1
|
Wang B, Chu S, Liu X, Zhang D, Chai X, Yang X, Zhi Y, Chi Y, Zhou P. Changes in soil bacterial and fungal communities in response to Bacillus megaterium NCT-2 inoculation in secondary salinized soil. PeerJ 2021; 9:e12309. [PMID: 34721987 PMCID: PMC8519178 DOI: 10.7717/peerj.12309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/23/2021] [Indexed: 11/20/2022] Open
Abstract
Background Secondary salinized soil in greenhouses often contains excess nitrate. Inoculation of Bacillus megaterium NCT-2 with nitrate assimilation ability represents an attractive approach for soil remediation. However, the effects of NCT-2 on the structure and function of soil microbial communities have not been explored. Methods Greenhouse experiments were carried out to investigate changes in soil properties, Brassica chinensis L. growth, bacterial, and fungal community structure and function in response to NCT-2 inoculation. Results The NCT-2 inoculant significantly reduced the nitrate content in B. chinensis and inhibited the rebound of soil nitrate in the later stage. The shifts of bacterial community structure and function by NCT-2 was negligible, and a greater disturbance of soil fungal community structure and function was observed, for example the strong inhibitory effect on ectomycorrhizal fungi. These results indicated that the NCT-2 inoculant likely achieved the remediation effect in secondary salinized soil by shifting fungal community. The present findings add to the current understanding of microbial interactions in response to bacterial inoculation and can be of great significance for the application of NCT-2 inoculants in secondary salinized soil remediation.
Collapse
Affiliation(s)
- Bin Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China.,Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Shaohua Chu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China.,Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaorui Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China.,Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Dan Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China.,Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaotong Chai
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China.,Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Xijia Yang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China.,Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Yuee Zhi
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China.,Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Yaowei Chi
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China.,Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Pei Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China.,Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
2
|
Kemppainen M, Pardo A. Nucleus-directed fluorescent reporter system for promoter studies in the ectomycorrhizal fungus Laccaria bicolor. J Microbiol Methods 2021; 190:106341. [PMID: 34610385 DOI: 10.1016/j.mimet.2021.106341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 11/19/2022]
Abstract
Currently ectomycorrhizal research suffers from a lack of molecular tools specifically adapted to study gene expression in fungal symbionts. Considering that, we designed pReNuK, a cloning vector for transcriptional promoter studies in the ectomycorrhizal basidiomycete Laccaria bicolor. The pReNuK vector offers the use of a nuclear localizing and chromatin incorporating histone H2B-mCherry fluorescent reporter protein and it is specifically optimized for efficient transgene expression in Laccaria. Moreover, pReNuK is designed to work in concert with Agrobacterium-mediated transformation under hygromycin B resistance selection. The functionality of the pReNuK reporter system was tested with the constitutive Laccaria glyceraldehyde 3-phosphate dehydrogenase gene promoter and further validated with the nitrogen source regulated nitrate reductase gene promoter. The expression of the nucleus-directed H2B-mCherry reporter is highly stable in time. Moreover, the transformation of Laccaria with pReNuK and the expression of the reporter do not have negative effects on the growth of the fungus. The pReNuK offers a novel tool for studying in vivo gene expression regulation in Laccaria, the leading fungal model for ectomycorrhizal research.
Collapse
Affiliation(s)
- Minna Kemppainen
- Laboratory of Molecular Mycology, Institute of Basic and Applied Microbiology, Department of Science and Technology, National University of Quilmes and CONICET, Bernal, Province of Buenos Aires, Argentina.
| | - Alejandro Pardo
- Laboratory of Molecular Mycology, Institute of Basic and Applied Microbiology, Department of Science and Technology, National University of Quilmes and CONICET, Bernal, Province of Buenos Aires, Argentina
| |
Collapse
|
3
|
Sun Y, Wang M, Mur LAJ, Shen Q, Guo S. The cross-kingdom roles of mineral nutrient transporters in plant-microbe relations. PHYSIOLOGIA PLANTARUM 2021; 171:771-784. [PMID: 33341944 DOI: 10.1111/ppl.13318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 11/27/2020] [Indexed: 05/23/2023]
Abstract
The regulation of plant physiology by plant mineral nutrient transporter (MNT) is well understood. Recently, the extensive characterization of beneficial and pathogenic plant-microbe interactions has defined the roles for MNTs in such relationships. In this review, we summarize the roles of diverse nutrient transporters in the symbiotic or pathogenic relationships between plants and microorganisms. In doing so, we highlight how MNTs of plants and microbes can act in a coordinated manner. In symbiotic relationships, MNTs play key roles in the establishment of the interaction between the host plant and rhizobium or mycorrhizae as well in the subsequent coordinated transport of nutrients. Additionally, MNTs may also regulate the colonization or degeneration of symbiotic microorganisms by reflecting the nutrient status of the plant and soil. This allows the host plant obtain nutrients from the soil in the most optimal manner. With pathogenic-interactions, MNTs influence pathogen proliferation, the efficacy of the host's biochemical defense and related signal transduction mechanisms. We classify the MNT effects in plant-pathogen interactions as either indirect by influencing the nutrient status and fitness of the pathogen, or direct by initiating host defense mechanisms. While such observations indicate the fundamental importance of MNTs in governing the interactions with a range of microorganisms, further work is needed to develop an integrative understanding of their functions.
Collapse
Affiliation(s)
- Yuming Sun
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, China
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Min Wang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Luis Alejandro Jose Mur
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Shiwei Guo
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
4
|
Rani M, Jogawat A, Loha A. Sugar Transporters in Plant–Fungal Symbiosis. Fungal Biol 2021. [DOI: 10.1007/978-3-030-60659-6_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Leberecht M, Dannenmann M, Tejedor J, Simon J, Rennenberg H, Polle A. Segregation of nitrogen use between ammonium and nitrate of ectomycorrhizas and beech trees. PLANT, CELL & ENVIRONMENT 2016; 39:2691-2700. [PMID: 27569258 DOI: 10.1111/pce.12820] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 08/21/2016] [Accepted: 08/22/2016] [Indexed: 05/04/2023]
Abstract
Here, we characterized nitrogen (N) uptake of beech (Fagus sylvatica) and their associated ectomycorrhizal (EM) communities from NH4+ and NO3- . We hypothesized that a proportional fraction of ectomycorrhizal N uptake is transferred to the host, thereby resulting in the same uptake patterns of plants and their associated mycorrhizal communities. 15 N uptake was studied under various field conditions after short-term and long-term exposure to a pulse of equimolar NH4+ and NO3- concentrations, where one compound was replaced by 15 N. In native EM assemblages, long-term and short-term 15 N uptake from NH4+ was higher than that from NO3- , regardless of season, water availability and site exposure, whereas in beech long-term 15 N uptake from NO3- was higher than that from NH4+ . The transfer rates from the EM to beech were lower for 15 N from NH4+ than from NO3- . 15 N content in EM was correlated with 15 N uptake of the host for 15 NH4+ , but not for 15 NO3- -derived N. These findings suggest stronger control of the EM assemblage on N provision to the host from NH4+ than from NO3- . Different host and EM accumulation patterns for inorganic N will result in complementary resource use, which might be advantageous in forest ecosystems with limited N availability.
Collapse
Affiliation(s)
- Martin Leberecht
- Forstbotanik und Baumphysiologie, Georg-August Universität Göttingen, Büsgenweg 2, 37077, Göttingen, Germany
- Hochschule Geisenheim, Institut für Urbanen Gartenbau und Zierpflanzenforschung, Von-Lade-Str. 1, 65366, Geisenheim
| | - Michael Dannenmann
- Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Karlsruhe Institute of Technology (KIT), Kreuzeckbahnstrasse 19, 82467, Garmisch-Partenkirchen, Germany
| | - Javier Tejedor
- Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Karlsruhe Institute of Technology (KIT), Kreuzeckbahnstrasse 19, 82467, Garmisch-Partenkirchen, Germany
| | - Judy Simon
- Institute of Forest Science, Chair of Tree Physiology, University of Freiburg, Georges-Koehler-Allee 53/54, 79110, Freiburg, Germany
- Plant Physiology and Biochemistry Group, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
| | - Heinz Rennenberg
- Institute of Forest Science, Chair of Tree Physiology, University of Freiburg, Georges-Koehler-Allee 53/54, 79110, Freiburg, Germany
| | - Andrea Polle
- Forstbotanik und Baumphysiologie, Georg-August Universität Göttingen, Büsgenweg 2, 37077, Göttingen, Germany
| |
Collapse
|
6
|
Garcia K, Doidy J, Zimmermann SD, Wipf D, Courty PE. Take a Trip Through the Plant and Fungal Transportome of Mycorrhiza. TRENDS IN PLANT SCIENCE 2016; 21:937-950. [PMID: 27514454 DOI: 10.1016/j.tplants.2016.07.010] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 07/18/2016] [Accepted: 07/25/2016] [Indexed: 05/21/2023]
Abstract
Soil nutrient acquisition and exchanges through symbiotic plant-fungus interactions in the rhizosphere are key features for the current agricultural and environmental challenges. Improved crop yield and plant mineral nutrition through a fungal symbiont has been widely described. In return, the host plant supplies carbon substrates to its fungal partner. We review here recent progress on molecular players of membrane transport involved in nutritional exchanges between mycorrhizal plants and fungi. We cover the transportome, from the transport proteins involved in sugar fluxes from plants towards fungi, to the uptake from the soil and exchange of nitrogen, phosphate, potassium, sulfate, and water. Together, these advances in the comprehension of the mycorrhizal transportome will help in developing the future engineering of new agro-ecological systems.
Collapse
Affiliation(s)
- Kevin Garcia
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Joan Doidy
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Sabine D Zimmermann
- Biochimie et Physiologie Moléculaire des Plantes, Centre National de la Recherche Scientifique (CNRS), Institut National de la Recherche Agronomique (INRA), Montpellier SupAgro, Université de Montpellier, 34060 Montpellier, France
| | - Daniel Wipf
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Pierre-Emmanuel Courty
- University of Fribourg, Department of Biology, 3 rue Albert Gockel, 1700 Fribourg, Switzerland.
| |
Collapse
|
7
|
Stephan BI, Alvarez Crespo MC, Kemppainen MJ, Pardo AG. Agrobacterium-mediated insertional mutagenesis in the mycorrhizal fungus Laccaria bicolor. Curr Genet 2016; 63:215-227. [PMID: 27387518 DOI: 10.1007/s00294-016-0627-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/22/2016] [Accepted: 06/24/2016] [Indexed: 11/24/2022]
Abstract
Agrobacterium-mediated gene transfer (AMT) is extensively employed as a tool in fungal functional genomics and accordingly, in previous studies we used AMT on a dikaryotic strain of the ectomycorrhizal basidiomycete Laccaria bicolor. The interest in this fungus derives from its capacity to establish a symbiosis with tree roots, thereby playing a major role in nutrient cycling of forest ecosystems. The ectomycorrhizal symbiosis is a highly complex interaction involving many genes from both partners. To advance in the functional characterization of fungal genes, AMT was used on a monokaryotic L. bicolor. A collection of over 1200 transgenic strains was produced, of which 200 randomly selected strains were analyzed for their genomic T-DNA insertion patterns. By means of insertional mutagenesis, a number of transgenic strains were obtained displaying differential growth features. Moreover, mating with a compatible strain resulted in dikaryons that retained altered phenotypic features of the transgenic monokaryon. The analysis of the T-DNA integration pattern revealed mostly similar results to those reported in earlier studies, confirming the usefulness of AMT on different genetic backgrounds of L. bicolor. Taken together, our studies display the great versatility and potentiality of AMT as a tool for the genetic characterization of L. bicolor.
Collapse
Affiliation(s)
- B I Stephan
- Laboratorio de Micología Molecular, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes and Consejo Nacional de Investigaciones Científicas y Técnicas, Roque Saenz Peña 352, B1876BXD, Bernal, Provincia de Buenos Aires, Argentina
| | - M C Alvarez Crespo
- Laboratorio de Micología Molecular, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes and Consejo Nacional de Investigaciones Científicas y Técnicas, Roque Saenz Peña 352, B1876BXD, Bernal, Provincia de Buenos Aires, Argentina
| | - M J Kemppainen
- Laboratorio de Micología Molecular, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes and Consejo Nacional de Investigaciones Científicas y Técnicas, Roque Saenz Peña 352, B1876BXD, Bernal, Provincia de Buenos Aires, Argentina
| | - A G Pardo
- Laboratorio de Micología Molecular, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes and Consejo Nacional de Investigaciones Científicas y Técnicas, Roque Saenz Peña 352, B1876BXD, Bernal, Provincia de Buenos Aires, Argentina.
| |
Collapse
|
8
|
Raudaskoski M, Kothe E. Novel findings on the role of signal exchange in arbuscular and ectomycorrhizal symbioses. MYCORRHIZA 2015; 25:243-52. [PMID: 25260351 DOI: 10.1007/s00572-014-0607-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 09/16/2014] [Indexed: 05/11/2023]
Abstract
The availability of genome sequences from both arbuscular and ectomycorrhizal fungi and their hosts has, together with elegant biochemical and molecular biological analyses, provided new information on signal exchange between the partners in mycorrhizal associations. The progress in understanding cellular processes has been more rapid in arbuscular than ectomycorrhizal symbiosis due to its similarities of early processes with Rhizobium-legume symbiosis. In ectomycorrhiza, the role of auxin and ethylene produced by both fungus and host plant is becoming understood at the molecular level, although the actual ligands and receptors leading to ectomycorrhizal symbiosis have not yet been discovered. For both systems, the functions of small effector proteins secreted from the respective fungus and taken up into the plant cell may be pivotal in understanding the attenuation of host defense. We review the subject by comparing cross-talk between fungal and plant partners during formation and establishment of arbuscular and ectomycorrhizal symbioses.
Collapse
Affiliation(s)
- Marjatta Raudaskoski
- Department of Biochemistry, Molecular Plant Biology, University of Turku, 20014, Turku, Finland
| | | |
Collapse
|
9
|
Kuo A, Kohler A, Martin FM, Grigoriev IV. Expanding genomics of mycorrhizal symbiosis. Front Microbiol 2014; 5:582. [PMID: 25408690 PMCID: PMC4219462 DOI: 10.3389/fmicb.2014.00582] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 10/15/2014] [Indexed: 12/11/2022] Open
Abstract
The mycorrhizal symbiosis between soil fungi and plant roots is a ubiquitous mutualism that plays key roles in plant nutrition, soil health, and carbon cycling. The symbiosis evolved repeatedly and independently as multiple morphotypes [e.g., arbuscular mycorrhizae (AM), ectomycorrhizal (ECM)] in multiple fungal clades (e.g., phyla Glomeromycota, Ascomycota, Basidiomycota). The accessibility and cultivability of many mycorrhizal partners make them ideal models for symbiosis studies. Alongside molecular, physiological, and ecological investigations, sequencing led to the first three mycorrhizal fungal genomes, representing two morphotypes and three phyla. The genome of the ECM basidiomycete Laccaria bicolor showed that the mycorrhizal lifestyle can evolve through loss of plant cell wall-degrading enzymes (PCWDEs) and expansion of lineage-specific gene families such as short secreted protein (SSP) effectors. The genome of the ECM ascomycete Tuber melanosporum showed that the ECM type can evolve without expansion of families as in Laccaria, and thus a different set of symbiosis genes. The genome of the AM glomeromycete Rhizophagus irregularis showed that despite enormous phylogenetic distance and morphological difference from the other two fungi, symbiosis can involve similar solutions as symbiosis-induced SSPs and loss of PCWDEs. The three genomes provide a solid base for addressing fundamental questions about the nature and role of a vital mutualism.
Collapse
Affiliation(s)
- Alan Kuo
- United States Department of Energy Joint Genome InstituteWalnut Creek, CA, USA
| | - Annegret Kohler
- UMR, Lab of Excellence for Advanced Research on the Biology of TRee and Forest Ecosystems, Tree-Microbe Interactions, Institut National de la Recherche Agronomique, Université de LorraineNancy, France
| | - Francis M. Martin
- UMR, Lab of Excellence for Advanced Research on the Biology of TRee and Forest Ecosystems, Tree-Microbe Interactions, Institut National de la Recherche Agronomique, Université de LorraineNancy, France
| | - Igor V. Grigoriev
- United States Department of Energy Joint Genome InstituteWalnut Creek, CA, USA
| |
Collapse
|
10
|
Behie SW, Bidochka MJ. Nutrient transfer in plant-fungal symbioses. TRENDS IN PLANT SCIENCE 2014; 19:734-740. [PMID: 25022353 DOI: 10.1016/j.tplants.2014.06.007] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/26/2014] [Accepted: 06/05/2014] [Indexed: 06/03/2023]
Abstract
Almost all plant species form symbioses with soil fungi, and nutrient transfer to plants is largely mediated through this partnership. Studies of fungal nutrient transfer to plants have largely focused on the transfer of limiting soil nutrients, such as nitrogen and phosphorous, by mycorrhizal fungi. However, certain fungal endophytes, such as Metarhizium and Beauveria, are also able to transfer nitrogen to their plant hosts. Here, we review recent studies that have identified genes and their encoded transporters involved in the movement of nitrogen, phosphorous, and nonlimiting soil nutrients between symbionts. These recent advances in our understanding could lead to applications in agricultural and horticultural settings, and to the development of model fungal systems that could further elucidate the role of fungi in these symbioses.
Collapse
Affiliation(s)
- Scott W Behie
- Department of Biological Sciences, Brock University, St Catharines, ON, L2S 3A1, Canada
| | - Michael J Bidochka
- Department of Biological Sciences, Brock University, St Catharines, ON, L2S 3A1, Canada.
| |
Collapse
|