1
|
Alattas H, Glick BR, Murphy DV, Scott C. Harnessing Pseudomonas spp. for sustainable plant crop protection. Front Microbiol 2024; 15:1485197. [PMID: 39640850 PMCID: PMC11617545 DOI: 10.3389/fmicb.2024.1485197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
This review examines the role of Pseudomonas spp. bacteria as biocontrol agents against crop diseases, focusing on their mechanisms of action, efficacy, and potential applications in sustainable agriculture. Pseudomonas spp., ubiquitous in soil ecosystems and root microbiomes, have attracted attention for their ability to suppress phytopathogens and enhance plant health through various mechanisms. These include direct competition for nutrients, production of antimicrobial compounds and volatile organic compounds, competition using type VI secretion systems, and indirect induction of systemic resistance. Our review shows that Pseudomonas strains effectively control a wide range of diseases across diverse plant species, with some strains demonstrating efficacy comparable to chemical fungicides. However, the review also highlights challenges in achieving consistent performance when using Pseudomonas inoculants under field conditions due to various biotic and abiotic factors. Strategies to optimize biocontrol potential, such as formulation techniques, application methods, and integration with other management practices, are discussed. The advantages of Pseudomonas-based biocontrol for sustainable agriculture include reduced reliance on chemical pesticides, enhanced crop productivity, and improved environmental sustainability. Future research directions should focus on understanding the complex interactions within the plant microbiome, optimizing delivery systems, and addressing regulatory hurdles for commercial deployment. This review underscores the significant potential of Pseudomonas spp. in sustainable crop protection while acknowledging the need for further research to fully harness their capabilities in agricultural systems.
Collapse
Affiliation(s)
- Hussain Alattas
- Bioplastics Innovation Hub, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
- School of Medical, Molecular, and Forensic Sciences, Murdoch University, Murdoch, WA, Australia
| | - Bernard R. Glick
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Daniel V. Murphy
- Bioplastics Innovation Hub, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
- SoilsWest, Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Colin Scott
- Bioplastics Innovation Hub, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
- CSIRO Environment, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| |
Collapse
|
2
|
Liang J, Liu B, Christensen MJ, Li C, Zhang X, Nan Z. The effects of Pseudomonas strains isolated from Achnatherum inebrians on plant growth: A genomic perspective. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70011. [PMID: 39387603 PMCID: PMC11465459 DOI: 10.1111/1758-2229.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/29/2024] [Indexed: 10/15/2024]
Abstract
Achnatherum inebrians is a perennial grass widely distributed in northwest China. Nearly all wild A. inebrians plants are infected by Epichloë endophytes. In this study, bacteria from the phyllosphere were isolated from leaves of both endophyte-free and endophyte-infected A. inebrians and sequenced for identification. Pseudomonas, comprising 48.12% of the culturable bacterial communities, was the most dominant bacterial genus. Thirty-four strains from 12 Pseudomonas species were used to inoculate A. inebrians seeds and plants. Results indicated that Epichloë significantly increased the diversity and richness index of the phyllosphere. Pseudomonas Sp1, Sp3, Sp5 and Sp7 had a significantly positive effect on plant growth and photosynthesis, whereas Sp10, Sp11 and Sp12 had a significantly negative effect. Whole-genome and pan-genome analysis suggested that the variability in the effects of Pseudomonas on A. inebrians was related to differences in genome composition and genomic islands.
Collapse
Affiliation(s)
- Jinjin Liang
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, Center for Grassland Microbiome, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsCollege of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhouChina
| | - Bowen Liu
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, Center for Grassland Microbiome, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsCollege of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhouChina
| | | | - Chunjie Li
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, Center for Grassland Microbiome, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsCollege of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhouChina
| | - Xingxu Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, Center for Grassland Microbiome, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsCollege of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhouChina
| | - Zhibiao Nan
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, Center for Grassland Microbiome, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsCollege of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhouChina
| |
Collapse
|
3
|
Gupta G, Chauhan PS, Jha PN, Verma RK, Singh S, Yadav VK, Sahoo DK, Patel A. Secretory molecules from secretion systems fine-tune the host-beneficial bacteria (PGPRs) interaction. Front Microbiol 2024; 15:1355750. [PMID: 38468848 PMCID: PMC10925705 DOI: 10.3389/fmicb.2024.1355750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/05/2024] [Indexed: 03/13/2024] Open
Abstract
Numerous bacterial species associate with plants through commensal, mutualistic, or parasitic association, affecting host physiology and health. The mechanism for such association is intricate and involves the secretion of multiple biochemical substances through dedicated protein systems called secretion systems SS. Eleven SS pathways deliver protein factors and enzymes in their immediate environment or host cells, as well as in competing microbial cells in a contact-dependent or independent fashion. These SS are instrumental in competition, initiation of infection, colonization, and establishment of association (positive or negative) with host organisms. The role of SS in infection and pathogenesis has been demonstrated for several phytopathogens, including Agrobacterium, Xanthomonas, Ralstonia, and Pseudomonas. Since there is overlap in mechanisms of establishing association with host plants, several studies have investigated the role of SSs in the interaction of plant and beneficial bacteria, including symbiotic rhizobia and plant growth bacteria (PGPB). Therefore, the present review updates the role of different SSs required for the colonization of beneficial bacteria such as rhizobia, Burkholderia, Pseudomonas, Herbaspirillum, etc., on or inside plants, which can lead to a long-term association. Most SS like T3SS, T4SS, T5SS, and T6SS are required for the antagonistic activity needed to prevent competing microbes, including phytopathogens, ameliorate biotic stress in plants, and produce substances for successful colonization. Others are required for chemotaxis, adherence, niche formation, and suppression of immune response to establish mutualistic association with host plants.
Collapse
Affiliation(s)
- Garima Gupta
- Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki, Uttar Pradesh, India
- Microbial Technologies Group, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, India
| | - Puneet Singh Chauhan
- Microbial Technologies Group, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, India
| | - Prabhat Nath Jha
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Rakesh Kumar Verma
- Department of Biosciences, SLAS Mody University of Science and Technology, Sikar, Rajasthan, India
| | - Sachidanand Singh
- Department of Biotechnology, School of Energy Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
| | - Virendra Kumar Yadav
- Department of Lifesciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Ashish Patel
- Department of Lifesciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| |
Collapse
|
4
|
Yin R, Cheng J, Lin J. The role of the type VI secretion system in the stress resistance of plant-associated bacteria. STRESS BIOLOGY 2024; 4:16. [PMID: 38376647 PMCID: PMC10879055 DOI: 10.1007/s44154-024-00151-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/26/2024] [Indexed: 02/21/2024]
Abstract
The type VI secretion system (T6SS) is a powerful bacterial molecular weapon that can inject effector proteins into prokaryotic or eukaryotic cells, thereby participating in the competition between bacteria and improving bacterial environmental adaptability. Although most current studies of the T6SS have focused on animal bacteria, this system is also significant for the adaptation of plant-associated bacteria. This paper briefly introduces the structure and biological functions of the T6SS. We summarize the role of plant-associated bacterial T6SS in adaptability to host plants and the external environment, including resistance to biotic stresses such as host defenses and competition from other bacteria. We review the role of the T6SS in response to abiotic factors such as acid stress, oxidation stress, and osmotic stress. This review provides an important reference for exploring the functions of the T6SS in plant-associated bacteria. In addition, characterizing these anti-stress functions of the T6SS may provide new pathways toward eliminating plant pathogens and controlling agricultural losses.
Collapse
Affiliation(s)
- Rui Yin
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan'an University, Yan'an, 716000, Shaanxi, China
| | - Juanli Cheng
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan'an University, Yan'an, 716000, Shaanxi, China
| | - Jinshui Lin
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan'an University, Yan'an, 716000, Shaanxi, China.
| |
Collapse
|
5
|
Navarro-Monserrat ED, Taylor CG. T6SS: A Key to Pseudomonas's Success in Biocontrol? Microorganisms 2023; 11:2718. [PMID: 38004732 PMCID: PMC10673566 DOI: 10.3390/microorganisms11112718] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
Bacteria from the genus Pseudomonas have been extensively studied for their capacity to act as biological control agents of disease and pests and for their ability to enhance and promote crop production in agricultural systems. While initial research primarily focused on the human pathogenic bacteria Pseudomonas aeruginosa, recent studies indicate the significance of type VI secretion (T6SS) in other Pseudomonas strains for biocontrol purposes. This system possibly plays a pivotal role in restricting the biological activity of target microorganisms and may also contribute to the bolstering of the survival capabilities of the bacteria within their applied environment. The type VI secretion system is a phage-like structure used to translocate effectors into both prokaryotic and eukaryotic target cells. T6SSs are involved in a myriad of interactions, some of which have direct implications in the success of Pseudomonas as biocontrol agents. The prevalence of T6SSs in the genomes of Pseudomonas species is notably greater than the estimated 25% occurrence rate found in Gram-negative bacteria. This observation implies that T6SS likely plays a pivotal role in the survival and fitness of Pseudomonas. This review provides a brief overview of T6SS, its role in Pseudomonas with biocontrol applications, and future avenues of research within this subject matter.
Collapse
Affiliation(s)
| | - Christopher G. Taylor
- Department of Plant Pathology, Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA;
| |
Collapse
|
6
|
Bourigault Y, Dupont CA, Desjardins JB, Doan T, Bouteiller M, Le Guenno H, Chevalier S, Barbey C, Latour X, Cascales E, Merieau A. Pseudomonas fluorescens MFE01 delivers a putative type VI secretion amidase that confers biocontrol against the soft-rot pathogen Pectobacterium atrosepticum. Environ Microbiol 2023; 25:2564-2579. [PMID: 37622480 DOI: 10.1111/1462-2920.16492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 08/15/2023] [Indexed: 08/26/2023]
Abstract
The type VI secretion system (T6SS) is a contractile nanomachine widespread in Gram-negative bacteria. The T6SS injects effectors into target cells including eukaryotic hosts and competitor microbial cells and thus participates in pathogenesis and intermicrobial competition. Pseudomonas fluorescens MFE01 possesses a single T6SS gene cluster that confers biocontrol properties by protecting potato tubers against the phytopathogen Pectobacterium atrosepticum (Pca). Here, we demonstrate that a functional T6SS is essential to protect potato tuber by reducing the pectobacteria population. Fluorescence microscopy experiments showed that MFE01 displays an aggressive behaviour with an offensive T6SS characterized by continuous and intense T6SS firing activity. Interestingly, we observed that T6SS firing is correlated with rounding of Pectobacterium cells, suggesting delivery of a potent cell wall targeting effector. Mutagenesis coupled with functional assays then revealed that a putative T6SS secreted amidase, Tae3Pf , is mainly responsible for MFE01 toxicity towards Pca. Further studies finally demonstrated that Tae3Pf is toxic when produced in the periplasm, and that its toxicity is counteracted by the Tai3Pf inner membrane immunity protein.
Collapse
Affiliation(s)
- Yvann Bourigault
- Laboratoire de Communication Bactérienne et Stratégies Anti-infectieuses (CBSA, UR 4312), Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, Rouen, France
- Structure Fédérative de Recherche Normandie Végétale, NORVEGE Fed4277, Mont-Saint-Aignan, France
| | - Charly A Dupont
- Laboratoire de Communication Bactérienne et Stratégies Anti-infectieuses (CBSA, UR 4312), Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, Rouen, France
- Structure Fédérative de Recherche Normandie Végétale, NORVEGE Fed4277, Mont-Saint-Aignan, France
| | - Jonas B Desjardins
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM, UMR 7255), Institut de Microbiologie de la Méditerranée (IMM, FR3479), CNRS-Aix-Marseille Univ, Marseille, France
| | - Thierry Doan
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM, UMR 7255), Institut de Microbiologie de la Méditerranée (IMM, FR3479), CNRS-Aix-Marseille Univ, Marseille, France
| | - Mathilde Bouteiller
- Laboratoire de Communication Bactérienne et Stratégies Anti-infectieuses (CBSA, UR 4312), Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, Rouen, France
- Structure Fédérative de Recherche Normandie Végétale, NORVEGE Fed4277, Mont-Saint-Aignan, France
| | - Hugo Le Guenno
- Plateforme de Microscopie, Institut de Microbiologie de la Méditerranée (IMM, FR3479), CNRS-Aix-Marseille Univ, Marseille, France
| | - Sylvie Chevalier
- Laboratoire de Communication Bactérienne et Stratégies Anti-infectieuses (CBSA, UR 4312), Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, Rouen, France
| | - Corinne Barbey
- Laboratoire de Communication Bactérienne et Stratégies Anti-infectieuses (CBSA, UR 4312), Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, Rouen, France
- Structure Fédérative de Recherche Normandie Végétale, NORVEGE Fed4277, Mont-Saint-Aignan, France
| | - Xavier Latour
- Laboratoire de Communication Bactérienne et Stratégies Anti-infectieuses (CBSA, UR 4312), Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, Rouen, France
- Structure Fédérative de Recherche Normandie Végétale, NORVEGE Fed4277, Mont-Saint-Aignan, France
| | - Eric Cascales
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM, UMR 7255), Institut de Microbiologie de la Méditerranée (IMM, FR3479), CNRS-Aix-Marseille Univ, Marseille, France
| | - Annabelle Merieau
- Laboratoire de Communication Bactérienne et Stratégies Anti-infectieuses (CBSA, UR 4312), Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, Rouen, France
- Structure Fédérative de Recherche Normandie Végétale, NORVEGE Fed4277, Mont-Saint-Aignan, France
| |
Collapse
|
7
|
Durán D, Vazquez-Arias D, Blanco-Romero E, Garrido-Sanz D, Redondo-Nieto M, Rivilla R, Martín M. An Orphan VrgG Auxiliary Module Related to the Type VI Secretion Systems from Pseudomonas ogarae F113 Mediates Bacterial Killing. Genes (Basel) 2023; 14:1979. [PMID: 38002922 PMCID: PMC10671463 DOI: 10.3390/genes14111979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
The model rhizobacterium Pseudomonas ogarae F113, a relevant plant growth-promoting bacterium, encodes three different Type VI secretion systems (T6SS) in its genome. In silico analysis of its genome revealed the presence of a genetic auxiliary module containing a gene encoding an orphan VgrG protein (VgrG5a) that is not genetically linked to any T6SS structural cluster, but is associated with genes encoding putative T6SS-related proteins: a possible adaptor Tap protein, followed by a putative effector, Tfe8, and its putative cognate immunity protein, Tfi8. The bioinformatic analysis of the VgrG5a auxiliary module has revealed that this cluster is only present in several subgroups of the P. fluorescens complex of species. An analysis of the mutants affecting the vgrG5a and tfe8 genes has shown that the module is involved in bacterial killing. To test whether Tfe8/Tfi8 constitute an effector-immunity pair, the genes encoding Tfe8 and Tfi8 were cloned and expressed in E. coli, showing that the ectopic expression of tfe8 affected growth. The growth defect was suppressed by tfi8 ectopic expression. These results indicate that Tfe8 is a bacterial killing effector, while Tfi8 is its cognate immunity protein. The Tfe8 protein sequence presents homology to the proteins of the MATE family involved in drug extrusion. The Tfe8 effector is a membrane protein with 10 to 12 transmembrane domains that could destabilize the membranes of target cells by the formation of pores, revealing the importance of these effectors for bacterial interaction. Tfe8 represents a novel type of a T6SS effector present in pseudomonads.
Collapse
Affiliation(s)
- David Durán
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin, 2, 28049 Madrid, Spain; (D.D.); (D.V.-A.); (E.B.-R.); (D.G.-S.); (M.R.-N.); (R.R.)
| | - David Vazquez-Arias
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin, 2, 28049 Madrid, Spain; (D.D.); (D.V.-A.); (E.B.-R.); (D.G.-S.); (M.R.-N.); (R.R.)
| | - Esther Blanco-Romero
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin, 2, 28049 Madrid, Spain; (D.D.); (D.V.-A.); (E.B.-R.); (D.G.-S.); (M.R.-N.); (R.R.)
| | - Daniel Garrido-Sanz
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin, 2, 28049 Madrid, Spain; (D.D.); (D.V.-A.); (E.B.-R.); (D.G.-S.); (M.R.-N.); (R.R.)
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Miguel Redondo-Nieto
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin, 2, 28049 Madrid, Spain; (D.D.); (D.V.-A.); (E.B.-R.); (D.G.-S.); (M.R.-N.); (R.R.)
| | - Rafael Rivilla
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin, 2, 28049 Madrid, Spain; (D.D.); (D.V.-A.); (E.B.-R.); (D.G.-S.); (M.R.-N.); (R.R.)
| | - Marta Martín
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin, 2, 28049 Madrid, Spain; (D.D.); (D.V.-A.); (E.B.-R.); (D.G.-S.); (M.R.-N.); (R.R.)
| |
Collapse
|
8
|
Singh RP, Kumari K. Bacterial type VI secretion system (T6SS): an evolved molecular weapon with diverse functionality. Biotechnol Lett 2023; 45:309-331. [PMID: 36683130 DOI: 10.1007/s10529-023-03354-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/14/2022] [Accepted: 01/05/2023] [Indexed: 01/24/2023]
Abstract
Bacterial secretion systems are nanomolecular complexes that release a diverse set of virulence factors/or proteins into its surrounding or translocate to their target host cells. Among these systems, type VI secretion system 'T6SS' is a recently discovered molecular secretion system which is widely distributed in Gram-negative (-ve) bacteria, and shares structural similarity with the puncturing device of bacteriophages. The presence of T6SS is an advantage to many bacteria as it delivers toxins to its neighbour pathogens for competitive survival, and also translocates protein effectors to the host cells, leading to disruption of lipid membranes, cell walls, and cytoskeletons etc. Recent studies have characterized both anti-prokaryotic and anti-eukaryotic effectors, where T6SS is involved in diverse cellular functions including favouring colonization, enhancing the survival, adhesive modifications, internalization, and evasion of the immune system. With the evolution of advanced genomics and proteomics tools, there has been an increase in the number of characterized T6SS effector arsenals and also more clear information about the adaptive significance of this complex system. The functions of T6SS are generally regulated at the transcription, post-transcription and post-translational levels through diverse mechanisms. In the present review, we aimed to provide information about the distribution of T6SS in diverse bacteria, any structural similarity/or dissimilarity, effectors proteins, functional significance, and regulatory mechanisms. We also tried to provide information about the diverse roles played by T6SS in its natural environments and hosts, and further any changes in the microbiome.
Collapse
Affiliation(s)
- Rajnish Prakash Singh
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.
| | - Kiran Kumari
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| |
Collapse
|
9
|
Bernal P, Civantos C, Pacheco-Sánchez D, Quesada JM, Filloux A, Llamas MA. Transcriptional organization and regulation of the Pseudomonas putida K1 type VI secretion system gene cluster. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001295. [PMID: 36748579 PMCID: PMC9993120 DOI: 10.1099/mic.0.001295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The type VI secretion system (T6SS) is an antimicrobial molecular weapon that is widespread in Proteobacteria and offers competitive advantages to T6SS-positive micro-organisms. Three T6SSs have recently been described in Pseudomonas putida KT2440 and it has been shown that one, K1-T6SS, is used to outcompete a wide range of phytopathogens, protecting plants from pathogen infections. Given the relevance of this system as a powerful and innovative mechanism of biological control, it is critical to understand the processes that govern its expression. Here, we experimentally defined two transcriptional units in the K1-T6SS cluster. One encodes the structural components of the system and is transcribed from two adjacent promoters. The other encodes two hypothetical proteins, the tip of the system and the associated adapters, and effectors and cognate immunity proteins, and it is also transcribed from two adjacent promoters. The four identified promoters contain the typical features of σ70-dependent promoters. We have studied the expression of the system under different conditions and in a number of mutants lacking global regulators. P. putida K1-T6SS expression is induced in the stationary phase, but its transcription does not depend on the stationary σ factor RpoS. In fact, the expression of the system is indirectly repressed by RpoS. Furthermore, it is also repressed by RpoN and the transcriptional regulator FleQ, an enhancer-binding protein typically acting in conjunction with RpoN. Importantly, expression of the K1-T6SS gene cluster is positively regulated by the GacS-GacA two-component regulatory system (TCS) and repressed by the RetS sensor kinase, which inhibits this TCS. Our findings identified a complex regulatory network that governs T6SS expression in general and P. putida K1-T6SS in particular, with implications for controlling and manipulating a bacterial agent that is highly relevant in biological control.
Collapse
Affiliation(s)
- Patricia Bernal
- Department of Environmental Protection, Estación Experimental del Zaidín (CSIC), Granada, Spain.,MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, UK.,Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | - Cristina Civantos
- Department of Environmental Protection, Estación Experimental del Zaidín (CSIC), Granada, Spain
| | - Daniel Pacheco-Sánchez
- Department of Environmental Protection, Estación Experimental del Zaidín (CSIC), Granada, Spain
| | - José M Quesada
- Department of Environmental Protection, Estación Experimental del Zaidín (CSIC), Granada, Spain
| | - Alain Filloux
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, UK.,Singapore Centre for Environmental Life Sciences Engineering. Nanyang Technological University, Singapore
| | - María A Llamas
- Department of Environmental Protection, Estación Experimental del Zaidín (CSIC), Granada, Spain
| |
Collapse
|
10
|
Solar Venero EC, Matera G, Vogel J, López NI, Tribelli PM. Small RNAs in the Antarctic bacterium Pseudomonas extremaustralis responsive to oxygen availability and oxidative stress. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:604-615. [PMID: 35689330 DOI: 10.1111/1758-2229.13084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Bacterial small non-coding RNAs (sRNAs) play key roles as genetic regulators, mediating in the adaptability to changing environmental conditions and stress responses. In this work, we analysed putative sRNAs identified by RNA-seq experiments in different aeration conditions in the extremophile bacterium P. extremaustralis. These analyses allowed the identification of 177 putative sRNAs under aerobiosis (A), microaerobiosis (M) and microaerobiosis after H2 O2 exposure (m-OS). The size and transcription profile of eight sRNAs with differential expression were verified by Northern blot. sRNA40, with unknown function but conserved in other Pseudomonas species, was selected to perform overexpression experiments followed by RNA-seq analysis. The overexpression of sRNA40 in P. extremaustralis resulted in significant expression changes of 19 genes with 14 differentially upregulated and five downregulated. Among the upregulated genes, eight transcripts corresponded to components of secretion systems, such as gspH, gspK, and gspM, belonging to the Type II secretion system, and rspO and rspP from Type III secretion system. Our results showed a novel sRNA which expression was triggered by low oxygen levels, and whose overexpression was associated with upregulation of selected components of protein secretion systems.
Collapse
Affiliation(s)
| | - Gianluca Matera
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
| | - Jörg Vogel
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
| | - Nancy I López
- IQUIBICEN-CONICET, Intendente Guiraldes 2160, 1428EGA, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428EGA, Buenos Aires, Argentina
| | - Paula M Tribelli
- IQUIBICEN-CONICET, Intendente Guiraldes 2160, 1428EGA, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428EGA, Buenos Aires, Argentina
| |
Collapse
|
11
|
Influence of Sugarcane Variety on Rhizosphere Microbiota Under Irrigated and Water-Limiting Conditions. Curr Microbiol 2022; 79:246. [PMID: 35834135 DOI: 10.1007/s00284-022-02946-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 06/22/2022] [Indexed: 11/03/2022]
Abstract
Drought is one of the main problems linked to climate change that is faced by agriculture, affecting various globally important crops, including sugarcane. Environmentally sustainable strategies have been sought to mitigate the effects of climate change on crops. Among them, the use of beneficial microorganisms offers a promising approach. However, it is still necessary to understand the mechanisms that regulate plant-microorganism interactions, in normal situations and under stress. In this work, the rhizosphere metagenomes of two sugarcane varieties, one resistant and the other susceptible to drought, were compared under normal conditions and under water-limiting conditions. The results showed that for the drought-resistant sugarcane variety, bacteria belonging to the order Sphingomonadales and the family Xanthomonadaceae presented increased activities in terms of mobility, colonization, and cell growth. In contrast, the rhizosphere associated with the drought-sensitive variety exhibited increases of bacteria belonging to the family Polyangiaceae, and the genus Streptomyces, with modifications in DNA metabolism and ribosome binding proteins. The results pointed to variation in the rhizosphere microbiota that was modulated by the host plant genotype, revealing potential bacterial candidates that could be recruited to assist plants during water-limiting conditions.
Collapse
|
12
|
Boak EN, Kirolos S, Pan H, Pierson LS, Pierson EA. The Type VI Secretion Systems in Plant-Beneficial Bacteria Modulate Prokaryotic and Eukaryotic Interactions in the Rhizosphere. Front Microbiol 2022; 13:843092. [PMID: 35464916 PMCID: PMC9022076 DOI: 10.3389/fmicb.2022.843092] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/04/2022] [Indexed: 01/15/2023] Open
Abstract
Rhizosphere colonizing plant growth promoting bacteria (PGPB) increase their competitiveness by producing diffusible toxic secondary metabolites, which inhibit competitors and deter predators. Many PGPB also have one or more Type VI Secretion System (T6SS), for the delivery of weapons directly into prokaryotic and eukaryotic cells. Studied predominantly in human and plant pathogens as a virulence mechanism for the delivery of effector proteins, the function of T6SS for PGPB in the rhizosphere niche is poorly understood. We utilized a collection of Pseudomonas chlororaphis 30-84 mutants deficient in one or both of its two T6SS and/or secondary metabolite production to examine the relative importance of each T6SS in rhizosphere competence, bacterial competition, and protection from bacterivores. A mutant deficient in both T6SS was less persistent than wild type in the rhizosphere. Both T6SS contributed to competitiveness against other PGPB or plant pathogenic strains not affected by secondary metabolite production, but only T6SS-2 was effective against strains lacking their own T6SS. Having at least one T6SS was also essential for protection from predation by several eukaryotic bacterivores. In contrast to diffusible weapons that may not be produced at low cell density, T6SS afford rhizobacteria an additional, more immediate line of defense against competitors and predators.
Collapse
Affiliation(s)
- Emily N. Boak
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - Sara Kirolos
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Huiqiao Pan
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, United States
| | - Leland S. Pierson
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States
| | - Elizabeth A. Pierson
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
13
|
Zboralski A, Biessy A, Filion M. Bridging the Gap: Type III Secretion Systems in Plant-Beneficial Bacteria. Microorganisms 2022; 10:187. [PMID: 35056636 PMCID: PMC8780523 DOI: 10.3390/microorganisms10010187] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 12/30/2022] Open
Abstract
Type III secretion systems (T3SSs) are bacterial membrane-embedded nanomachines translocating effector proteins into the cytoplasm of eukaryotic cells. They have been intensively studied for their important roles in animal and plant bacterial diseases. Over the past two decades, genome sequencing has unveiled their ubiquitous distribution in many taxa of Gram-negative bacteria, including plant-beneficial ones. Here, we discuss the distribution and functions of the T3SS in two agronomically important bacterial groups: the symbiotic nodule-forming nitrogen-fixing rhizobia and the free-living plant-beneficial Pseudomonas spp. In legume-rhizobia symbiosis, T3SSs and their cognate effectors play important roles, including the modulation of the plant immune response and the initiation of the nodulation process in some cases. In plant-beneficial Pseudomonas spp., the roles of T3SSs are not fully understood, but pertain to plant immunity suppression, biocontrol against eukaryotic plant pathogens, mycorrhization facilitation, and possibly resistance against protist predation. The diversity of T3SSs in plant-beneficial bacteria points to their important roles in multifarious interkingdom interactions in the rhizosphere. We argue that the gap in research on T3SSs in plant-beneficial bacteria must be bridged to better understand bacteria/eukaryotes rhizosphere interactions and to support the development of efficient plant-growth promoting microbial inoculants.
Collapse
Affiliation(s)
| | | | - Martin Filion
- Research and Development Centre, Agriculture and Agri-Food Canada, 430 Gouin Boulevard, Saint-Jean-sur-Richelieu, QC J3B 3E6, Canada; (A.Z.); (A.B.)
| |
Collapse
|
14
|
Wang J, Luo Y, Gu Y, Wei HL. Characterization of the SPI-1 Type III Secretion System in Pseudomonas fluorescens 2P24. Front Microbiol 2021; 12:749037. [PMID: 34621260 PMCID: PMC8490769 DOI: 10.3389/fmicb.2021.749037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 08/31/2021] [Indexed: 12/04/2022] Open
Abstract
Pseudomonas fluorescens 2P24 is a plant growth-promoting rhizobacterium (PGPR) isolated from wheat take-all decline soil. Genomic analysis of strain 2P24 revealed the presence of a complete SPI-1 type III secretion system (T3SS) gene cluster on the chromosome with an organization and orientation similar to the SPI-1 T3SS gene clusters of Salmonella enterica and P. kilonensis F113. Phylogenetic analysis revealed that the SPI-1 T3SS gene cluster of strain 2P24 might be obtained from Salmonella and Shigella by horizontal gene transfer. Two transcriptional regulator homologs of HilA and InvF were found from the SPI-1 T3SS gene cluster of strain 2P24. HilA regulated the expression of the structural genes positively, such as invG, sipB, sipD, prgI, and prgK. Prediction of transcriptional binding sites and RNA-seq analysis revealed 14 genes were up-regulated by InvF in strain 2P24. Exploring potential roles of SPI-1 T3SS revealed that it was not associated with motility. However, 2P24ΔinvF reduced resistance against Fusarium graminearum significantly. 2P24ΔhilA enhanced formation of biofilm significantly at 48 h. All three mutants 2P24ΔhilA, 2P24ΔinvF, and 2P24ΔinvE-C reduced the chemotactic responses to glucose significantly. Finally, the determination of SPI-1 mutants to trigger innate immunity in Nicotiana benthamiana showed that 2P24ΔinvE-C reduced the ability to induce the production of reactive oxygen species compared with the wild type strain 2P24.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yuan Luo
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yilin Gu
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Hai-Lei Wei
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| |
Collapse
|
15
|
Marian M, Fujikawa T, Shimizu M. Genome analysis provides insights into the biocontrol ability of Mitsuaria sp. strain TWR114. Arch Microbiol 2021; 203:3373-3388. [PMID: 33880605 DOI: 10.1007/s00203-021-02327-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 12/31/2022]
Abstract
Mitsuaria sp. TWR114 is a biocontrol agent against tomato bacterial wilt (TBW). We aimed to gain genomic insights relevant to the biocontrol mechanisms and colonization ability of this strain. The draft genome size was found to be 5,632,523 bp, with a GC content of 69.5%, assembled into 1144 scaffolds. Genome annotation predicted a total of 4675 protein coding sequences (CDSs), 914 pseudogenes, 49 transfer RNAs, 3 noncoding RNAs, and 2 ribosomal RNAs. Genome analysis identified multiple CDSs associated with various pathways for the metabolism and transport of amino acids and carbohydrates, motility and chemotactic capacities, protection against stresses (oxidative, antibiotic, and phage), production of secondary metabolites, peptidases, quorum-quenching enzymes, and indole-3-acetic acid, as well as protein secretion systems and their related appendages. The genome resource will extend our understanding of the genomic features related to TWR114's biocontrol and colonization abilities and facilitate its development as a new biopesticide against TBW.
Collapse
Affiliation(s)
- Malek Marian
- Faculty of Applied Biological Sciences, Gifu University, Gifu, 501-1193, Japan.,College of Agriculture, Ibaraki University, Ami, Inashiki, Ibaraki, 300-0393, Japan
| | - Takashi Fujikawa
- Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, 305-8605, Japan
| | - Masafumi Shimizu
- Faculty of Applied Biological Sciences, Gifu University, Gifu, 501-1193, Japan.
| |
Collapse
|
16
|
Durán D, Bernal P, Vazquez-Arias D, Blanco-Romero E, Garrido-Sanz D, Redondo-Nieto M, Rivilla R, Martín M. Pseudomonas fluorescens F113 type VI secretion systems mediate bacterial killing and adaption to the rhizosphere microbiome. Sci Rep 2021; 11:5772. [PMID: 33707614 PMCID: PMC7970981 DOI: 10.1038/s41598-021-85218-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 02/26/2021] [Indexed: 02/06/2023] Open
Abstract
The genome of Pseudomonas fluorescens F113, a model rhizobacterium and a plant growth-promoting agent, encodes three putative type VI secretion systems (T6SSs); F1-, F2- and F3-T6SS. Bioinformatic analysis of the F113 T6SSs has revealed that they belong to group 3, group 1.1, and group 4a, respectively, similar to those previously described in Pseudomonas aeruginosa. In addition, in silico analyses allowed us to identify genes encoding a total of five orphan VgrG proteins and eight putative effectors (Tfe), some with their cognate immunity protein (Tfi) pairs. Genes encoding Tfe and Tfi are found in the proximity of P. fluorescens F113 vgrG, hcp, eagR and tap genes. RNA-Seq analyses in liquid culture and rhizosphere have revealed that F1- and F3-T6SS are expressed under all conditions, indicating that they are active systems, while F2-T6SS did not show any relevant expression under the tested conditions. The analysis of structural mutants in the three T6SSs has shown that the active F1- and F3-T6SSs are involved in interbacterial killing while F2 is not active in these conditions and its role is still unknown.. A rhizosphere colonization analysis of the double mutant affected in the F1- and F3-T6SS clusters showed that the double mutant was severely impaired in persistence in the rhizosphere microbiome, revealing the importance of these two systems for rhizosphere adaption.
Collapse
Affiliation(s)
- David Durán
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin, 2, 28049, Madrid, Spain
| | - Patricia Bernal
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin, 2, 28049, Madrid, Spain.,Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avenida de la Reina Mercedes, 6, 41012, Sevilla, Spain
| | - David Vazquez-Arias
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin, 2, 28049, Madrid, Spain
| | - Esther Blanco-Romero
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin, 2, 28049, Madrid, Spain
| | - Daniel Garrido-Sanz
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin, 2, 28049, Madrid, Spain
| | - Miguel Redondo-Nieto
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin, 2, 28049, Madrid, Spain
| | - Rafael Rivilla
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin, 2, 28049, Madrid, Spain
| | - Marta Martín
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin, 2, 28049, Madrid, Spain.
| |
Collapse
|
17
|
Regaiolo A, Dominelli N, Andresen K, Heermann R. The Biocontrol Agent and Insect Pathogen Photorhabdus luminescens Interacts with Plant Roots. Appl Environ Microbiol 2020; 86:e00891-20. [PMID: 32591378 PMCID: PMC7440798 DOI: 10.1128/aem.00891-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/18/2020] [Indexed: 01/27/2023] Open
Abstract
The number of sustainable agriculture techniques to improve pest management and environmental safety is rising, as biological control agents are used to enhance disease resistance and abiotic stress tolerance in crops. Here, we investigated the capacity of the Photorhabdus luminescens secondary variant to react to plant root exudates and their behavior toward microorganisms in the rhizosphere. P. luminescens is known to live in symbiosis with entomopathogenic nematodes (EPNs) and to be highly pathogenic toward insects. The P. luminescens-EPN relationship has been widely studied, and this combination has been used as a biological control agent; however, not much attention has been paid to the putative lifestyle of P. luminescens in the rhizosphere. We performed transcriptome analysis to show how P. luminescens responds to plant root exudates. The analysis highlighted genes involved in chitin degradation, biofilm regulation, formation of flagella, and type VI secretion system. Furthermore, we provide evidence that P. luminescens can inhibit growth of phytopathogenic fungi. Finally, we demonstrated a specific interaction of P. luminescens with plant roots. Understanding the role and the function of this bacterium in the rhizosphere might accelerate the progress in biocontrol manipulation and elucidate the peculiar mechanisms adopted by plant growth-promoting rhizobacteria in plant root interactions.IMPORTANCE Insect-pathogenic Photorhabdus luminescens bacteria are widely used in biocontrol strategies against pests. Very little is known about the life of these bacteria in the rhizosphere. Here, we show that P. luminescens can specifically react to and interact with plant roots. Understanding the adaptation of P. luminescens in the rhizosphere is highly important for the biotechnological application of entomopathogenic bacteria and could improve future sustainable pest management in agriculture.
Collapse
Affiliation(s)
- Alice Regaiolo
- Johannes-Gutenberg-University Mainz, Institute of Molecular Physiology (imP), Microbiology and Wine Research, Mainz, Germany
| | - Nazzareno Dominelli
- Johannes-Gutenberg-University Mainz, Institute of Molecular Physiology (imP), Microbiology and Wine Research, Mainz, Germany
| | - Karsten Andresen
- Johannes-Gutenberg-University Mainz, Institute of Molecular Physiology (imP), Microbiology and Wine Research, Mainz, Germany
| | - Ralf Heermann
- Johannes-Gutenberg-University Mainz, Institute of Molecular Physiology (imP), Microbiology and Wine Research, Mainz, Germany
| |
Collapse
|
18
|
Villamizar S, Ferro JA, Caicedo JC, Alves LMC. Bactericidal Effect of Entomopathogenic Bacterium Pseudomonas entomophila Against Xanthomonas citri Reduces Citrus Canker Disease Severity. Front Microbiol 2020; 11:1431. [PMID: 32670251 PMCID: PMC7327231 DOI: 10.3389/fmicb.2020.01431] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 06/02/2020] [Indexed: 12/17/2022] Open
Abstract
The bacterium Pseudomonas entomophila has been recognized as an exceptional species within the Pseudomonas genus, capable of naturally infecting and killing insects from at least three different orders. P. entomophila ingestion leads to irreversible gut damage resulting from a global blockage of translation, which impairs both immune and tissue repair systems in the insect intestine. In this study we isolated a P. entomophila bacterial strain from soil samples which displayed a strong activity against Xanthomonas citri subsp, citri (Xcc), the etiological agent of citrus canker disease. The antagonism potential of isolated bacteria against Xcc and its ability to reduce citrus canker severity was assessed both ex planta and in planta. Our findings show that pathogenicity assays in Citrus x limonia by pressure infiltration and spray with a mixture of P. entomophila and Xcc leaded to a significant reduction in the number of canker lesions in high susceptible citrus leaves, at 21 days post-infection. To the best of our knowledge this is the first report of antibacterial activity of P. entomophila against a phytopathogenic bacterium. Collective action of P. entomophila factors such as diketopiperazine production and the type 6 secretion system (T6SS) may be involved in this type of biological control of citrus canker. The results suggest that the P. entomophila strain could be a promising biocontrol agent acting directly against Xcc.
Collapse
Affiliation(s)
- Sonia Villamizar
- Post Graduate Program in Agricultural and Livestock Microbiology, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, Brazil
| | - Jesus Aparecido Ferro
- Post Graduate Program in Agricultural and Livestock Microbiology, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, Brazil
| | - Juan Carlos Caicedo
- Post Graduate Program in Agricultural and Livestock Microbiology, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, Brazil.,Faculty of Exact, Natural and Agricultural Sciences, Research Group CIBAS, Universidad de Santander (UDES), Bucaramanga, Colombia
| | - L M C Alves
- Post Graduate Program in Agricultural and Livestock Microbiology, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, Brazil
| |
Collapse
|
19
|
Chien CF, Liu CY, Lu YY, Sung YH, Chen KY, Lin NC. HSI-II Gene Cluster of Pseudomonas syringae pv. tomato DC3000 Encodes a Functional Type VI Secretion System Required for Interbacterial Competition. Front Microbiol 2020; 11:1118. [PMID: 32582082 PMCID: PMC7283901 DOI: 10.3389/fmicb.2020.01118] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/05/2020] [Indexed: 11/13/2022] Open
Abstract
The type VI secretion system (T6SS) is a widespread bacterial nanoweapon used for delivery of toxic proteins into cell targets and contributes to virulence, anti-inflammatory processes, and interbacterial competition. In the model phytopathogenic bacterium Pseudomonas syringae pv. tomato (Pst) DC3000, two T6SS gene clusters, HSI-I and HSI-II, were identified, but their functions remain unclear. We previously reported that hcp2, located in HSI-II, is involved in competition with enterobacteria and yeast. Here, we demonstrated that interbacterial competition of Pst DC3000 against several Gram-negative plant-associated bacteria requires mainly HSI-II activity. By means of a systematic approach using in-frame deletion mutants for each gene in the HSI-II cluster, we identified genes indispensable for Hcp2 expression, Hcp2 secretion and interbacterial competition ability. Deletion of PSPTO_5413 only affected growth in interbacterial competition assays but not Hcp2 secretion, which suggests that PSPTO_5413 might be a putative effector. Moreover, PSPTO_5424, encoding a putative σ54-dependent transcriptional regulator, positively regulated the expression of all three operons in HSI-II. Our discovery that the HSI-II gene cluster gives Pst DC3000 the ability to compete with other plant-associated bacteria could help in understanding a possible mechanism of how phytopathogenic bacteria maintain their ecological niches.
Collapse
Affiliation(s)
- Ching-Fang Chien
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
| | - Cheng-Ying Liu
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
| | - Yew-Yee Lu
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
| | - You-Hsing Sung
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
| | - Kuo-Yau Chen
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
| | - Nai-Chun Lin
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
20
|
De Vrieze M, Varadarajan AR, Schneeberger K, Bailly A, Rohr RP, Ahrens CH, Weisskopf L. Linking Comparative Genomics of Nine Potato-Associated Pseudomonas Isolates With Their Differing Biocontrol Potential Against Late Blight. Front Microbiol 2020; 11:857. [PMID: 32425922 PMCID: PMC7204214 DOI: 10.3389/fmicb.2020.00857] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/09/2020] [Indexed: 01/22/2023] Open
Abstract
For plants, the advantages of associating with beneficial bacteria include plant growth promotion, reduction of abiotic and biotic stresses and enhanced protection against various pests and diseases. Beneficial bacteria rightly equipped for successful plant colonization and showing antagonistic activity toward plant pathogens seem to be actively recruited by plants. To gain more insights into the genetic determinants responsible for plant colonization and antagonistic activities, we first sequenced and de novo assembled the complete genomes of nine Pseudomonas strains that had exhibited varying antagonistic potential against the notorious oomycete Phytophthora infestans, placed them into the phylogenomic context of known Pseudomonas biocontrol strains and carried out a comparative genomic analysis to define core, accessory (i.e., genes found in two or more, but not all strains) and unique genes. Next, we assessed the colonizing abilities of these strains and used bioassays to characterize their inhibitory effects against different stages of P. infestans' lifecycle. The phenotype data were then correlated with genotype information, assessing over three hundred genes encoding known factors for plant colonization and antimicrobial activity as well as secondary metabolite biosynthesis clusters predicted by antiSMASH. All strains harbored genes required for successful plant colonization but also distinct arsenals of antimicrobial compounds. We identified genes coding for phenazine, hydrogen cyanide, 2-hexyl, 5-propyl resorcinol and pyrrolnitrin synthesis, as well as various siderophores, pyocins and type VI secretion systems. Additionally, the comparative genomic analysis revealed about a hundred accessory genes putatively involved in anti-Phytophthora activity, including a type II secretion system (T2SS), several peptidases and a toxin. Transcriptomic studies and mutagenesis are needed to further investigate the putative involvement of the novel candidate genes and to identify the various mechanisms involved in the inhibition of P. infestans by different Pseudomonas strains.
Collapse
Affiliation(s)
- Mout De Vrieze
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Adithi R. Varadarajan
- Agroscope, Research Group Molecular Diagnostics, Genomics and Bioinformatics & SIB Swiss Institute of Bioinformatics, Wädenswil, Switzerland
| | - Kerstin Schneeberger
- Agroscope, Research Group Molecular Diagnostics, Genomics and Bioinformatics & SIB Swiss Institute of Bioinformatics, Wädenswil, Switzerland
| | - Aurélien Bailly
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Rudolf P. Rohr
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Christian H. Ahrens
- Agroscope, Research Group Molecular Diagnostics, Genomics and Bioinformatics & SIB Swiss Institute of Bioinformatics, Wädenswil, Switzerland
| | - Laure Weisskopf
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
21
|
Bergeau D, Mazurier S, Barbey C, Merieau A, Chane A, Goux D, Bernard S, Driouich A, Lemanceau P, Vicré M, Latour X. Unusual extracellular appendages deployed by the model strain Pseudomonas fluorescens C7R12. PLoS One 2019; 14:e0221025. [PMID: 31461454 PMCID: PMC6713353 DOI: 10.1371/journal.pone.0221025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/30/2019] [Indexed: 01/22/2023] Open
Abstract
Pseudomonas fluorescens is considered to be a typical plant-associated saprophytic bacterium with no pathogenic potential. Indeed, some P. fluorescens strains are well-known rhizobacteria that promote plant growth by direct stimulation, by preventing the deleterious effects of pathogens, or both. Pseudomonas fluorescens C7R12 is a rhizosphere-competent strain that is effective as a biocontrol agent and promotes plant growth and arbuscular mycorrhization. This strain has been studied in detail, but no visual evidence has ever been obtained for extracellular structures potentially involved in its remarkable fitness and biocontrol performances. On transmission electron microscopy of negatively stained C7R12 cells, we observed the following appendages: multiple polar flagella, an inducible putative type three secretion system typical of phytopathogenic Pseudomonas syringae strains and densely bundled fimbria-like appendages forming a broad fractal-like dendritic network around single cells and microcolonies. The deployment of one or other of these elements on the bacterial surface depends on the composition and affinity for the water of the microenvironment. The existence, within this single strain, of machineries known to be involved in motility, chemotaxis, hypersensitive response, cellular adhesion and biofilm formation, may partly explain the strong interactions of strain C7R12 with plants and associated microflora in addition to the type three secretion system previously shown to be implied in mycorrhizae promotion.
Collapse
Affiliation(s)
- Dorian Bergeau
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM EA 4312)—Normandie Université - LMSM, Evreux, France
| | - Sylvie Mazurier
- Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Corinne Barbey
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM EA 4312)—Normandie Université - LMSM, Evreux, France
- Structure Fédérative de Recherche Normandie Végétale 4277 (NORVEGE), Normandie, France
| | - Annabelle Merieau
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM EA 4312)—Normandie Université - LMSM, Evreux, France
- Structure Fédérative de Recherche Normandie Végétale 4277 (NORVEGE), Normandie, France
| | - Andrea Chane
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM EA 4312)—Normandie Université - LMSM, Evreux, France
| | - Didier Goux
- Centre de Microscopie Appliquée à la biologie, SFR 4206 ICORE Université de Caen Normandie (CMAbio3), Caen, France
| | - Sophie Bernard
- Structure Fédérative de Recherche Normandie Végétale 4277 (NORVEGE), Normandie, France
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale—Normandie Université - EA 4358 Université de Rouen, Mont-Saint-Aignan, France
| | - Azeddine Driouich
- Structure Fédérative de Recherche Normandie Végétale 4277 (NORVEGE), Normandie, France
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale—Normandie Université - EA 4358 Université de Rouen, Mont-Saint-Aignan, France
| | - Philippe Lemanceau
- Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Maïté Vicré
- Structure Fédérative de Recherche Normandie Végétale 4277 (NORVEGE), Normandie, France
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale—Normandie Université - EA 4358 Université de Rouen, Mont-Saint-Aignan, France
| | - Xavier Latour
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM EA 4312)—Normandie Université - LMSM, Evreux, France
- Structure Fédérative de Recherche Normandie Végétale 4277 (NORVEGE), Normandie, France
- * E-mail:
| |
Collapse
|
22
|
Dias GM, de Sousa Pires A, Grilo VS, Castro MR, de Figueiredo Vilela L, Neves BC. Comparative genomics of Paraburkholderia kururiensis and its potential in bioremediation, biofertilization, and biocontrol of plant pathogens. Microbiologyopen 2019; 8:e00801. [PMID: 30811107 PMCID: PMC6692535 DOI: 10.1002/mbo3.801] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/19/2018] [Accepted: 12/29/2018] [Indexed: 12/23/2022] Open
Abstract
Burkholderia harbors versatile Gram-negative species and is β-Proteobacteria. Recently, it was proposed to split the genus in two main branches: one of animal and plant pathogens and another, Paraburkholderia, harboring environmental and plant-beneficial species. Currently, Paraburkholderia comprises more than 70 species with ability to occupy very diverse environmental niches. Herein, we sequenced and analyzed the genome of Paraburkholderia kururiensis type strain KP23T , and compared to P. kururiensis M130, isolated in Brazil, and P. kururiensis susbp. thiooxydans, from Korea. This study focused on the gene content of the three genomes with special emphasis on their potential of plant-association, biocontrol, and bioremediation. The comparative analyses revealed several genes related to plant benefits, including biosynthesis of IAA, ACC deaminase, multiple efflux pumps, dioxygenases, and degradation of aromatic compounds. Importantly, a range of genes for protein secretion systems (type III, IV, V, and VI) were characterized, potentially involved in P. kururiensis well documented ability to establish endophytic association with plants. These findings shed light onto bacteria-plant interaction mechanisms at molecular level, adding novel information that supports their potential application in bioremediation, biofertilization, and biocontrol of plant pathogens. P. kururiensis emerges as a promising model to investigate adaptation mechanisms in different ecological niches.
Collapse
Affiliation(s)
- Graciela M. Dias
- Department of BiochemistryChemistry InstituteFederal University of Rio de JaneiroRio de JaneiroBrazil
| | - Araceli de Sousa Pires
- Department of BiochemistryChemistry InstituteFederal University of Rio de JaneiroRio de JaneiroBrazil
| | - Vinicius S. Grilo
- Department of BiochemistryChemistry InstituteFederal University of Rio de JaneiroRio de JaneiroBrazil
| | - Michele R. Castro
- Department of BiochemistryChemistry InstituteFederal University of Rio de JaneiroRio de JaneiroBrazil
- Department of BiologyFederal Institute of Rio de JaneiroRio de JaneiroBrazil
| | | | - Bianca C. Neves
- Department of BiochemistryChemistry InstituteFederal University of Rio de JaneiroRio de JaneiroBrazil
| |
Collapse
|
23
|
Trunk K, Coulthurst SJ, Quinn J. A New Front in Microbial Warfare-Delivery of Antifungal Effectors by the Type VI Secretion System. J Fungi (Basel) 2019; 5:jof5020050. [PMID: 31197124 PMCID: PMC6617251 DOI: 10.3390/jof5020050] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 12/29/2022] Open
Abstract
Microbes typically exist in mixed communities and display complex synergistic and antagonistic interactions. The Type VI secretion system (T6SS) is widespread in Gram-negative bacteria and represents a contractile nano-machine that can fire effector proteins directly into neighbouring cells. The primary role assigned to the T6SS is to function as a potent weapon during inter-bacterial competition, delivering antibacterial effectors into rival bacterial cells. However, it has recently emerged that the T6SS can also be used as a powerful weapon against fungal competitors, and the first fungal-specific T6SS effector proteins, Tfe1 and Tfe2, have been identified. These effectors act via distinct mechanisms against a variety of fungal species to cause cell death. Tfe1 intoxication triggers plasma membrane depolarisation, whilst Tfe2 disrupts nutrient uptake and induces autophagy. Based on the frequent coexistence of bacteria and fungi in microbial communities, we propose that T6SS-dependent antifungal activity is likely to be widespread and elicited by a suite of antifungal effectors. Supporting this hypothesis, homologues of Tfe1 and Tfe2 are found in other bacterial species, and a number of T6SS-elaborating species have been demonstrated to interact with fungi. Thus, we envisage that antifungal T6SS will shape many polymicrobial communities, including the human microbiota and disease-causing infections.
Collapse
Affiliation(s)
- Katharina Trunk
- Institute for Cell and Molecular Biosciences, Faculty of Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Sarah J Coulthurst
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| | - Janet Quinn
- Institute for Cell and Molecular Biosciences, Faculty of Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
24
|
Coulthurst S. The Type VI secretion system: a versatile bacterial weapon. Microbiology (Reading) 2019; 165:503-515. [DOI: 10.1099/mic.0.000789] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Sarah Coulthurst
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| |
Collapse
|
25
|
Abstract
The Type VI secretion system (T6SS) is a protein nanomachine that is widespread in Gram-negative bacteria and is used to translocate effector proteins directly into neighbouring cells. It represents a versatile bacterial weapon that can deliver effectors into distinct classes of target cells, playing key roles in inter-bacterial competition and bacterial interactions with eukaryotic cells. This versatility is underpinned by the ability of the T6SS to deliver a vast array of effector proteins, with many distinct activities and modes of interaction with the secretion machinery. Recent work has highlighted the importance and diversity of interactions mediated by T6SSs within polymicrobial communities, and offers new molecular insights into effector delivery and action in target cells.
Collapse
Affiliation(s)
- Sarah Coulthurst
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| |
Collapse
|
26
|
Convergent gain and loss of genomic islands drive lifestyle changes in plant-associated Pseudomonas. ISME JOURNAL 2019; 13:1575-1588. [PMID: 30787396 DOI: 10.1038/s41396-019-0372-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/04/2019] [Accepted: 01/31/2019] [Indexed: 01/07/2023]
Abstract
Host-associated bacteria can have both beneficial and detrimental effects on host health. While some of the molecular mechanisms that determine these outcomes are known, little is known about the evolutionary histories of pathogenic or mutualistic lifestyles. Using the model plant Arabidopsis, we found that closely related strains within the Pseudomonas fluorescens species complex promote plant growth and occasionally cause disease. To elucidate the genetic basis of the transition between commensalism and pathogenesis, we developed a computational pipeline and identified genomic islands that correlate with outcomes for plant health. One island containing genes for lipopeptide biosynthesis and quorum-sensing is required for pathogenesis. Conservation of the quorum-sensing machinery in this island allows pathogenic strains to eavesdrop on quorum signals in the environment and coordinate pathogenic behavior. We found that genomic loci associated with both pathogenic and commensal lifestyles were convergently gained and lost in multiple lineages through homologous recombination, possibly constituting an early step in the differentiation of pathogenic and commensal lifestyles. Collectively this work provides novel insights into the evolution of commensal and pathogenic lifestyles within a single clade of host-associated bacteria.
Collapse
|
27
|
Biessy A, Novinscak A, Blom J, Léger G, Thomashow LS, Cazorla FM, Josic D, Filion M. Diversity of phytobeneficial traits revealed by whole-genome analysis of worldwide-isolated phenazine-producing Pseudomonas spp. Environ Microbiol 2018; 21:437-455. [PMID: 30421490 DOI: 10.1111/1462-2920.14476] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 11/02/2018] [Accepted: 11/06/2018] [Indexed: 12/24/2022]
Abstract
Plant-beneficial Pseudomonas spp. competitively colonize the rhizosphere and display plant-growth promotion and/or disease-suppression activities. Some strains within the P. fluorescens species complex produce phenazine derivatives, such as phenazine-1-carboxylic acid. These antimicrobial compounds are broadly inhibitory to numerous soil-dwelling plant pathogens and play a role in the ecological competence of phenazine-producing Pseudomonas spp. We assembled a collection encompassing 63 strains representative of the worldwide diversity of plant-beneficial phenazine-producing Pseudomonas spp. In this study, we report the sequencing of 58 complete genomes using PacBio RS II sequencing technology. Distributed among four subgroups within the P. fluorescens species complex, the diversity of our collection is reflected by the large pangenome which accounts for 25 413 protein-coding genes. We identified genes and clusters encoding for numerous phytobeneficial traits, including antibiotics, siderophores and cyclic lipopeptides biosynthesis, some of which were previously unknown in these microorganisms. Finally, we gained insight into the evolutionary history of the phenazine biosynthetic operon. Given its diverse genomic context, it is likely that this operon was relocated several times during Pseudomonas evolution. Our findings acknowledge the tremendous diversity of plant-beneficial phenazine-producing Pseudomonas spp., paving the way for comparative analyses to identify new genetic determinants involved in biocontrol, plant-growth promotion and rhizosphere competence.
Collapse
Affiliation(s)
- Adrien Biessy
- Department of Biology, Université de Moncton, Moncton, NB, Canada
| | - Amy Novinscak
- Department of Biology, Université de Moncton, Moncton, NB, Canada
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Geneviève Léger
- Department of Biology, Université de Moncton, Moncton, NB, Canada
| | - Linda S Thomashow
- United States Department of Agriculture - Agricultural Research Service, Pullman, WA, USA
| | - Francisco M Cazorla
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Dragana Josic
- Department of Microbiology, Institute of Soil Science, Belgrade, Serbia
| | - Martin Filion
- Department of Biology, Université de Moncton, Moncton, NB, Canada
| |
Collapse
|
28
|
Hayden HL, Savin KW, Wadeson J, Gupta VVSR, Mele PM. Comparative Metatranscriptomics of Wheat Rhizosphere Microbiomes in Disease Suppressive and Non-suppressive Soils for Rhizoctonia solani AG8. Front Microbiol 2018; 9:859. [PMID: 29780371 PMCID: PMC5945926 DOI: 10.3389/fmicb.2018.00859] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/13/2018] [Indexed: 11/29/2022] Open
Abstract
The soilborne fungus Rhizoctonia solani anastomosis group (AG) 8 is a major pathogen of grain crops resulting in substantial production losses. In the absence of resistant cultivars of wheat or barley, a sustainable and enduring method for disease control may lie in the enhancement of biological disease suppression. Evidence of effective biological control of R. solani AG8 through disease suppression has been well documented at our study site in Avon, South Australia. A comparative metatranscriptomic approach was applied to assess the taxonomic and functional characteristics of the rhizosphere microbiome of wheat plants grown in adjacent fields which are suppressive and non-suppressive to the plant pathogen R. solani AG8. Analysis of 12 rhizosphere metatranscriptomes (six per field) was undertaken using two bioinformatic approaches involving unassembled and assembled reads. Differential expression analysis showed the dominant taxa in the rhizosphere based on mRNA annotation were Arthrobacter spp. and Pseudomonas spp. for non-suppressive samples and Stenotrophomonas spp. and Buttiauxella spp. for the suppressive samples. The assembled metatranscriptome analysis identified more differentially expressed genes than the unassembled analysis in the comparison of suppressive and non-suppressive samples. Suppressive samples showed greater expression of a polyketide cyclase, a terpenoid biosynthesis backbone gene (dxs) and many cold shock proteins (csp). Non-suppressive samples were characterised by greater expression of antibiotic genes such as non-heme chloroperoxidase (cpo) which is involved in pyrrolnitrin synthesis, and phenazine biosynthesis family protein F (phzF) and its transcriptional activator protein (phzR). A large number of genes involved in detoxifying reactive oxygen species (ROS) and superoxide radicals (sod, cat, ahp, bcp, gpx1, trx) were also expressed in the non-suppressive rhizosphere samples most likely in response to the infection of wheat roots by R. solani AG8. Together these results provide new insight into microbial gene expression in the rhizosphere of wheat in soils suppressive and non-suppressive to R. solani AG8. The approach taken and the genes involved in these functions provide direction for future studies to determine more precisely the molecular interplay of plant-microbe-pathogen interactions with the ultimate goal of the development of management options that promote beneficial rhizosphere microflora to reduce R. solani AG8 infection of crops.
Collapse
Affiliation(s)
- Helen L Hayden
- Department of Economic Development, Jobs, Transport and Resources, Agriculture Victoria Research, AgriBio, Bundoora, VIC, Australia
| | - Keith W Savin
- Department of Economic Development, Jobs, Transport and Resources, Agriculture Victoria Research, AgriBio, Bundoora, VIC, Australia
| | - Jenny Wadeson
- Department of Economic Development, Jobs, Transport and Resources, Agriculture Victoria Research, AgriBio, Bundoora, VIC, Australia
| | - Vadakattu V S R Gupta
- CSIRO Agriculture and Food, Glen Osmond, SA, Australia.,College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Pauline M Mele
- Department of Economic Development, Jobs, Transport and Resources, Agriculture Victoria Research, AgriBio, Bundoora, VIC, Australia.,School of Applied Systems Biology, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
29
|
Bernal P, Llamas MA, Filloux A. Type VI secretion systems in plant-associated bacteria. Environ Microbiol 2017; 20:1-15. [PMID: 29027348 PMCID: PMC5813230 DOI: 10.1111/1462-2920.13956] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 10/02/2017] [Accepted: 10/05/2017] [Indexed: 11/28/2022]
Abstract
The type VI secretion system (T6SS) is a bacterial nanomachine used to inject effectors into prokaryotic or eukaryotic cells and is thus involved in both host manipulation and interbacterial competition. The T6SS is widespread among Gram‐negative bacteria, mostly within the Proteobacterium Phylum. This secretion system is commonly found in commensal and pathogenic plant‐associated bacteria. Phylogenetic analysis of phytobacterial T6SS clusters shows that they are distributed in the five main clades previously described (group 1–5). The even distribution of the system among commensal and pathogenic phytobacteria suggests that the T6SS provides fitness and colonization advantages in planta and that the role of the T6SS is not restricted to virulence. This manuscript reviews the phylogeny and biological roles of the T6SS in plant‐associated bacteria, highlighting a remarkable diversity both in terms of mechanism and function.
Collapse
Affiliation(s)
- Patricia Bernal
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Flowers Building, 1st floor South Kensington Campus, Imperial College London, London SW7 2AZ, UK
| | - María A Llamas
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain
| | - Alain Filloux
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Flowers Building, 1st floor South Kensington Campus, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
30
|
Wang Y, Li Y, Wang J, Wang X. FleQ regulates both the type VI secretion system and flagella inPseudomonas putida. Biotechnol Appl Biochem 2017; 65:419-427. [DOI: 10.1002/bab.1611] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/29/2017] [Accepted: 09/12/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Yuzhou Wang
- School of BiotechnologyJiangnan University Wuxi People's Republic of China
| | - Ye Li
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi People's Republic of China
| | - Jianli Wang
- School of BiotechnologyJiangnan University Wuxi People's Republic of China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi People's Republic of China
- School of BiotechnologyJiangnan University Wuxi People's Republic of China
| |
Collapse
|
31
|
Aballay E, Prodan S, Zamorano A, Castaneda-Alvarez C. Nematicidal effect of rhizobacteria on plant-parasitic nematodes associated with vineyards. World J Microbiol Biotechnol 2017; 33:131. [DOI: 10.1007/s11274-017-2303-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/26/2017] [Indexed: 11/25/2022]
|
32
|
Bernal P, Allsopp LP, Filloux A, Llamas MA. The Pseudomonas putida T6SS is a plant warden against phytopathogens. THE ISME JOURNAL 2017; 11:972-987. [PMID: 28045455 PMCID: PMC5363822 DOI: 10.1038/ismej.2016.169] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 10/08/2016] [Accepted: 10/20/2016] [Indexed: 12/21/2022]
Abstract
Bacterial type VI secretion systems (T6SSs) are molecular weapons designed to deliver toxic effectors into prey cells. These nanomachines have an important role in inter-bacterial competition and provide advantages to T6SS active strains in polymicrobial environments. Here we analyze the genome of the biocontrol agent Pseudomonas putida KT2440 and identify three T6SS gene clusters (K1-, K2- and K3-T6SS). Besides, 10 T6SS effector-immunity pairs were found, including putative nucleases and pore-forming colicins. We show that the K1-T6SS is a potent antibacterial device, which secretes a toxic Rhs-type effector Tke2. Remarkably, P. putida eradicates a broad range of bacteria in a K1-T6SS-dependent manner, including resilient phytopathogens, which demonstrates that the T6SS is instrumental to empower P. putida to fight against competitors. Furthermore, we observed a drastically reduced necrosis on the leaves of Nicotiana benthamiana during co-infection with P. putida and Xanthomonas campestris. Such protection is dependent on the activity of the P. putida T6SS. Many routes have been explored to develop biocontrol agents capable of manipulating the microbial composition of the rhizosphere and phyllosphere. Here we unveil a novel mechanism for plant biocontrol, which needs to be considered for the selection of plant wardens whose mission is to prevent phytopathogen infections.
Collapse
Affiliation(s)
- Patricia Bernal
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, UK
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Luke P Allsopp
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, UK
| | - Alain Filloux
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, UK
| | - María A Llamas
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
33
|
Nazir R, Mazurier S, Yang P, Lemanceau P, van Elsas JD. The Ecological Role of Type Three Secretion Systems in the Interaction of Bacteria with Fungi in Soil and Related Habitats Is Diverse and Context-Dependent. Front Microbiol 2017; 8:38. [PMID: 28197129 PMCID: PMC5282467 DOI: 10.3389/fmicb.2017.00038] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/06/2017] [Indexed: 12/14/2022] Open
Abstract
Bacteria and fungi constitute important organisms in many ecosystems, in particular terrestrial ones. Both organismal groups contribute significantly to biogeochemical cycling processes. Ecological theory postulates that bacteria capable of receiving benefits from host fungi are likely to evolve efficient association strategies. The purpose of this review is to examine the mechanisms that underpin the bacterial interactions with fungi in soil and other systems, with special focus on the type III secretion system (T3SS). Starting with a brief description of the versatility of the T3SS as an interaction system with diverse eukaryotic hosts, we subsequently examine the recent advances made in our understanding of its contribution to interactions with soil fungi. The analysis used data sets ranging from circumstantial evidence to gene-knockout-based experimental data. The initial finding that the abundance of T3SSs in microbiomes is often enhanced in fungal-affected habitats like the mycosphere and the mycorrhizosphere is now substantiated with in-depth knowledge of the specific systems involved. Different fungal–interactive bacteria, in positive or negative associations with partner fungi, harbor and express T3SSs, with different ecological outcomes. In some particular cases, bacterial T3SSs have been shown to modulate the physiology of its fungal partner, affecting its ecological characteristics and consequently shaping its own habitat. Overall, the analyses of the collective data set revealed that diverse T3SSs have assumed diverse roles in the interactions of bacteria with host fungi, as driven by ecological and evolutionary niche requirements.
Collapse
Affiliation(s)
- Rashid Nazir
- Department of Environmental Sciences, COMSATS Institute of Information TechnologyAbbottabad, Pakistan; Department of Soil Environmental Science, Research Centre for Eco-environmental Sciences - Chinese Academy of SciencesBeijing, China
| | - Sylvie Mazurier
- Agroécologie, AgroSup Dijon, Institut National de la Recherche Agronomique, Université Bourgogne Franche-Comté Dijon, France
| | - Pu Yang
- Department of Microbial Ecology, GELIFES, University of Groningen Groningen, Netherlands
| | - Philippe Lemanceau
- Agroécologie, AgroSup Dijon, Institut National de la Recherche Agronomique, Université Bourgogne Franche-Comté Dijon, France
| | - Jan Dirk van Elsas
- Department of Microbial Ecology, GELIFES, University of Groningen Groningen, Netherlands
| |
Collapse
|
34
|
Garrido-Sanz D, Meier-Kolthoff JP, Göker M, Martín M, Rivilla R, Redondo-Nieto M. Genomic and Genetic Diversity within the Pseudomonas fluorescens Complex. PLoS One 2016; 11:e0150183. [PMID: 26915094 PMCID: PMC4767706 DOI: 10.1371/journal.pone.0150183] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 02/10/2016] [Indexed: 01/22/2023] Open
Abstract
The Pseudomonas fluorescens complex includes Pseudomonas strains that have been taxonomically assigned to more than fifty different species, many of which have been described as plant growth-promoting rhizobacteria (PGPR) with potential applications in biocontrol and biofertilization. So far the phylogeny of this complex has been analyzed according to phenotypic traits, 16S rDNA, MLSA and inferred by whole-genome analysis. However, since most of the type strains have not been fully sequenced and new species are frequently described, correlation between taxonomy and phylogenomic analysis is missing. In recent years, the genomes of a large number of strains have been sequenced, showing important genomic heterogeneity and providing information suitable for genomic studies that are important to understand the genomic and genetic diversity shown by strains of this complex. Based on MLSA and several whole-genome sequence-based analyses of 93 sequenced strains, we have divided the P. fluorescens complex into eight phylogenomic groups that agree with previous works based on type strains. Digital DDH (dDDH) identified 69 species and 75 subspecies within the 93 genomes. The eight groups corresponded to clustering with a threshold of 31.8% dDDH, in full agreement with our MLSA. The Average Nucleotide Identity (ANI) approach showed inconsistencies regarding the assignment to species and to the eight groups. The small core genome of 1,334 CDSs and the large pan-genome of 30,848 CDSs, show the large diversity and genetic heterogeneity of the P. fluorescens complex. However, a low number of strains were enough to explain most of the CDSs diversity at core and strain-specific genomic fractions. Finally, the identification and analysis of group-specific genome and the screening for distinctive characters revealed a phylogenomic distribution of traits among the groups that provided insights into biocontrol and bioremediation applications as well as their role as PGPR.
Collapse
Affiliation(s)
- Daniel Garrido-Sanz
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, c/Darwin, 2, Madrid, 28049, Spain
| | - Jan P. Meier-Kolthoff
- Leibniz Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124, Braunschweig, Germany
| | - Markus Göker
- Leibniz Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124, Braunschweig, Germany
| | - Marta Martín
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, c/Darwin, 2, Madrid, 28049, Spain
| | - Rafael Rivilla
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, c/Darwin, 2, Madrid, 28049, Spain
| | - Miguel Redondo-Nieto
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, c/Darwin, 2, Madrid, 28049, Spain
- * E-mail:
| |
Collapse
|
35
|
Scales BS, Erb-Downward JR, Huffnagle IM, LiPuma JJ, Huffnagle GB. Comparative genomics of Pseudomonas fluorescens subclade III strains from human lungs. BMC Genomics 2015; 16:1032. [PMID: 26644001 PMCID: PMC4672498 DOI: 10.1186/s12864-015-2261-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 11/30/2015] [Indexed: 12/22/2022] Open
Abstract
Background While the taxonomy and genomics of environmental strains from the P. fluorescens species-complex has been reported, little is known about P. fluorescens strains from clinical samples. In this report, we provide the first genomic analysis of P. fluorescens strains in which human vs. environmental isolates are compared. Results Seven P. fluorescens strains were isolated from respiratory samples from cystic fibrosis (CF) patients. The clinical strains could grow at a higher temperature (>34 °C) than has been reported for environmental strains. Draft genomes were generated for all of the clinical strains, and multi-locus sequence analysis placed them within subclade III of the P. fluorescens species-complex. All strains encoded type- II, −III, −IV, and -VI secretion systems, as well as the widespread colonization island (WCI). This is the first description of a WCI in P. fluorescens strains. All strains also encoded a complete I2/PfiT locus and showed evidence of horizontal gene transfer. The clinical strains were found to differ from the environmental strains in the number of genes involved in metal resistance, which may be a possible adaptation to chronic antibiotic exposure in the CF lung. Conclusions This is the largest comparative genomics analysis of P. fluorescens subclade III strains to date and includes the first clinical isolates. At a global level, the clinical P. fluorescens subclade III strains were largely indistinguishable from environmental P. fluorescens subclade III strains, supporting the idea that identifying strains as ‘environmental’ vs ‘clinical’ is not a phenotypic trait. Rather, strains within P. fluorescens subclade III will colonize and persist in any niche that provides the requirements necessary for growth. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2261-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Brittan S Scales
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA. .,Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - John R Erb-Downward
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Ian M Huffnagle
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - John J LiPuma
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Gary B Huffnagle
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA. .,Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
36
|
Microbiology, genomics, and clinical significance of the Pseudomonas fluorescens species complex, an unappreciated colonizer of humans. Clin Microbiol Rev 2015; 27:927-48. [PMID: 25278578 DOI: 10.1128/cmr.00044-14] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Pseudomonas fluorescens is not generally considered a bacterial pathogen in humans; however, multiple culture-based and culture-independent studies have identified it at low levels in the indigenous microbiota of various body sites. With recent advances in comparative genomics, many isolates originally identified as the "species" P. fluorescens are now being reclassified as novel Pseudomonas species within the P. fluorescens "species complex." Although most widely studied for its role in the soil and the rhizosphere, P. fluorescens possesses a number of functional traits that provide it with the capability to grow and thrive in mammalian hosts. While significantly less virulent than P. aeruginosa, P. fluorescens can cause bacteremia in humans, with most reported cases being attributable either to transfusion of contaminated blood products or to use of contaminated equipment associated with intravenous infusions. Although not suspected of being an etiologic agent of pulmonary disease, there are a number of reports identifying it in respiratory samples. There is also an intriguing association between P. fluorescens and human disease, in that approximately 50% of Crohn's disease patients develop serum antibodies to P. fluorescens. Altogether, these reports are beginning to highlight a far more common, intriguing, and potentially complex association between humans and P. fluorescens during health and disease.
Collapse
|
37
|
Deveau A, Barret M, Diedhiou AG, Leveau J, de Boer W, Martin F, Sarniguet A, Frey-Klett P. Pairwise transcriptomic analysis of the interactions between the ectomycorrhizal fungus Laccaria bicolor S238N and three beneficial, neutral and antagonistic soil bacteria. MICROBIAL ECOLOGY 2015; 69:146-59. [PMID: 25085516 DOI: 10.1007/s00248-014-0445-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 06/09/2014] [Indexed: 05/21/2023]
Abstract
Ectomycorrhizal fungi are surrounded by bacterial communities with which they interact physically and metabolically during their life cycle. These bacteria can have positive or negative effects on the formation and the functioning of ectomycorrhizae. However, relatively little is known about the mechanisms by which ectomycorrhizal fungi and associated bacteria interact. To understand how ectomycorrhizal fungi perceive their biotic environment and the mechanisms supporting interactions between ectomycorrhizal fungi and soil bacteria, we analysed the pairwise transcriptomic responses of the ectomycorrhizal fungus Laccaria bicolor (Basidiomycota: Agaricales) when confronted with beneficial, neutral or detrimental soil bacteria. Comparative analyses of the three transcriptomes indicated that the fungus reacted differently to each bacterial strain. Similarly, each bacterial strain produced a specific and distinct response to the presence of the fungus. Despite these differences in responses observed at the gene level, we found common classes of genes linked to cell-cell interaction, stress response and metabolic processes to be involved in the interaction of the four microorganisms.
Collapse
Affiliation(s)
- Aurélie Deveau
- Interactions Arbres - Microorganismes, INRA UMR1136, 54280, Champenoux, France,
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Ghequire MGK, De Mot R. Ribosomally encoded antibacterial proteins and peptides from Pseudomonas. FEMS Microbiol Rev 2014; 38:523-68. [PMID: 24923764 DOI: 10.1111/1574-6976.12079] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 05/05/2014] [Accepted: 05/16/2014] [Indexed: 12/26/2022] Open
Abstract
Members of the Pseudomonas genus produce diverse secondary metabolites affecting other bacteria, fungi or predating nematodes and protozoa but are also equipped with the capacity to secrete different types of ribosomally encoded toxic peptides and proteins, ranging from small microcins to large tailocins. Studies with the human pathogen Pseudomonas aeruginosa have revealed that effector proteins of type VI secretion systems are part of the antibacterial armamentarium deployed by pseudomonads. A novel class of antibacterial proteins with structural similarity to plant lectins was discovered by studying antagonism among plant-associated Pseudomonas strains. A genomic perspective on pseudomonad bacteriocinogeny shows that the modular architecture of S pyocins of P. aeruginosa is retained in a large diversified group of bacteriocins, most of which target DNA or RNA. Similar modularity is present in as yet poorly characterized Rhs (recombination hot spot) proteins and CDI (contact-dependent inhibition) proteins. Well-delimited domains for receptor recognition or cytotoxicity enable the design of chimeric toxins with novel functionalities, which has been applied successfully for S and R pyocins. Little is known regarding how these antibacterials are released and ultimately reach their targets. Other remaining issues concern the identification of environmental triggers activating these systems and assessment of their ecological impact in niches populated by pseudomonads.
Collapse
|
39
|
Kupferschmied P, Maurhofer M, Keel C. Promise for plant pest control: root-associated pseudomonads with insecticidal activities. FRONTIERS IN PLANT SCIENCE 2013; 4:287. [PMID: 23914197 PMCID: PMC3728486 DOI: 10.3389/fpls.2013.00287] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 07/12/2013] [Indexed: 05/20/2023]
Abstract
Insects are an important and probably the most challenging pest to control in agriculture, in particular when they feed on belowground parts of plants. The application of synthetic pesticides is problematic owing to side effects on the environment, concerns for public health and the rapid development of resistance. Entomopathogenic bacteria, notably Bacillus thuringiensis and Photorhabdus/Xenorhabdus species, are promising alternatives to chemical insecticides, for they are able to efficiently kill insects and are considered to be environmentally sound and harmless to mammals. However, they have the handicap of showing limited environmental persistence or of depending on a nematode vector for insect infection. Intriguingly, certain strains of plant root-colonizing Pseudomonas bacteria display insect pathogenicity and thus could be formulated to extend the present range of bioinsecticides for protection of plants against root-feeding insects. These entomopathogenic pseudomonads belong to a group of plant-beneficial rhizobacteria that have the remarkable ability to suppress soil-borne plant pathogens, promote plant growth, and induce systemic plant defenses. Here we review for the first time the current knowledge about the occurrence and the molecular basis of insecticidal activity in pseudomonads with an emphasis on plant-beneficial and prominent pathogenic species. We discuss how this fascinating Pseudomonas trait may be exploited for novel root-based approaches to insect control in an integrated pest management framework.
Collapse
Affiliation(s)
- Peter Kupferschmied
- Department of Fundamental Microbiology, University of LausanneLausanne, Switzerland
| | - Monika Maurhofer
- Plant Pathology, Institute of Integrative Biology, Swiss Federal Institute of Technology ZurichZurich, Switzerland
| | - Christoph Keel
- Department of Fundamental Microbiology, University of LausanneLausanne, Switzerland
- *Correspondence: Christoph Keel, Department of Fundamental Microbiology, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland e-mail:
| |
Collapse
|