1
|
Zhang M, Tian Q, Liu J. Cannabinoid Receptor-2 agonist AM1241 Attenuates Myocardial Ischemia-Reperfusion-Induced Oxidative Stress in Rats via Nrf2/HO-1 Pathway. Med Princ Pract 2024; 33:597-606. [PMID: 39134017 PMCID: PMC11631038 DOI: 10.1159/000540751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/31/2024] [Indexed: 09/06/2024] Open
Abstract
OBJECTIVE The cannabinoid receptor-2 agonist AM1241 exhibits notable cardioprotective effects against myocardial infarction, positioning it as a promising therapeutic candidate for cardiovascular disease. This study explores AM1241's protective role in myocardial ischemia-reperfusion (IR) injury and its association with the Nrf2/HO-1 pathway. METHODS In an established Sprague-Dawley rat IR model, AM1241's impact on cardiac injury was assessed through echocardiography, 2,3,5-triphenyl tetrazolium chloride staining, and histological analysis. H9c2 cells underwent hypoxia-reoxygenation, with AM1241's influence on cell viability determined by the CCK-8 assay. Reactive oxygen species (ROS) production was measured using the DCFH-DA assay, and Nrf2 and HO-1 protein expressions were evaluated through immunofluorescence and Western blot. RESULTS Myocardial ischemia-reperfusion injury (MIRI) increased infarct size, inflammatory cell presence, oxidative and nitrosative stress, impaired cardiac function, and elevated apoptosis rates. AM1241 mitigated these effects, enhancing cell viability, reducing ROS production, and upregulating Nrf2 and HO-1 expression. The antioxidant effect of AM1241 was inhibited by ML385 intervention. CONCLUSIONS AM1241 attenuates oxidative stress, alleviates MIRI, and activates the Nrf2/HO-1 signaling pathway, underscoring its potential as a therapeutic strategy for MIRI.
Collapse
Affiliation(s)
- Mingxiao Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qingxin Tian
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianlong Liu
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
2
|
Wang H, Han J, Dmitrii G, Zhang XA. Potential Targets of Natural Products for Improving Cardiac Ischemic Injury: The Role of Nrf2 Signaling Transduction. Molecules 2024; 29:2005. [PMID: 38731496 PMCID: PMC11085255 DOI: 10.3390/molecules29092005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Myocardial ischemia is the leading cause of health loss from cardiovascular disease worldwide. Myocardial ischemia and hypoxia during exercise trigger the risk of sudden exercise death which, in severe cases, will further lead to myocardial infarction. The Nrf2 transcription factor is an important antioxidant regulator that is extensively engaged in biological processes such as oxidative stress, inflammatory response, apoptosis, and mitochondrial malfunction. It has a significant role in the prevention and treatment of several cardiovascular illnesses, since it can control not only the expression of several antioxidant genes, but also the target genes of associated pathological processes. Therefore, targeting Nrf2 will have great potential in the treatment of myocardial ischemic injury. Natural products are widely used to treat myocardial ischemic diseases because of their few side effects. A large number of studies have shown that the Nrf2 transcription factor can be used as an important way for natural products to alleviate myocardial ischemia. However, the specific role and related mechanism of Nrf2 in mediating natural products in the treatment of myocardial ischemia is still unclear. Therefore, this review combs the key role and possible mechanism of Nrf2 in myocardial ischemic injury, and emphatically summarizes the significant role of natural products in treating myocardial ischemic symptoms, thus providing a broad foundation for clinical transformation.
Collapse
Affiliation(s)
- Haixia Wang
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China; (H.W.); (J.H.)
| | - Juanjuan Han
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China; (H.W.); (J.H.)
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai 200438, China
| | - Gorbachev Dmitrii
- General Hygiene Department, Samara State Medical University, Samara 443000, Russia;
| | - Xin-an Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China; (H.W.); (J.H.)
| |
Collapse
|
3
|
Ye D, He J, He X. The role of bile acid receptor TGR5 in regulating inflammatory signalling. Scand J Immunol 2024; 99:e13361. [PMID: 38307496 DOI: 10.1111/sji.13361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/12/2023] [Accepted: 01/18/2024] [Indexed: 02/04/2024]
Abstract
Takeda G protein-coupled receptor 5 (TGR5) is a bile acid receptor, and its role in regulating metabolism after binding with bile acids has been established. Since the immune response depends on metabolism to provide biomolecules and energy to cope with challenging conditions, emerging evidence reveals the regulatory effects of TGR5 on the immune response. An in-depth understanding of the effect of TGR5 on immune regulation can help us disentangle the interaction of metabolism and immune response, accelerating the development of TGR5 as a therapeutic target. Herein, we reviewed more than 200 articles published in the last 20 years in PubMed, to discuss the roles of TGR5 in regulating inflammatory response, the molecular mechanism, as well as existing problems. Particularly, its anti-inflammation effect is emphasized.
Collapse
Affiliation(s)
- Daijiao Ye
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jiayao He
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xiaofei He
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- The Key Laboratory of Pediatric Hematology and Oncology Disease of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| |
Collapse
|
4
|
Hassan AES, Hadhoud S, Elmahdi E, Elkattawy HA. Potential Cardioprotective Role of Menaquinone-4 Against Cardiac Ischemia-reperfusion Injury. J Cardiovasc Pharmacol 2023; 81:381-388. [PMID: 36857749 DOI: 10.1097/fjc.0000000000001413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 02/10/2023] [Indexed: 03/03/2023]
Abstract
ABSTRACT Myocardial infarction is among the leading causes of mortality. Menaquinone-4 (MK-4), a vitamin K2 analog, might play a role in rescuing cardiac ischemia/reperfusion (I/R) injury. This work aimed to discover the potential cardioprotective role of MK-4 against myocardial I/R injury in rats. Thirty-two rats were categorized into 3 groups: (I/R) control group: subjected to I/R protocol (received vehicle), MK-4 preconditioning group: MK-4 infusion for 20 minutes before the I/R protocol, and MK-4 postconditioning group: MK-4 infusion for 20 minutes at the start of the reperfusion phase. The hearts were placed in the Langendorff apparatus, and the left ventricular developed pressure (LVDP), heart rate (HR), + (LV dP/dt) max, - (LV dP/dt) max, and Tau were calculated. The necrotic mass was determined by staining it with nitro blue tetrazolium. Creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and C- reactive protein (CRP), as well as cardiac superoxide dismutase (SOD), nitric oxide (NOx), malondialdehyde (MDA), and glutathione (GSH) levels were all evaluated. MK-4 postconditioning significantly reduced myocardial infarct size; increased LVDP, + (LV dp/dt) max, - (LV dp/dt) max, and HR; reduced Tau, CK-MB, LDH, CRP, IL-6, TNF-α, MDA, and NOx levels; and increased SOD activity, whereas no significant difference in the GSH level was detected. In conclusion, these data imply that MK-4 may protect the heart from the consequences of I/R.
Collapse
Affiliation(s)
- Ahmed El-Sayed Hassan
- Department of Medical Physiology, College of Medicine, Zagazig University, Zagazig, Egypt
- Department of Basic Medical Sciences, College of Medicine, Sulaiman AlRajhi University, Bukairiyah, Al-Qassim, Saudi Arabia
| | - Shimaa Hadhoud
- Department of Medical Physiology, College of Medicine, Zagazig University, Zagazig, Egypt
| | - Essam Elmahdi
- Department of Internal Medicine, College of Medicine, Mansoura University, Egypt
- Department of Internal Medicine, College of Medicine, Shaqra University, Dawadmi, KSA; and
| | - Hany A Elkattawy
- Department of Medical Physiology, College of Medicine, Zagazig University, Zagazig, Egypt
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Mahdiani S, Omidkhoda N, Rezaee R, Heidari S, Karimi G. Induction of JAK2/STAT3 pathway contributes to protective effects of different therapeutics against myocardial ischemia/reperfusion. Biomed Pharmacother 2022; 155:113751. [PMID: 36162372 DOI: 10.1016/j.biopha.2022.113751] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/25/2022] Open
Abstract
Insufficiency in coronary blood supply results in myocardial ischemia and consequently, various clinical syndromes and irreversible injuries. Myocardial damage occurs as a result of two processes during acute myocardial infarction (MI): ischemia and subsequent reperfusion. According to the available evidence, oxidative stress, excessive inflammation reaction, reactive oxygen species (ROS) generation, and apoptosis are crucial players in the pathogenesis of myocardial ischemia/reperfusion (IR) injury. There is emerging evidence that Janus tyrosine kinase 2 (JAK2) signal transducer and activator of the transcription 3 (STAT3) pathway offers cardioprotection against myocardial IR injury. This article reviews therapeutics that exert cardioprotective effects against myocardial IR injury through induction of JAK2/STAT3 pathway.
Collapse
Affiliation(s)
- Sina Mahdiani
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Navid Omidkhoda
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramin Rezaee
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shadi Heidari
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Targeting the TLR4/NF-κΒ Axis and NLRP1/3 Inflammasomes by Rosuvastatin: A Role in Impeding Ovariectomy-Induced Cognitive Decline Neuropathology in Rats. Mol Neurobiol 2022; 59:4562-4577. [PMID: 35578102 DOI: 10.1007/s12035-022-02852-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/25/2022] [Indexed: 01/29/2023]
Abstract
Postmenopausal hormone-related cognitive decline has gained an immense interest to explore the underlying mechanisms and potential therapies. The current work aimed to study the possible beneficial effect of rosuvastatin (ROS) on the cognitive decline induced by ovariectomy in rats. Four groups were used as follows: control group, control + rosuvastatin, ovariectomy, and ovariectomy + rosuvastatin. After sham operation or ovariectomy, rats were given saline or oral dosages of ROS (2 mg/kg) every day for 30 days. The cognitive functions were assessed using the Morris water maze paradigm, Y-maze test, and new object recognition test. After rat killing, TLR4, caspase-8, and NLRP mRNA expression and protein levels of ASC, AIM2, caspase-1, NLRP1, and PKR were measured in hippocampus. This was complemented by the estimation of tissue content of NF-κΒ, IL-1β, and IL-18 and serum lipid profile quantification. Rosuvastatin showed a promising potential for halting the cognitive impairments induced by estrogen decline through interfering with the TLR4/NF-κΒ/NLRP1/3 axis and inflammasomes activation and the subsequent pyroptosis. This was complemented by the amendment in the deranged lipid profile. Rosuvastatin may exert a beneficial role in attenuating the inflammatory and apoptotic signaling mechanisms associated with postmenopausal cognitive decline. Further investigations are needed to unveil the relationship between deranged plasma lipids and cognitive function.
Collapse
|
7
|
Antioxidant Cardioprotection against Reperfusion Injury: Potential Therapeutic Roles of Resveratrol and Quercetin. Molecules 2022; 27:molecules27082564. [PMID: 35458766 PMCID: PMC9027566 DOI: 10.3390/molecules27082564] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/06/2022] [Accepted: 04/12/2022] [Indexed: 12/14/2022] Open
Abstract
Ischemia-reperfusion myocardial damage is a paradoxical tissue injury occurring during percutaneous coronary intervention (PCI) in acute myocardial infarction (AMI) patients. Although this damage could account for up to 50% of the final infarct size, there has been no available pharmacological treatment until now. Oxidative stress contributes to the underlying production mechanism, exerting the most marked injury during the early onset of reperfusion. So far, antioxidants have been shown to protect the AMI patients undergoing PCI to mitigate these detrimental effects; however, no clinical trials to date have shown any significant infarct size reduction. Therefore, it is worthwhile to consider multitarget antioxidant therapies targeting multifactorial AMI. Indeed, this clinical setting involves injurious effects derived from oxygen deprivation, intracellular pH changes and increased concentration of cytosolic Ca2+ and reactive oxygen species, among others. Thus, we will review a brief overview of the pathological cascades involved in ischemia-reperfusion injury and the potential therapeutic effects based on preclinical studies involving a combination of antioxidants, with particular reference to resveratrol and quercetin, which could contribute to cardioprotection against ischemia-reperfusion injury in myocardial tissue. We will also highlight the upcoming perspectives of these antioxidants for designing future studies.
Collapse
|
8
|
Hatami S, Hefler J, Freed DH. Inflammation and Oxidative Stress in the Context of Extracorporeal Cardiac and Pulmonary Support. Front Immunol 2022; 13:831930. [PMID: 35309362 PMCID: PMC8931031 DOI: 10.3389/fimmu.2022.831930] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
Extracorporeal circulation (ECC) systems, including cardiopulmonary bypass, and extracorporeal membrane oxygenation have been an irreplaceable part of the cardiothoracic surgeries, and treatment of critically ill patients with respiratory and/or cardiac failure for more than half a century. During the recent decades, the concept of extracorporeal circulation has been extended to isolated machine perfusion of the donor organ including thoracic organs (ex-situ organ perfusion, ESOP) as a method for dynamic, semi-physiologic preservation, and potential improvement of the donor organs. The extracorporeal life support systems (ECLS) have been lifesaving and facilitating complex cardiothoracic surgeries, and the ESOP technology has the potential to increase the number of the transplantable donor organs, and to improve the outcomes of transplantation. However, these artificial circulation systems in general have been associated with activation of the inflammatory and oxidative stress responses in patients and/or in the exposed tissues and organs. The activation of these responses can negatively affect patient outcomes in ECLS, and may as well jeopardize the reliability of the organ viability assessment, and the outcomes of thoracic organ preservation and transplantation in ESOP. Both ECLS and ESOP consist of artificial circuit materials and components, which play a key role in the induction of these responses. However, while ECLS can lead to systemic inflammatory and oxidative stress responses negatively affecting various organs/systems of the body, in ESOP, the absence of the organs that play an important role in oxidant scavenging/antioxidative replenishment of the body, such as liver, may make the perfused organ more susceptible to inflammation and oxidative stress during extracorporeal circulation. In the present manuscript, we will review the activation of the inflammatory and oxidative stress responses during ECLP and ESOP, mechanisms involved, clinical implications, and the interventions for attenuating these responses in ECC.
Collapse
Affiliation(s)
- Sanaz Hatami
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
- Canadian National Transplant Research Program, Edmonton, AB, Canada
| | - Joshua Hefler
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Darren H. Freed
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
- Canadian National Transplant Research Program, Edmonton, AB, Canada
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB, Canada
- Alberta Transplant Institute, Edmonton, AB, Canada
- Department of Physiology, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Darren H. Freed,
| |
Collapse
|
9
|
Bland AR, Payne FM, Ashton JC, Jamialahmadi T, Sahebkar A. The cardioprotective actions of statins in targeting mitochondrial dysfunction associated with myocardial ischaemia-reperfusion injury. Pharmacol Res 2022; 175:105986. [PMID: 34800627 DOI: 10.1016/j.phrs.2021.105986] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 12/24/2022]
Abstract
During cardiac reperfusion after myocardial infarction, the heart is subjected to cascading cycles of ischaemia reperfusion injury (IRI). Patients presenting with this injury succumb to myocardial dysfunction resulting in myocardial cell death, which contributes to morbidity and mortality. New targeted therapies are required if the myocardium is to be protected from this injury and improve patient outcomes. Extensive research into the role of mitochondria during ischaemia and reperfusion has unveiled one of the most important sites contributing towards this injury; specifically, the opening of the mitochondrial permeability transition pore. The opening of this pore occurs during reperfusion and results in mitochondria swelling and dysfunction, promoting apoptotic cell death. Activation of mitochondrial ATP-sensitive potassium channels (mitoKATP) channels, uncoupling proteins, and inhibition of glycogen synthase kinase-3β (GSK3β) phosphorylation have been identified to delay mitochondrial permeability transition pore opening and reduce reactive oxygen species formation, thereby decreasing infarct size. Statins have recently been identified to provide a direct cardioprotective effect on these specific mitochondrial components, all of which reduce the severity of myocardial IRI, promoting the ability of statins to be a considerate preconditioning agent. This review will outline what has currently been shown in regard to statins cardioprotective effects on mitochondria during myocardial IRI.
Collapse
Affiliation(s)
- Abigail R Bland
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Fergus M Payne
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - John C Ashton
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Tannaz Jamialahmadi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashad, Iran; School of Medicine, The University of Western Australia, Perth, Australia; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
10
|
Zhang Z, Yan B, Li Y, Yang S, Li J. Propofol inhibits oxidative stress injury through the glycogen synthase kinase 3 beta/nuclear factor erythroid 2-related factor 2/heme oxygenase-1 signaling pathway. Bioengineered 2022; 13:1612-1625. [PMID: 35030972 PMCID: PMC8805835 DOI: 10.1080/21655979.2021.2021062] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/16/2021] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress is the main cause of ischemia/reperfusion injury. Propofol is a commonly used intravenous hypnotic anesthetic agent with antioxidant properties. In this study, we aimed to elucidate the protective effects of propofol on H2O2-induced cardiomyocyte injury and myocardial ischemic/reperfusion injury (MIRI) in rats. Cardiomyocyte injury was evaluated by determining cardiac troponin-1 (cTn-1) and creatine kinase-MB (CK-MB) levels. Antioxidative stress was assessed by measuring lactate dehydrogenase (LDH), malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), reactive oxygen species (ROS), and catalase (CAT) levels. Apoptosis was evaluated using flow cytometry and TUNEL assays. Bax and Bcl-2 expression levels were determined by quantitative reverse transcription PCR (qRT-PCR) and Western blotting. The levels of glycogen synthase kinase 3 beta/nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway-related factors were measured using Western blotting. Myocardial infarction in rats was analyzed using an Evans blue staining assay. The results showed that propofol reduced the levels of CK-MB, cTn-1, LDH, MDA, and ROS, and increased the levels of GSH, SOD, and CAT in H2O2-treated H9c2 cells. Additionally, propofol inhibited H2O2-induced apoptosis by downregulating Bax and upregulating Bcl-2. Moreover, propofol decreased the area of myocardial infarction in rats with MIRI. The GSK3β-Nrf2/HO-1 signaling pathway was activated by propofol. Rescue experiments showed that Nrf2 knockdown alleviated the effects of propofol on oxidative stress and apoptosis in H9c2 cells. In conclusion, propofol attenuated H2O2-induced myocardial cell injury by regulating the GSK3β/Nrf2/HO-1 signaling pathway and alleviating MIRI, suggesting that propofol is a promising therapeutic option for ischemic heart disease.
Collapse
Affiliation(s)
- Ziyin Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong, China
| | - BaoFeng Yan
- Department of Anesthesiology, Fifth Medical Center of Chinese Pla General Hospital, Beijing, China
| | - Yuguo Li
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong, China
| | - Shuo Yang
- Department of Medical Administration, The Eleventh People’s Hospital of Guangzhou, Guangdong, China
| | - Jinfeng Li
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong, China
| |
Collapse
|
11
|
Yu Y, Wang M, Chen R, Sun X, Sun G, Sun X. Gypenoside XVII protects against myocardial ischemia and reperfusion injury by inhibiting ER stress-induced mitochondrial injury. J Ginseng Res 2021; 45:642-653. [PMID: 34764719 PMCID: PMC8569261 DOI: 10.1016/j.jgr.2019.09.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 09/11/2019] [Accepted: 09/25/2019] [Indexed: 12/11/2022] Open
Abstract
Background Effective strategies are dramatically needed to prevent and improve the recovery from myocardial ischemia and reperfusion (I/R) injury. Direct interactions between the mitochondria and endoplasmic reticulum (ER) during heart diseases have been recently investigated. This study was designed to explore the cardioprotective effects of gypenoside XVII (GP-17) against I/R injury. The roles of ER stress, mitochondrial injury, and their crosstalk within I/R injury and in GP-17–induced cardioprotection are also explored. Methods Cardiac contractility function was recorded in Langendorff-perfused rat hearts. The effects of GP-17 on mitochondrial function including mitochondrial permeability transition pore opening, reactive oxygen species production, and respiratory function were determined using fluorescence detection kits on mitochondria isolated from the rat hearts. H9c2 cardiomyocytes were used to explore the effects of GP-17 on hypoxia/reoxygenation. Results We found that GP-17 inhibits myocardial apoptosis, reduces cardiac dysfunction, and improves contractile recovery in rat hearts. Our results also demonstrate that apoptosis induced by I/R is predominantly mediated by ER stress and associated with mitochondrial injury. Moreover, the cardioprotective effects of GP-17 are controlled by the PI3K/AKT and P38 signaling pathways. Conclusion GP-17 inhibits I/R-induced mitochondrial injury by delaying the onset of ER stress through the PI3K/AKT and P38 signaling pathways.
Collapse
Affiliation(s)
- Yingli Yu
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of the efficacy evaluation of Chinese Medicine against glycolipid metabolism disorder disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Min Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of the efficacy evaluation of Chinese Medicine against glycolipid metabolism disorder disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Rongchang Chen
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of the efficacy evaluation of Chinese Medicine against glycolipid metabolism disorder disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Xiao Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of the efficacy evaluation of Chinese Medicine against glycolipid metabolism disorder disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Guibo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of the efficacy evaluation of Chinese Medicine against glycolipid metabolism disorder disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Xiaobo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of the efficacy evaluation of Chinese Medicine against glycolipid metabolism disorder disease, State Administration of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
12
|
Zheng B, Meng J, Zhu Y, Ding M, Zhang Y, Zhou J. Melatonin enhances SIRT1 to ameliorate mitochondrial membrane damage by activating PDK1/Akt in granulosa cells of PCOS. J Ovarian Res 2021; 14:152. [PMID: 34758863 PMCID: PMC8582167 DOI: 10.1186/s13048-021-00912-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/26/2021] [Indexed: 12/17/2022] Open
Abstract
Mitochondrial injury in granulosa cells (GCs) is associated with the pathophysiological mechanism of polycystic ovary syndrome (PCOS). Melatonin reduces the mitochondrial injury by enhancing SIRT1 (NAD-dependent deacetylase sirtuin-1), while the mechanism remains unclear. Mitochondrial membrane potential is a universal selective indicator of mitochondrial function. In this study, mitochondrial swelling and membrane defect mitochondria in granulosa cells were observed from PCOS patients and DHT-induced PCOS-like mice, and the cytochrome C level in the cytoplasm and the expression of BAX (BCL2-associated X protein) in mitochondria were significantly increased in GCs, with p-Akt decreased, showing mitochondrial membrane was damaged in GCs of PCOS. Melatonin treatment decreased mitochondrial permeability transition pore (mPTP) opening and increased the JC-1 (5,5′,6,6′-tetrachloro1,1′,3,3′-tetramethylbenzimidazolylcarbocyanine iodide) aggregate/monomer ratio in the live KGN cells treated with DHT, indicating melatonin mediates mPTP to increase mitochondrial membrane potential. Furthermore, we found melatonin decreased the levels of cytochrome C and BAX in DHT-induced PCOS mice. PDK1/Akt played an essential role in improving the mitochondrial membrane function, and melatonin treatment increased p-PDK 1 and p-Akt in vivo and in vitro. The SIRT1 was also increased with melatonin treatment, while knocking down SIRT1 mRNA inhibiting the protective effect of melatonin to activate PDK1/Akt. In conclusion, melatonin enhances SIRT1 to ameliorate mitochondrial membrane damage by activating PDK1/Akt in granulosa cells of PCOS.
Collapse
Affiliation(s)
- Bo Zheng
- Reproductive Medicine Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Zhongshan Road 32, Nanjing, 210008, China
| | - Junan Meng
- Reproductive Medicine Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Zhongshan Road 32, Nanjing, 210008, China
| | - Yuan Zhu
- Reproductive Medicine Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Zhongshan Road 32, Nanjing, 210008, China
| | - Min Ding
- Reproductive Medicine Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Zhongshan Road 32, Nanjing, 210008, China
| | - Yuting Zhang
- Reproductive Medicine Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Zhongshan Road 32, Nanjing, 210008, China
| | - Jianjun Zhou
- Reproductive Medicine Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Zhongshan Road 32, Nanjing, 210008, China.
| |
Collapse
|
13
|
Baraka SA, Tolba MF, Elsherbini DA, El-Naga RN, Awad AS, El-Demerdash E. Rosuvastatin and low-dose carvedilol combination protects against isoprenaline-induced myocardial infarction in rats: Role of PI3K/Akt/Nrf2/HO-1 signalling. Clin Exp Pharmacol Physiol 2021; 48:1358-1370. [PMID: 34081810 DOI: 10.1111/1440-1681.13535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/08/2021] [Accepted: 05/31/2021] [Indexed: 01/31/2023]
Abstract
Rosuvastatin has been shown to activate PI3K/Akt/Nrf2/HO-1 pathway, which promotes cell survival in the myocardium. This study investigated the therapeutic benefit of adding rosuvastatin to low-dose carvedilol in protection against myocardial infarction (MI). Rosuvastatin (RSV) and carvedilol (CAR) were given for 7 consecutive days with concurrent administration of two doses of isoprenaline (ISP) on 6th and 7th days to induce MI. Isoprenaline injections caused detrimental alterations in the myocardial architecture and electrocardiogram (ECG) pattern and significantly increased the infarct size, heart index and serum levels of cardiotoxicity markers compared to the control group. ISP induced oxidative damage, inflammatory and apoptotic events and downregulated PI3K/Akt/Nrf2/HO-1 signalling pathway compared to the control values. Treatment with low-dose CAR and/or RSV prevented the ECG and histopathological alterations induced by ISP, and also reduced the infarct size, heart index, serum creatine kinase-MB, cardiac troponin-I and C-reactive protein levels compared to ISP group. CAR and/or RSV treatment restored the activity of superoxide dismutase and total antioxidant capacity with a consequent reduction in lipid peroxides level. Further, they decreased the expression of nuclear factor (NF)-κB (p65) and increased the phosphorylated PI3K and Akt, which may activate the anti-apoptotic signalling as evidenced by the decreased active caspase 3 level. The combination therapy has a more significant effect in the most studied parameters than their monotherapy, which may be because of the activation of PI3K/Akt Nrf2/HO-1 pro-survival signalling pathway. This study highlights the potential benefits of combining RSV with low-dose CAR in case of MI.
Collapse
Affiliation(s)
- Sarah A Baraka
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Egypt
| | - Mai F Tolba
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ain-shams University, Cairo, Egypt
| | - Doaa A Elsherbini
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ain-shams University, Cairo, Egypt
| | - Reem N El-Naga
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ain-shams University, Cairo, Egypt
| | - Azza S Awad
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Egypt
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Ebtehal El-Demerdash
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Egypt
| |
Collapse
|
14
|
Effects of high rosuvastatin doses on hepatocyte mitochondria of hypercholesterolemic mice. Sci Rep 2021; 11:15809. [PMID: 34349148 PMCID: PMC8338935 DOI: 10.1038/s41598-021-95140-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 07/15/2021] [Indexed: 11/17/2022] Open
Abstract
Statins are the cornerstone of therapy for individuals with hyperlipidemia. The aim of this study was to analyze the undesirable effects of mild, moderate and high doses of rosuvastatin in CD-1 male mice who received a cholesterol-rich diet, focusing on the morphological and functional changes on hepatocyte mitochondria. In a mouse model we studied the combined administration of a cholesterol-rich diet along with mild and moderate doses of rosuvastatin (1, 2.5 or 5 mg/kg/day) during several days. After the animals were sacrificed, liver mitochondria were isolated for microscopic studies and to analyze the respiratory function. The respiratory control (state-3/state-4) was evaluated in mice who received high doses of rosuvastatin. Rosuvastatin doses higher than 20 mg/kg/day induced premature death in mice with a hypercholesterolemic diet, but not in mice with a cholesterol-free diet. Doses from 2.5 to 5 mg/kg/day also induced morphological and functional alterations in mitochondria but these hypercholesterolemic animals survived longer. Giving 1 mg/kg/day, which is close to the maximal therapeutic dose for humans, did not affect mitochondrial architecture or respiratory function after two months of treatment. We analyzed the effect of rosuvastatin on hepatic tissue because it is where statins are mainly accumulated and it is the main site of endogenous cholesterol synthesis. Our results contribute to understand the side effects of rosuvastatin in hypercholesterolemic mice, effects that could also affect humans who are intolerant to statins.
Collapse
|
15
|
Zhang Y, Yang X, Li Z, Bu K, Li T, Ma Z, Wang B, Ma L, Lu H, Zhang K, Liu L, Zhao Y, Zhu Y, Qin J, Cui J, Liu L, Liu S, Fan P, Liu X. Pyk2/MCU Pathway as a New Target for Reversing Atherosclerosis. Front Cell Dev Biol 2021; 9:651579. [PMID: 34026753 PMCID: PMC8134689 DOI: 10.3389/fcell.2021.651579] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/16/2021] [Indexed: 01/08/2023] Open
Abstract
Objective: Multiple mechanisms including vascular endothelial cell damage have a critical role in the formation and development of atherosclerosis (AS), but the specific molecular mechanisms are not exactly clarified. This study aims to determine the possible roles of proline-rich tyrosine kinase 2 (Pyk2)/mitochondrial calcium uniporter (MCU) pathway in AS mouse model and H2O2-induced endothelial cell damage model and explore its possible mechanisms. Approach and Results: The AS mouse model was established using apolipoprotein E-knockout (ApoE–/–) mice that were fed with a high-fat diet. It was very interesting to find that Pyk2/MCU expression was significantly increased in the artery wall of atherosclerotic mice and human umbilical vein endothelial cells (HUVECs) attacked by hydrogen peroxide (H2O2). In addition, down-regulation of Pyk2 by short hairpin RNA (shRNA) protected HUVECs from H2O2 insult. Furthermore, treatment with rosuvastatin on AS mouse model and H2O2-induced HUVEC injury model showed a protective effect against AS by inhibiting the Pyk2/MCU pathway, which maintained calcium balance, prevented the mitochondrial damage and reactive oxygen species production, and eventually inhibited cell apoptosis. Conclusion: Our results provide important insight into the initiation of the Pyk2/MCU pathway involved in AS-related endothelial cell damage, which may be a new promising target for atherosclerosis intervention.
Collapse
Affiliation(s)
- Yingzhen Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Department of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Xiaoli Yang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Affiliated Hospital of Hebei University of Engineering, Handan, China
| | - Zhongzhong Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Kailin Bu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Tong Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhizhao Ma
- Neurosurgery Department, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Binbin Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lina Ma
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Honglin Lu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Kun Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Luji Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yanying Zhao
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yipu Zhu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jin Qin
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Junzhao Cui
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lin Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shuxia Liu
- Department of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Ping Fan
- Department of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Xiaoyun Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Neuroscience Research Center, Medicine and Health Institute, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
16
|
Ozturk N, Uslu S, Mercan T, Erkan O, Ozdemir S. Rosuvastatin Reduces L-Type Ca 2+ Current and Alters Contractile Function in Cardiac Myocytes via Modulation of β-Adrenergic Receptor Signaling. Cardiovasc Toxicol 2021; 21:422-431. [PMID: 33565033 DOI: 10.1007/s12012-021-09642-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/29/2021] [Indexed: 12/17/2022]
Abstract
Rosuvastatin is one of the most used statins to lower plasma cholesterol levels. Although previous studies have reported remarkable cardiovascular effects of rosuvastatin (RSV), the mechanisms of these effects are largely unknown. In this study, we investigated the acute effects of RSV on L-type Ca2+ currents and contractile function of ventricular myocytes under basal conditions and during β-adrenergic stimulation. The effects of RSV were investigated in freshly isolated adult rat ventricular myocytes. L-type Ca+2 currents and myocyte contractility were recorded using patch-clamp amplifier and sarcomere length detection system. All experimental recordings were performed at 36 ± 1 °C. L-type Ca+2 currents were significantly reduced with the administration of 1 μM RSV (~ 24%) and this reduction in Ca2+ currents was observed at almost all potential ranges applied. Suppression of L-type Ca2+ current by RSV was prevented by adenylyl cyclase (AC) and protein kinase A (PKA) inhibitors SQ 22536 and KT5720, respectively. However, inhibition of Rho-associated kinases (ROCKs) by Y-27632 or nitric oxide synthase (NOS) by L-NAME failed to circumvent the inhibitory effect of RSV. Finally, we examined the effect of RSV during β-adrenergic receptor stimulation by isoproterenol and observed that RSV significantly suppresses the β-adrenergic responses in both L-type Ca2+ currents and contraction parameters. In conclusion, RSV modulates the β-adrenergic signaling cascade and thereby mimics the impact of β-adrenergic receptor blockers in adult ventricular myocytes through modulation of the AC-cAMP-PKA pathway.
Collapse
Affiliation(s)
- Nihal Ozturk
- Department of Biophysics, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Serkan Uslu
- Department of Biophysics, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Tanju Mercan
- Department of Biophysics, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Orhan Erkan
- Department of Biophysics, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Semir Ozdemir
- Department of Biophysics, Faculty of Medicine, Akdeniz University, Antalya, Turkey.
| |
Collapse
|
17
|
Sappanone A alleviates hypoxia/reoxygenation-induced cardiomyocytes injury through inhibition of mitochondrial apoptosis and activation of PI3K-Akt-Gsk-3β pathway. Biosci Rep 2021; 40:222121. [PMID: 32095825 PMCID: PMC7042124 DOI: 10.1042/bsr20192442] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 02/10/2020] [Accepted: 02/13/2020] [Indexed: 01/14/2023] Open
Abstract
Myocardial ischemia reperfusion injury (MIRI) is a complex pathophysiological process involved with the activation of oxidative stress, inflammation and apoptosis. Sappanone A (SA), a homoisoflavanone isolated from the heartwood of Caesalpinia sappan L., could exhibit antioxidant, anti-inflammatory and anti-apoptotic activities. Therefore, we assumed that SA has a potential use for preventing against MIRI. The present study aimed to investigate the effect of SA treatment on MIRI and its mechanism. Cardiomyocytes (H9c2 cells) were treated with SA for 1 h, followed by 6 h of hypoxia/3 h of reoxygenation. Cell viability assay was detected by CCK-8 assay. Apoptosis was measured by flow cytometry and Hoechst staining. Mitochondrial permeability transition pore (mPTP) opening and mitochondrial transmembrane potential (ΔΨm) were measured by spectrophotometry and JC-1 staining. The changes of mitochondrial apoptosis-related proteins and PI3K–Akt–Gsk-3β signaling pathway were evaluated by Western blotting. The results showed that SA pretreatment enhanced the cell viability and decreased the activity of myocardial enzyme in a dose-dependent manner. Moreover, SA pretreatment significantly inhibited apoptosis, blocked mPTP opening, suppressed the release of ΔΨm, prevented the cytochrome c releasing from mitochondria into cytoplasm, and repressed the cleavage of caspase-9 and caspase-3. Furthermore, SA pretreatment increased the phosphorylation levels of Akt and Gsk-3β but not of Stat-3. Meanwhile, the protective effect of SA was abrogated by PI3K inhibitor (LY294002). In conclusion, our results demonstrate that SA could prevent hypoxia/reoxygenation-induced cardiomyocytes injury through inhibition of mitochondrial apoptosis and activation of PI3K–Akt–Gsk-3β pathway. Thus, SA may have a potential use for the prevention of MIRI.
Collapse
|
18
|
Overexpression of TGR5 alleviates myocardial ischemia/reperfusion injury via AKT/GSK-3β mediated inflammation and mitochondrial pathway. Biosci Rep 2021; 40:221795. [PMID: 31909787 PMCID: PMC6981096 DOI: 10.1042/bsr20193482] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/26/2019] [Accepted: 12/28/2019] [Indexed: 12/31/2022] Open
Abstract
Ischemia/reperfusion (I/R) injury reduces cell proliferation, triggers inflammation, promotes cell apoptosis and necrosis, which are the leading reasons of morbidity and mortality in patients with cardiac disease. TGR5 is shown to express in hearts, but its functional role in I/R-induced myocardial injury is unclear. In the present study, we aimed to explore the underlying molecular mechanism of TGR5 in hypoxia/reoxygenation (H/R)-induced cardiomyocyte injury in vitro. The results showed that TGR5 was significantly up-regulated in H9C2 (rat cardiomyocyte cells) and human cardiomyocytes (HCMs) after H/R. Overexpression of TGR5 significantly improved cell proliferation, alleviated apoptosis rate, the activities of caspase-3, cleaved caspases-3 and Bax protein expression levels, and increased Bcl-2 level. Overexpression of TGR5 significantly up-regulated ROS generation, stabilized the mitochondrial membrane potential (MMP), and reduced the concentration of intracellular Ca2+ as well as cytosolic translocation of mitochondrial cytochrome c (cyto-c). Meanwhile, overexpressed TGR5 also enhanced the mRNA and protein levels of interleukin (IL)-10, and decreased the mRNA and protein levels of IL-6 and tumor necrosis factor α (TNF-α). The shTGR5+H/R group followed opposite trends. In addition, overexpressed TGR5 induced an increase in the levels of p-AKT and p-GSK-3β. The protective effects of TGR5 were partially reversed by AKT inhibitor MK-2206. Taken together, these results suggest that TGR5 attenuates I/R-induced mitochondrial dysfunction and cell apoptosis as well as inflammation, and these protections may through AKT/GSK-3β pathway.
Collapse
|
19
|
Ren G, Zhou Q, Lu M, Wang H. Rosuvastatin corrects oxidative stress and inflammation induced by LPS to attenuate cardiac injury by inhibiting the NLRP3/TLR4 pathway. Can J Physiol Pharmacol 2021; 99:964-973. [PMID: 33641435 DOI: 10.1139/cjpp-2020-0321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Rosuvastatin has been found to possess antioxidant and anti-inflammatory properties. The aim of the current study was to evaluate whether rosuvastatin was effective in attenuating cardiac injury in lipopolysaccharide (LPS) - challenged mice and H9C2 cells and identify the underlying mechanisms, focusing on the nod-like receptor protein 3 (NLRP3)/toll-like receptor 4 (TLR4) pathway. Cardiac injury, cardiac function, apoptosis, oxidative stress, inflammatory response, and the NLRP3/TLR4 pathway were evaluated in both in vivo and in vitro studies. LPS-induced cardiomyocyte injury was markedly attenuated by rosuvastatin treatment, evidenced by increased cell proliferation of H9C2 cells, rescued cardiac function, and improved morphological changes in mice and reduced lactate dehydrogenase (LDH), creatine kinase MB fraction (CK-MB), and troponin I (cTnI) in serum. Apoptosis was clearly ameliorated in myocardial tissue and H9C2 cells co-treated with rosuvastatin. In addition, after LPS challenge, excessive oxidative stress was present, indicated by increases in malondialdehyde (MDA) content, NADPH activity, and reactive oxygen species (ROS) production and decreased superoxide dismutase (SOD) activity. Rosuvastatin improved all the indicators of oxidative stress, with an effect similar to that of N-acetylcysteine (NAC) (an ROS scavenger). Notably, LPS-exposed H9C2 cells and mice showed significant NLRP3 and TLR4/nuclear factor-κB (NF-κB) pathway activation and inflammatory responses. Administration of rosuvastatin reduced the increases in NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), pro-caspase-1, TLR4, and p65 expression and decreased the tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β), IL-18, and IL-6 contents, with an effect similar to that of MCC950 (an NLRP3 inhibitor). In conclusion, inhibition of the inflammatory response and oxidative stress contributes to cardioprotective effect of rosuvastatin against cardiac injury induced by LPS, and the effect of rosuvastatin was achieved through inactivation of the NF-κB/NLRP3 pathway.
Collapse
Affiliation(s)
- Guocheng Ren
- Department of Circulatory Medicine, Chaoyang Central Hospital, Chaoyang 122000, China
| | - Qiujie Zhou
- Department of Circulatory Medicine, Chaoyang Central Hospital, Chaoyang 122000, China
| | - Meili Lu
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou 121001, China
| | - Hongxin Wang
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou 121001, China
| |
Collapse
|
20
|
Cui Y, Pan M, Ma J, Song X, Cao W, Zhang P. Recent progress in the use of mitochondrial membrane permeability transition pore in mitochondrial dysfunction-related disease therapies. Mol Cell Biochem 2021; 476:493-506. [PMID: 33000352 DOI: 10.1007/s11010-020-03926-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022]
Abstract
Mitochondria have various cellular functions, including ATP synthesis, calcium homeostasis, cell senescence, and death. Mitochondrial dysfunction has been identified in a variety of disorders correlated with human health. Among the many underlying mechanisms of mitochondrial dysfunction, the opening up of the mitochondrial permeability transition pore (mPTP) is one that has drawn increasing interest in recent years. It plays an important role in apoptosis and necrosis; however, the molecular structure and function of the mPTP have still not been fully elucidated. In recent years, the abnormal opening up of the mPTP has been implicated in the development and pathogenesis of diverse diseases including ischemia/reperfusion injury (IRI), neurodegenerative disorders, tumors, and chronic obstructive pulmonary disease (COPD). This review provides a systematic introduction to the possible molecular makeup of the mPTP and summarizes the mitochondrial dysfunction-correlated diseases and highlights possible underlying mechanisms. Since the mPTP is an important target in mitochondrial dysfunction, this review also summarizes potential treatments, which may be used to inhibit pore opening up via the molecules composing mPTP complexes, thus suppressing the progression of mitochondrial dysfunction-related diseases.
Collapse
Affiliation(s)
- Yuting Cui
- School of Life Science, Shandong University of Technology, Zibo, Shandong Province, China
| | - Mingyue Pan
- Department of Pharmacy, Shenzhen Luohu People's Hospital, Shenzhen, Guangdong Province, China
| | - Jing Ma
- The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong Province, China
| | - Xinhua Song
- School of Life Science, Shandong University of Technology, Zibo, Shandong Province, China
| | - Weiling Cao
- Department of Pharmacy, Shenzhen Luohu People's Hospital, Shenzhen, Guangdong Province, China.
| | - Peng Zhang
- Department of Pharmacy, Shenzhen Luohu People's Hospital, Shenzhen, Guangdong Province, China.
| |
Collapse
|
21
|
Wu Y, Liu H, Wang X. Cardioprotection of pharmacological postconditioning on myocardial ischemia/reperfusion injury. Life Sci 2020; 264:118628. [PMID: 33131670 DOI: 10.1016/j.lfs.2020.118628] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/08/2020] [Accepted: 10/16/2020] [Indexed: 12/26/2022]
Abstract
Acute myocardial infarction is associated with high rates of morbidity and mortality and can cause irreversible myocardial damage. Timely reperfusion is critical to limit infarct size and salvage the ischemic myocardium. However, reperfusion may exacerbate lethal tissue injury, a phenomenon known as myocardial ischemia/reperfusion (I/R) injury. Pharmacological postconditioning (PPC), a strategy involving medication administration before or during the early minutes of reperfusion, is more efficient and flexible than preconditioning or ischemic conditioning. Previous studies have shown that various mechanisms are involved in the effects of PPC. In this review, we summarize the relative effects and potential underlying mechanisms of PPC to provide a foundation for future research attempting to develop novel treatments against myocardial I/R injury.
Collapse
Affiliation(s)
- Yushi Wu
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, NO. 253, Gongye Avenue, 510282 Guangzhou, China; Guangdong Provincial Biomedical Engineering Technology Research Center for cardiovascular Disease, 510282 Guangzhou, China; Sino-Japanese cooperation Platform for Translational Research in Heart Failure, 510282 Guangzhou, China; Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, 510282 Guangzhou, China
| | - Haiqiong Liu
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, NO. 253, Gongye Avenue, 510282 Guangzhou, China; Guangdong Provincial Biomedical Engineering Technology Research Center for cardiovascular Disease, 510282 Guangzhou, China; Sino-Japanese cooperation Platform for Translational Research in Heart Failure, 510282 Guangzhou, China; Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, 510282 Guangzhou, China
| | - Xianbao Wang
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, NO. 253, Gongye Avenue, 510282 Guangzhou, China; Guangdong Provincial Biomedical Engineering Technology Research Center for cardiovascular Disease, 510282 Guangzhou, China; Sino-Japanese cooperation Platform for Translational Research in Heart Failure, 510282 Guangzhou, China; Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, 510282 Guangzhou, China.
| |
Collapse
|
22
|
Fang Y, Zhao C, Xiang H, Jia G, Zhong R. Melatonin improves cryopreservation of ram sperm by inhibiting mitochondrial permeability transition pore opening. Reprod Domest Anim 2020; 55:1240-1249. [DOI: 10.1111/rda.13771] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/04/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Yi Fang
- Jilin Provincial Key Laboratory of Grassland Farming Northeast Institute of Geography and Agoecology Chinese Academy of Sciences Changchun, Jilin China
| | - Chengzhen Zhao
- Jilin Provincial Key Laboratory of Grassland Farming Northeast Institute of Geography and Agoecology Chinese Academy of Sciences Changchun, Jilin China
| | - Hai Xiang
- Jilin Provincial Key Laboratory of Grassland Farming Northeast Institute of Geography and Agoecology Chinese Academy of Sciences Changchun, Jilin China
| | - GongXue Jia
- Key Laboratory of Adaptation and Evolution of Plateau Biota Northwest Institute of Plateau Biology Chinese Academy of Sciences Xining China
| | - Rongzhen Zhong
- Jilin Provincial Key Laboratory of Grassland Farming Northeast Institute of Geography and Agoecology Chinese Academy of Sciences Changchun, Jilin China
| |
Collapse
|
23
|
Grape seed proanthocyanidins ameliorate neuronal oxidative damage by inhibiting GSK-3β-dependent mitochondrial permeability transition pore opening in an experimental model of sporadic Alzheimer's disease. Aging (Albany NY) 2020; 11:4107-4124. [PMID: 31232699 PMCID: PMC6628984 DOI: 10.18632/aging.102041] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 06/17/2019] [Indexed: 12/15/2022]
Abstract
Mitochondria-associated oxidative stress plays a crucial role in Alzheimer’s disease (AD). Grape seed proanthocyanidins (GSPs) have been reported to prevent oxidative stress. In this study, we investigated the underlying mechanisms of GSPs in protecting neurons against oxidative injury in an experimental model of sporadic AD. Primary mouse cortical neurons were subjected to streptozotocin (STZ) to mimic neuronal oxidative damage in vitro, and mice were subjected to intracerebroventricular (ICV) injection of STZ as an in vivo sporadic AD model. GSPs not only significantly ameliorated neuron loss and mitochondrial dysfunction in mouse cortical neurons pretreated of STZ, but also reduced cognitive impairments, apoptosis and mitochondrial oxidative stress in the cerebral cortex and hippocampus of sporadic AD mice. Moreover, GSPs increased phosphorylation levels of phosphatidylinositol 3-kinase (PI3K), Akt and glycogen synthase kinase 3β (GSK-3β) at its Ser9. Notably, GSPs inhibited STZ-induced mitochondrial permeability transition pore (mPTP) opening via enhancing phosphorylated GSK-3β (p-GSK-3β) binds to adenine nucleotide translocator (ANT), thereby reducing the formation of the complex ANT-cyclophilin D (CypD). In conclusion, GSPs ameliorate neuronal oxidative damage and cognitive impairment by inhibiting GSK-3β-dependent mPTP opening in AD. Our study provides new insights into that GSPs may be a new therapeutic candidate for treatment of AD.
Collapse
|
24
|
Fu J, Sun H, Wei H, Dong M, Zhang Y, Xu W, Fang Y, Zhao J. Astaxanthin alleviates spinal cord ischemia-reperfusion injury via activation of PI3K/Akt/GSK-3β pathway in rats. J Orthop Surg Res 2020; 15:275. [PMID: 32703256 PMCID: PMC7376638 DOI: 10.1186/s13018-020-01790-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 07/09/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Ischemia-reperfusion injury of the spinal cord (SCII) often leads to unalterable neurological deficits, which may be associated with apoptosis induced by oxidative stress and inflammation. Astaxanthin (AST) is a strong antioxidant and anti-inflammatory agent with multitarget neuroprotective effects. This study aimed to investigate the potential therapeutic effects of AST for SCII and the molecular mechanism. METHODS Rat models of SCII with abdominal aortic occlusion for 40 min were carried out to investigate the effects of AST on the recovery of SCII. Tarlov's scores were used to assess the neuronal function; HE and TUNEL staining were used to observe the pathological morphology of lesions. Neuron oxidative stress and inflammation were measured using commercial detection kits. Flow cytometry was conducted to assess the mitochondrial swelling degree. Besides, Western blot assay was used to detect the expression of PI3K/Akt/GSK-3β pathway-related proteins, as well as NOX2 and NLRP3 proteins. RESULTS The results demonstrated that AST pretreatment promoted the hind limb motor function recovery and alleviated the pathological damage induced by SCII. Moreover, AST significantly enhanced the antioxidative stress response and attenuated mitochondrial swelling. However, AST pretreatment hardly inhibited the levels of proinflammatory cytokines after SCII. Most importantly, AST activated p-Akt and p-GSK-3β expression levels. Meanwhile, cotreatment with LY294002 (a PI3K inhibitor) was found to abolish the above protective effects observed with the AST pretreatment. CONCLUSION Overall, these results suggest that AST pretreatment not only mitigates pathological tissue damage but also effectively improves neural functional recovery following SCII, primarily by alleviating oxidative stress but not inhibiting inflammation. A possible underlying molecular mechanism of AST may be mainly attributed to the activation of PI3K/Akt/GSK-3β pathway.
Collapse
Affiliation(s)
- Jian Fu
- Department of Emergency Surgery, The Second Hospital of Hebei Medical University, No.215 Heping West Road, Shijiazhuang, 050000, Hebei, China
| | - Haibin Sun
- Department of Emergency Surgery, The Second Hospital of Hebei Medical University, No.215 Heping West Road, Shijiazhuang, 050000, Hebei, China
| | - Haofei Wei
- Department of Emergency Surgery, The Second Hospital of Hebei Medical University, No.215 Heping West Road, Shijiazhuang, 050000, Hebei, China
| | - Mingjie Dong
- Department of Emergency Surgery, The Second Hospital of Hebei Medical University, No.215 Heping West Road, Shijiazhuang, 050000, Hebei, China
| | - Yongzhe Zhang
- Department of Emergency Surgery, The Second Hospital of Hebei Medical University, No.215 Heping West Road, Shijiazhuang, 050000, Hebei, China
| | - Wei Xu
- Department of Emergency Surgery, The Second Hospital of Hebei Medical University, No.215 Heping West Road, Shijiazhuang, 050000, Hebei, China
| | - Yanwei Fang
- Department of Emergency Surgery, The Second Hospital of Hebei Medical University, No.215 Heping West Road, Shijiazhuang, 050000, Hebei, China
| | - Jianhui Zhao
- Department of Emergency Surgery, The Second Hospital of Hebei Medical University, No.215 Heping West Road, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
25
|
Exercise Preconditioning Plays a Protective Role in Exhaustive Rats by Activating the PI3K-Akt Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:3598932. [PMID: 32063981 PMCID: PMC6998755 DOI: 10.1155/2020/3598932] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/12/2019] [Accepted: 12/20/2019] [Indexed: 12/24/2022]
Abstract
Objective To investigate whether exercise preconditioning (EP) protects the rat heart from exhaustive exercise- (EE-) induced injury by inducing the PI3K-Akt signaling pathway. Methods 84 male Sprague-Dawley rats were randomly divided into 6 groups (n = 14 rats per group): control group (Con), exhaustive exercise group (EE), exercise preconditioning group (EP), exercise preconditioning + exhaustive exercise group (EP + EE), LY294002 (PI3K inhibitor) + exercise preconditioning + exhaustive exercise group (LY + EP + EE), and LY294002 group (LY). The Con and LY did not exercise. The remaining groups were subjected to treadmill running. The structure of myocardial tissue and serum biomarkers of myocardial injury were observed. Hemodynamic parameters were recorded with a pressure-volume catheter. TUNEL assay was used to detect the apoptosis of cardiac myocytes, and the level of mitochondrial membrane permeability transforming pore (mPTP) in myocardium was evaluated using ELISA. Pathway and apoptosis-related proteins in myocardium were assessed using western blotting. Results Compared to the Con group, the EE group showed remarkable myocardial injury, such as cardiac dysfunction and myocardial apoptosis. Compared to the EE group, the injuries in the EP + EE group were improved. EP increased the PI3K-Akt signaling pathway and regulated Bcl-2 family to decrease the mPTP openness level. However, the cardioprotective effects of EP were attenuated when pretreated with the LY294002. Conclusions EP protected the heart from EE-induced injury, and it may improve the cardiac function and reduce the cardiomyocyte apoptosis by activating the PI3K-Akt signaling pathway.
Collapse
|
26
|
Liu F, Zhang H, Li Y, Lu X. Nobiletin suppresses oxidative stress and apoptosis in H9c2 cardiomyocytes following hypoxia/reoxygenation injury. Eur J Pharmacol 2019; 854:48-53. [DOI: 10.1016/j.ejphar.2019.03.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/19/2019] [Accepted: 03/28/2019] [Indexed: 01/10/2023]
|
27
|
Wang M, Liu Y, Pan RL, Wang RY, Ding SL, Dong WR, Sun GB, Ye JX, Sun XB. Protective effects of Myrica rubra flavonoids against hypoxia/reoxygenation-induced cardiomyocyte injury via the regulation of the PI3K/Akt/GSK3β pathway. Int J Mol Med 2019; 43:2133-2143. [PMID: 30864694 PMCID: PMC6443338 DOI: 10.3892/ijmm.2019.4131] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 03/06/2019] [Indexed: 12/15/2022] Open
Abstract
Myrica rubra is well known for its delicious taste and high nutritional value. The present study investigated the potential protective effects and mechanisms of M. rubra flavonoids (MRF) extract on isoproterenol (ISO)-induced myocardial injury in rats and hypoxia/reoxygenation (H/R) injury in H9c2 cardiomyocytes. An in vivo study revealed that MRF decreased serum cardiac enzyme levels, ameliorated pathological heart alterations and increased the antioxidant potential. The in vitro investigation demonstrated that MRF inhibited cell death, reactive oxygen species (ROS) accumulation, mitochondrial membrane depolarization, apoptosis rate and caspase-3 activation and enhanced the Bcl-2/Bax ratio during H/R injury. These effects were accompanied by the phosphorylation of protein kinase B (Akt) and glycogen synthase kinase (GSK)-3β. Further mechanism studies demonstrated that LY294002, a specific inhibitor of phosphoinositide 3-kinase (PI3K), abolished the MRF-mediated cardioprotection against H/R-induced apoptosis and ROS overproduction. Collectively, these results suggested that MRF exerts cardioprotective effects by attenuating oxidative damage and cardiomyocyte apoptosis most likely via a PI3K/Akt/GSK3β-dependent mechanism.
Collapse
Affiliation(s)
- Min Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, P.R. China
| | - Ying Liu
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Rui-Le Pan
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, P.R. China
| | - Rui-Ying Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, P.R. China
| | - Shi-Lan Ding
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, P.R. China
| | - Wan-Rui Dong
- Harbin University of Commerce, Harbin, Heilongjiang 150076, P.R. China
| | - Gui-Bo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, P.R. China
| | - Jing-Xue Ye
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, P.R. China
| | - Xiao-Bo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, P.R. China
| |
Collapse
|
28
|
Qu H, Guo M, Chai H, Wang W, Gao Z, Shi D. Effects of Coenzyme Q10 on Statin-Induced Myopathy: An Updated Meta-Analysis of Randomized Controlled Trials. J Am Heart Assoc 2018; 7:e009835. [PMID: 30371340 PMCID: PMC6404871 DOI: 10.1161/jaha.118.009835] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/14/2018] [Indexed: 01/08/2023]
Abstract
Background Previous studies have demonstrated a possible association between the induction of coenzyme Q10 (CoQ10) after statin treatment and statin-induced myopathy. However, whether CoQ10 supplementation ameliorates statin-induced myopathy remains unclear. Methods and Results PubMed, EMBASE , and Cochrane Library were searched to identify randomized controlled trials investigating the effect of CoQ10 on statin-induced myopathy. We calculated the pooled weighted mean difference ( WMD ) using a fixed-effect model and a random-effect model to assess the effects of CoQ10 supplementation on statin-associated muscle symptoms and plasma creatine kinase. The methodological quality of the studies was determined, according to the Cochrane Handbook. Publication bias was evaluated by a funnel plot, Egger regression test, and the Begg-Mazumdar correlation test. Twelve randomized controlled trials with a total of 575 patients were enrolled; of them, 294 patients were in the CoQ10 supplementation group and 281 were in the placebo group. Compared with placebo, CoQ10 supplementation ameliorated statin-associated muscle symptoms, such as muscle pain ( WMD , -1.60; 95% confidence interval [ CI ], -1.75 to -1.44; P<0.001), muscle weakness ( WMD , -2.28; 95% CI , -2.79 to -1.77; P=0.006), muscle cramp ( WMD , -1.78; 95% CI , -2.31 to -1.24; P<0.001), and muscle tiredness ( WMD , -1.75; 95% CI , -2.31 to -1.19; P<0.001), whereas no reduction in the plasma creatine kinase level was observed after CoQ10 supplementation ( WMD , 0.09; 95% CI , -0.06 to 0.24; P=0.23). Conclusions CoQ10 supplementation ameliorated statin-associated muscle symptoms, implying that CoQ10 supplementation may be a complementary approach to manage statin-induced myopathy.
Collapse
Affiliation(s)
- Hua Qu
- China Academy of Chinese Medical SciencesBeijingChina
- Xiyuan HospitalChina Academy of Traditional ChineseBeijingChina
| | - Ming Guo
- China Heart Institute of Chinese MedicineChina Academy of Chinese Medical SciencesBeijingChina
| | - Hua Chai
- Beijing University of Traditional Chinese MedicineBeijingChina
- Xiyuan HospitalChina Academy of Traditional ChineseBeijingChina
| | - Wen‐ting Wang
- Beijing University of Traditional Chinese MedicineBeijingChina
- Xiyuan HospitalChina Academy of Traditional ChineseBeijingChina
| | - Zhu‐ye Gao
- China Heart Institute of Chinese MedicineChina Academy of Chinese Medical SciencesBeijingChina
- Xiyuan HospitalChina Academy of Traditional ChineseBeijingChina
| | - Da‐zhuo Shi
- China Heart Institute of Chinese MedicineChina Academy of Chinese Medical SciencesBeijingChina
- Xiyuan HospitalChina Academy of Traditional ChineseBeijingChina
| |
Collapse
|
29
|
Lu D, Liu Y, Mai H, Zang J, Shen L, Zhang Y, Xu A. Rosuvastatin Reduces Neuroinflammation in the Hemorrhagic Transformation After rt-PA Treatment in a Mouse Model of Experimental Stroke. Front Cell Neurosci 2018; 12:225. [PMID: 30116175 PMCID: PMC6082938 DOI: 10.3389/fncel.2018.00225] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/11/2018] [Indexed: 12/31/2022] Open
Abstract
Hemorrhagic transformation (HT) is a serious complication that stimulates inflammation during reperfusion therapy after acute ischemic stroke. Rosuvastatin, a 3-hydroxymethyl-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, might improve the outcome of HT by inhibiting neuroinflammation. This study aimed to explore the protective effects of rosuvastatin against HT after recombinant tissue plasminogen activator (rt-PA) treatment in mice with experimental stroke via the attenuation of inflammation. A total of one hundred sixty-nine male BALB/c mice were used in the experiment. HT was successfully established in 70 mice that were subjected to 3 h of middle cerebral artery occlusion (MCAO) followed by a 10 mg/kg rt-PA injection over 10 min and reperfusion for 24 h. The mice were then administered rosuvastatin (1 mg/kg, 5 mg/kg) or saline (vehicle). The brain water content and neurological deficits (wire hang and adhesive removal somatosensory tests) were assessed at 24 h after rt-PA reperfusion following MCAO surgery. The morphology, blood-brain barrier (BBB) permeability and number of astrocytes and microglia were assessed by immunohistochemistry, electron microscopy and western blotting at 24 h after rt-PA reperfusion following MCAO surgery. Rosuvastatin protected against impaired neurological function and reversed the BBB leakage observed in the HT group. The increased activation of astrocytes and microglia and secretion of inflammatory factors caused by HT damage were significantly attenuated by high-dose rosuvastatin treatment vs. normal-dose rosuvastatin treatment. Related inflammatory pathways, such as the nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways, were downregulated in the rosuvastatin-treated groups compared with the HT group. In conclusion, our results indicate that rosuvastatin is a promising therapeutic agent for HT after rt-PA reperfusion following MCAO surgery in mice, as it attenuates neuroinflammation. Additionally, high-dose rosuvastatin treatment could have a greater anti-inflammatory effect on HT than normal-dose rosuvastatin treatment.
Collapse
Affiliation(s)
- Dan Lu
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China.,Clinical Neuroscience Institute of Jinan University, Guangzhou, China
| | - Yanfang Liu
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China.,Clinical Neuroscience Institute of Jinan University, Guangzhou, China
| | - Hongcheng Mai
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China.,Clinical Neuroscience Institute of Jinan University, Guangzhou, China
| | - Jiankun Zang
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China.,Clinical Neuroscience Institute of Jinan University, Guangzhou, China
| | - Lingling Shen
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China.,Clinical Neuroscience Institute of Jinan University, Guangzhou, China
| | - Yusheng Zhang
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Anding Xu
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China.,Clinical Neuroscience Institute of Jinan University, Guangzhou, China
| |
Collapse
|
30
|
H 2O 2 Signaling-Triggered PI3K Mediates Mitochondrial Protection to Participate in Early Cardioprotection by Exercise Preconditioning. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1916841. [PMID: 30147831 PMCID: PMC6083504 DOI: 10.1155/2018/1916841] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/05/2018] [Accepted: 06/19/2018] [Indexed: 12/15/2022]
Abstract
Previous studies have shown that early exercise preconditioning (EEP) imparts a protective effect on acute cardiovascular stress. However, how mitophagy participates in exercise preconditioning- (EP-) induced cardioprotection remains unclear. EEP may involve mitochondrial protection, which presumably crosstalks with predominant H2O2 oxidative stress. Our EEP protocol involves four periods of 10 min running with 10 min recovery intervals. We added a period of exhaustive running and a pretreatment using phosphoinositide 3-kinase (PI3K)/autophagy inhibitor wortmannin to test this protective effect. By using transmission electron microscopy (TEM), laser scanning confocal microscopy, and other molecular biotechnology methods, we detected related markers and specifically analyzed the relationship between mitophagic proteins and mitochondrial translocation. We determined that exhaustive exercise associated with various elevated injuries targeted the myocardium, oxidative stress, hypoxia-ischemia, and mitochondrial ultrastructure. However, exhaustion induced limited mitochondrial protection through a H2O2-independent manner to inhibit voltage-dependent anion channel isoform 1 (VDAC1) instead of mitophagy. EEP was apparently safe to the heart. In EEP-induced cardioprotection, EEP provided suppression to exhaustive exercise (EE) injuries by translocating Bnip3 to the mitochondria by recruiting the autophagosome protein LC3 to induce mitophagy, which is potentially triggered by H2O2 and influenced by Beclin1-dependent autophagy. Pretreatment with the wortmannin further attenuated these effects induced by EEP and resulted in the expression of proapoptotic phenotypes such as oxidative injury, elevated Beclin1/Bcl-2 ratio, cytochrome c leakage, mitochondrial dynamin-1-like protein (Drp-1) expression, and VDAC1 dephosphorylation. These observations suggest that H2O2 generation regulates mitochondrial protection in EEP-induced cardioprotection.
Collapse
|
31
|
Liu S, Wu N, Miao J, Huang Z, Li X, Jia P, Guo Y, Jia D. Protective effect of morin on myocardial ischemia‑reperfusion injury in rats. Int J Mol Med 2018; 42:1379-1390. [PMID: 29956744 PMCID: PMC6089753 DOI: 10.3892/ijmm.2018.3743] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 06/22/2018] [Indexed: 12/20/2022] Open
Abstract
Morin, a natural flavonol, exhibits antioxidative, anti-inflammatory and anti-apoptotic effects in various pathological and physiological processes. However, whether morin exerts a protective effect on myocardial ischemia-reperfusion injury (MIRI) is unknown. The present study aimed to determine the effect of morin on MIRI in cultured cardiomyocytes and isolated rat hearts, and to additionally explore the underlying mechanism. The effect of morin on the viability, lactate dehydrogenase (LDH) activity and apoptosis of H9c2 cardiomyocytes subjected to hypoxia/reoxygenation, and cardiac function and infarct size of rat hearts following ischemia/reperfusion in an animal model were measured. Furthermore, the mitochondrial permeability transition pore (MPTP) opening, mitochondrial membrane potential (ΔΨm), and the change in the expression levels of B-cell lymphoma 2 (Bcl2)-associated X protein (Bax), Bcl-2 and mitochondrial apoptosis-associated proteins following MPTP opening were also detected. The results indicated that morin treatment significantly increased cell viability, decreased LDH activity and cell apoptosis, improved the recovery of cardiac function and decreased the myocardial infarct size. Furthermore, morin treatment markedly inhibited MPTP opening, prevented the decrease of ΔΨm, and decreased the expression of cytochrome c, apoptotic protease activating factor-1, caspase-9, caspase-3 and the Bax/Bcl-2 ratio. However, these beneficial effects were reversed by treatment with atractyloside, an MPTP opener. The present study demonstrated that morin may prevent MIRI by inhibiting MPTP opening and revealed the possible mechanism of the cardioprotection of morin and its acting target. It also provided an important theoretical basis for the research on drug interventions for MIRI in clinical applications.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Nan Wu
- The Central Laboratory, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Jiaxin Miao
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Zijun Huang
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xuying Li
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Pengyu Jia
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yuxuan Guo
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Dalin Jia
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
32
|
Wanchao S, Chen M, Zhiguo S, Futang X, Mengmeng S. Protective effect and mechanism of Lactobacillus on cerebral ischemia reperfusion injury in rats. ACTA ACUST UNITED AC 2018; 51:e7172. [PMID: 29791585 PMCID: PMC5972019 DOI: 10.1590/1414-431x20187172] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/12/2018] [Indexed: 01/14/2023]
Abstract
The present study was designed to investigate the protective effects and
mechanism of inactivated lactobacillus (ILA) on cerebral ischemia reperfusion
injury (CIRI) in rats. In this experiment, 30 male Sprague Dawley rats were
randomly divided into control group, IRI groups, and ILA group. A middle
cerebral artery occlusion and reperfusion model was prepared. The rats were
killed after 24 hours of recovery of blood flow of cerebral ischemia resulting
from 60-min occlusion. The cerebral infarction volume and neurological scores
were assayed by staining and behavioral observation. Malondialdehyde (MDA) and
superoxide dismutase (SOD) levels were assayed by biochemical kits. Cell
apoptosis was assayed by Tunnel and the Toll-like receptor (TLR)-4, IkB, and A20
were assayed by western blot. The neurobehavioral scores in IRI rats were
significantly lower compared to the control group while ILA improved the
neurobehavioral scores of the ILA groups. The cerebral infarction volume and
neural cell apoptosis of rats in the ILA groups decreased significantly compared
with those in the IRI group. In addition, MDA level in the ILA groups decreased
whereas SOD activity increased compared to the IRI group. Moreover, ILA also
inhibited the expression of TLR-4 and promoted the expression of IkB and A20.
ILA inhibited the apoptosis of neural cells, decreased cerebral infarction
volume, and reduced oxidative stress through inhibition of TLR-4/NF-kappa B
signaling, improving neurobehavioral scores. Thus from the present study it was
concluded that ILA has protective effect on CIRI.
Collapse
Affiliation(s)
- Shi Wanchao
- Cerebrovascular Disease Treatment Center, No.5 Tianjin Center Hospital, Tianjin, China
| | - Ma Chen
- Cerebrovascular Disease Treatment Center, No.5 Tianjin Center Hospital, Tianjin, China
| | - Su Zhiguo
- Cerebrovascular Disease Treatment Center, No.5 Tianjin Center Hospital, Tianjin, China
| | - Xie Futang
- Cerebrovascular Disease Treatment Center, No.5 Tianjin Center Hospital, Tianjin, China
| | - Shi Mengmeng
- Cerebrovascular Disease Treatment Center, No.5 Tianjin Center Hospital, Tianjin, China
| |
Collapse
|
33
|
Zhang FW, Tong J, Yan YS, Chen QQ, Zhao XP. ω-3 Polyunsaturated Fatty Acid Postconditioning Protects the Isolated Perfused Rat Heart from Ischemia-Reperfusion Injury. Cardiorenal Med 2018; 8:173-182. [PMID: 29642067 DOI: 10.1159/000487490] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 02/04/2018] [Indexed: 12/12/2022] Open
Abstract
AIMS This study aimed to evaluate the cardioprotective effects of ω-3 polyunsaturated fatty acids (PUFAs) postconditioning against ischemia-reperfusion (I/R) injury. METHODS Sixty Sprague-Dawley rats were randomly divided into 4 groups (n = 15 for each) and used to generate the Langendorff isolated perfused rat heart model. The sham group received a continuous perfusion of 150 min. The remaining three I/R-treated groups sequentially received a 30-min perfusion, a 30-min cardioplegia, and a 90-min reperfusion. The I/R-ischemic preconditioning (IP) group additionally received three cycles of 20-s reperfusion and 20-s coronary reocclusion preceded the 90 min of reperfusion. The I/R-ω group were perfused with ω-3 PUFAs for 15 min before the 90 min of reperfusion. The myocardial infarct size, the degree of mitochondrial damage, the antioxidant capacity of the myocardium, and the cardiac functions during reperfusion were compared among groups. RESULTS Compared with the I/R group, the I/R-ω group had significantly reduced myocardial infarct size, reduced levels of lactate dehydrogenase and malondialdehyde, elevated superoxide dismutase level, and elevated rising (+dp/dtmax) and descending (-dp/dtmax) rate of left ventricular pressure. The I/R-ω group had a significantly lower rate of mitochondrial damage in myocardial tissue compared with the I/R and I/R-IP groups. CONCLUSION ω-3 PUFA postconditioning possesses good cardioprotective effects and may be developed into a therapeutic strategy for myocardial I/R injury.
Collapse
Affiliation(s)
- Fu-Wei Zhang
- Department of Cardiothoracic Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Tong
- Department of Cardiothoracic Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yu-Sheng Yan
- Department of Cardiothoracic Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qun-Qing Chen
- Department of Cardiothoracic Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiao-Ping Zhao
- Department of Pathology, 421 Hospital of PLA, Guangzhou, China
| |
Collapse
|
34
|
6-Gingerol Activates PI3K/Akt and Inhibits Apoptosis to Attenuate Myocardial Ischemia/Reperfusion Injury. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:9024034. [PMID: 29743926 PMCID: PMC5884032 DOI: 10.1155/2018/9024034] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/25/2018] [Accepted: 02/11/2018] [Indexed: 12/24/2022]
Abstract
6-Gingerol (6-G) is known to alleviate myocardial ischemia/reperfusion injury. However, the underlying molecular mechanisms of 6-G myocardial protection are not known. In this study, the protective effect of 6-G on ischemia/reperfusion (I/R) damage and whether such a mechanism was related to apoptosis inhibition and activation of phosphoinositide 3-kinases (PI3K)/serine/threonine kinase (Akt) signaling pathway were investigated. Rats were subjected to I/R in the presence or absence of 6-G and the changes of cardiac function, infarct size and histopathological changes, and the levels of cardiac troponin T, creatine kinase-MB, and myocardial apoptosis were examined. The expression of caspase-3, PI3K, p-Akt, and Akt was also determined. We found that 6-G (6 mg/kg) pretreatment significantly improved heart function and ameliorated infarct size and histopathological changes and cardiac troponin T and creatine kinase-MB levels induced by I/R. Moreover, pretreatment with 6-G significantly inhibited myocardial apoptosis and caspase-3 activation induced by I/R. 6-G also upregulated expression of PI3K, p-Akt, and Akt in myocardial tissues. Taken together, these findings suggest that 6-G inhibits apoptosis and activates PI3K/Akt signaling in response to myocardial I/R injury as a possible mechanism to attenuate I/R-induced injury in heart. These results might be important for developing novel strategies for preventing myocardial I/R injury.
Collapse
|
35
|
He W, Liu Y, Tian X. Rosuvastatin Improves Neurite Outgrowth of Cortical Neurons against Oxygen-Glucose Deprivation via Notch1-mediated Mitochondrial Biogenesis and Functional Improvement. Front Cell Neurosci 2018; 12:6. [PMID: 29387001 PMCID: PMC5776084 DOI: 10.3389/fncel.2018.00006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 01/05/2018] [Indexed: 11/26/2022] Open
Abstract
Neurogenesis, especially neurite outgrowth is an essential element of neuroplasticity after cerebral ischemic injury. Mitochondria may supply ATP to power fundamental developmental processes including neuroplasticity. Although rosuvastatin (RSV) displays a potential protective effect against cerebral ischemia, it remains unknown whether it modulates mitochondrial biogenesis and function during neurite outgrowth. Here, the oxygen-glucose deprivation (OGD) model was used to induce ischemic injury. We demonstrate that RSV treatment significantly increases neurite outgrowth in cortical neurons after OGD-induced damage. Moreover, we show that RSV reduces the generation of reactive oxygen species (ROS), protects mitochondrial function, and elevates the ATP levels in cortical neurons injured by OGD. In addition, we found that, under these conditions, RSV treatment increases the mitochondrial DNA (mtDNA) content and the mRNA levels of mitochondrial transcription factor A (TFAM) and nuclear respiratory factor 1 (NRF-1). Furthermore, blocking Notch1, which is expressed in primary cortical neurons, reverses the RSV-dependent induction of mitochondrial biogenesis and function under OGD conditions. Collectively, these results suggest that RSV could restore neurite outgrowth in cortical neurons damaged by OGD in vitro, by preserving mitochondrial function and improving mitochondrial biogenesis, possibly through the Notch1 pathway.
Collapse
Affiliation(s)
- Weiliang He
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Yingping Liu
- Department of Cardiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xiaochao Tian
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
36
|
Biochemical targets of drugs mitigating oxidative stress via redox-independent mechanisms. Biochem Soc Trans 2017; 45:1225-1252. [PMID: 29101309 DOI: 10.1042/bst20160473] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/24/2017] [Accepted: 09/26/2017] [Indexed: 12/13/2022]
Abstract
Acute or chronic oxidative stress plays an important role in many pathologies. Two opposite approaches are typically used to prevent the damage induced by reactive oxygen and nitrogen species (RONS), namely treatment either with antioxidants or with weak oxidants that up-regulate endogenous antioxidant mechanisms. This review discusses options for the third pharmacological approach, namely amelioration of oxidative stress by 'redox-inert' compounds, which do not inactivate RONS but either inhibit the basic mechanisms leading to their formation (i.e. inflammation) or help cells to cope with their toxic action. The present study describes biochemical targets of many drugs mitigating acute oxidative stress in animal models of ischemia-reperfusion injury or N-acetyl-p-aminophenol overdose. In addition to the pro-inflammatory molecules, the targets of mitigating drugs include protein kinases and transcription factors involved in regulation of energy metabolism and cell life/death balance, proteins regulating mitochondrial permeability transition, proteins involved in the endoplasmic reticulum stress and unfolded protein response, nuclear receptors such as peroxisome proliferator-activated receptors, and isoprenoid synthesis. The data may help in identification of oxidative stress mitigators that will be effective in human disease on top of the current standard of care.
Collapse
|
37
|
Abd El-Aal SA, Abd El-Fattah MA, El-Abhar HS. CoQ10 Augments Rosuvastatin Neuroprotective Effect in a Model of Global Ischemia via Inhibition of NF-κB/JNK3/Bax and Activation of Akt/FOXO3A/Bim Cues. Front Pharmacol 2017; 8:735. [PMID: 29081748 PMCID: PMC5645536 DOI: 10.3389/fphar.2017.00735] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/29/2017] [Indexed: 12/12/2022] Open
Abstract
Statins were reported to lower the Coenzyme Q10 (CoQ10) content upon their inhibition of HMG-CoA reductase enzyme and both are known to possess neuroprotective potentials; therefore, the aim is to assess the possible use of CoQ10 as an adds-on therapy to rosuvastatin to improve its effect using global I/R model. Rats were allocated into sham, I/R, rosuvastatin (10 mg/kg), CoQ10 (10 mg/kg) and their combination. Drugs were administered orally for 7 days before I/R. Pretreatment with rosuvastatin and/or CoQ10 inhibited the hippocampal content of malondialdehyde, nitric oxide, and boosted glutathione and superoxide dismutase. They also opposed the upregulation of gp91phox, and p47phox subunits of NADPH oxidase. Meanwhile, both agents reduced content/expression of TNF-α, iNOS, NF-κBp65, ICAM-1, and MPO. Besides, all regimens abated cytochrome c, caspase-3 and Bax, but increased Bcl-2 in favor of cell survival. On the molecular level, they increased p-Akt and its downstream target p-FOXO3A, with the inhibition of the nuclear content of FOXO3A to downregulate the expression of Bim, a pro-apoptotic gene. Additionally, both treatments downregulate the JNK3/c-Jun signaling pathway. The effect of the combination regimen overrides that of either treatment alone. These effects were reflected on the alleviation of the hippocampal damage in CA1 region inflicted by I/R. Together, these findings accentuate the neuroprotective potentials of both treatments against global I/R by virtue of their rigorous multi-pronged actions, including suppression of hippocampal oxidative stress, inflammation, and apoptosis with the involvement of the Akt/FOXO3A/Bim and JNK3/c-Jun/Bax signaling pathways. The study also nominates CoQ10 as an adds-on therapy with statins.
Collapse
Affiliation(s)
- Sarah A Abd El-Aal
- Department of Pharmacology and Toxicology, October 6 University, Cairo, Egypt
| | - Mai A Abd El-Fattah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hanan S El-Abhar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
38
|
Simvastatin Ameliorates Diabetic Cardiomyopathy by Attenuating Oxidative Stress and Inflammation in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:1092015. [PMID: 29138670 PMCID: PMC5613468 DOI: 10.1155/2017/1092015] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 08/06/2017] [Indexed: 12/15/2022]
Abstract
Simvastatin is a lipid-lowering agent used to treat hypercholesterolemia and to reduce the risk of heart disease. This study scrutinized the beneficial effects of simvastatin on experimental diabetic cardiomyopathy (DCM), pointing to the role of hyperglycemia-induced oxidative stress and inflammation. Diabetes was induced by intraperitoneal injection of streptozotocin and both control and diabetic rats received simvastatin for 90 days. Diabetic rats showed significant cardiac hypertrophy, body weight loss, hyperglycemia, and hyperlipidemia. Serum creatine kinase MB (CK-MB) and troponin I showed a significant increase in diabetic rats. Simvastatin significantly improved body weight, attenuated hyperglycemia and hyperlipidemia, and ameliorated CK-MB and troponin I. Simvastatin prevented histological alterations and deposition of collagen in the heart of diabetic animals. Lipid peroxidation and nitric oxide were increased in the heart of diabetic rats whereas antioxidant defenses were decreased. These alterations were significantly reversed by simvastatin. In addition, simvastatin decreased serum inflammatory mediators and expression of NF-κB in the diabetic heart. Cardiac caspase-3 was increased in the diabetic heart and decreased following treatment with simvastatin. In conclusion, our results suggest that simvastatin alleviates DCM by attenuating hyperglycemia/hyperlipidemia-induced oxidative stress, inflammation, and apoptosis.
Collapse
|
39
|
Kaempferide Protects against Myocardial Ischemia/Reperfusion Injury through Activation of the PI3K/Akt/GSK-3 β Pathway. Mediators Inflamm 2017; 2017:5278218. [PMID: 28928604 PMCID: PMC5591971 DOI: 10.1155/2017/5278218] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 06/17/2017] [Accepted: 07/16/2017] [Indexed: 12/19/2022] Open
Abstract
The aim of this study is to investigate both the efficacy and mechanism of action of kaempferide (Kae) as a therapy for the treatment of cardiovascular disease. A rat model of myocardial ischemia/reperfusion (I/R) injury was established by ligation of the left anterior descending coronary artery for 30 min followed by a 2 h perfusion. In our study, we show that Kae remarkably improved cardiac function, alleviated myocardial injury via a decrease in myocardial enzyme levels, and attenuated myocardial infarct size in a dose-dependent manner. In addition, preconditioning treatment with Kae was found to significantly decrease serum TNF-α, IL-6, C-reactive protein (CRP), MDA, and ROS levels, while it was found to increase serum levels of SOD. Nuclear factor erythroid 2-related factor 2 (Nrf2) and cleaved caspase-3 expression levels were observed to be downregulated, while phospho-Akt (p-Akt) and phospho-glycogen synthase kinase-3β (p-GSK-3β) expression levels were upregulated. However, cotreatment with LY294002 (a PI3K inhibitor) or TDZD-8 (a GSK-3β inhibitor) was found to abolish the above cardioprotective effects observed with the Kae treatment. The data presented in this study provides evidence that Kae attenuates I/R-induced myocardial injury through inhibition of the Nrf2 and cleaved caspase-3 signaling pathways via a PI3K/Akt/GSK 3β-dependent mechanism.
Collapse
|
40
|
Ilexsaponin A attenuates ischemia-reperfusion-induced myocardial injury through anti-apoptotic pathway. PLoS One 2017; 12:e0170984. [PMID: 28182689 PMCID: PMC5300190 DOI: 10.1371/journal.pone.0170984] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 01/13/2017] [Indexed: 01/09/2023] Open
Abstract
The protective effects of ilexsaponin A on ischemia-reperfusion-induced myocardial injury were investigated. Myocardial ischemia/reperfusion model was established in male Sprague–Dawley rats. Myocardial injury was evaluated by TTC staining and myocardial marker enzyme leakage. The in vitro protective potential of Ilexsaponin A was assessed on hypoxia/reoxygenation cellular model in neonatal rat cardiomyocytes. Cellular viability and apoptosis were evaluated by MTT and TUNEL assay. Caspase-3, cleaved caspase-3, bax, bcl-2, p-Akt and Akt protein expression levels were detected by western-blot. Ilexsaponin A treatment was able to attenuate the myocardial injury in ischemia/reperfusion model by reducing myocardial infarct size and lower the serum levels of LDH, AST and CK-MB. The in vitro study also showed that ilexsaponin A treatment could increase cellular viability and inhibit apoptosis in hypoxia/reoxygenation cardiomyocytes. Proapoptotic proteins including caspase-3, cleaved caspase-3 and bax were significantly reduced and anti-apoptotic protein bcl-2 was significantly increased by ilexsaponin A treatment in hypoxia/reoxygenation cardiomyocytes. Moreover, Ilexsaponin A treatment was able to increase the expression levels of p-Akt in hypoxia/reoxygenation cellular model and myocardial ischemia/reperfusion animal model. Coupled results from both in vivo and in vitro experiments indicate that Ilexsaponin A attenuates ischemia-reperfusion-induced myocardial injury through anti-apoptotic pathway.
Collapse
|