Baylor University, Waco, TX, United States
| |
Collapse
|
3
|
Tan KT, Slevin MK, Meyerson M, Li H. Identifying and correcting repeat-calling errors in nanopore sequencing of telomeres. Genome Biol 2022; 23:180. [PMID: 36028900 PMCID: PMC9414165 DOI: 10.1186/s13059-022-02751-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 08/16/2022] [Indexed: 12/27/2022] Open
Abstract
Nanopore long-read sequencing is an emerging approach for studying genomes, including long repetitive elements like telomeres. Here, we report extensive basecalling induced errors at telomere repeats across nanopore datasets, sequencing platforms, basecallers, and basecalling models. We find that telomeres in many organisms are frequently miscalled. We demonstrate that tuning of nanopore basecalling models leads to improved recovery and analysis of telomeric regions, with minimal negative impact on other genomic regions. We highlight the importance of verifying nanopore basecalls in long, repetitive, and poorly defined regions, and showcase how artefacts can be resolved by improvements in nanopore basecalling models.
Collapse
Affiliation(s)
- Kar-Tong Tan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Michael K Slevin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Matthew Meyerson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, MA, USA.
| | - Heng Li
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|