1
|
Duan C, Liu Y, Liu Y, Liu L, Cai M, Zhang R, Zeng Q, Koonin EV, Krupovic M, Li M. Diversity of Bathyarchaeia viruses in metagenomes and virus-encoded CRISPR system components. ISME COMMUNICATIONS 2024; 4:ycad011. [PMID: 38328448 PMCID: PMC10848311 DOI: 10.1093/ismeco/ycad011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 02/09/2024]
Abstract
Bathyarchaeia represent a class of archaea common and abundant in sedimentary ecosystems. Here we report 56 metagenome-assembled genomes of Bathyarchaeia viruses identified in metagenomes from different environments. Gene sharing network and phylogenomic analyses led to the proposal of four virus families, including viruses of the realms Duplodnaviria and Adnaviria, and archaea-specific spindle-shaped viruses. Genomic analyses uncovered diverse CRISPR elements in these viruses. Viruses of the proposed family "Fuxiviridae" harbor an atypical Type IV-B CRISPR-Cas system and a Cas4 protein that might interfere with host immunity. Viruses of the family "Chiyouviridae" encode a Cas2-like endonuclease and two mini-CRISPR arrays, one with a repeat identical to that in the host CRISPR array, potentially allowing the virus to recruit the host CRISPR adaptation machinery to acquire spacers that could contribute to competition with other mobile genetic elements or to inhibit host defenses. These findings present an outline of the Bathyarchaeia virome and offer a glimpse into their counter-defense mechanisms.
Collapse
Affiliation(s)
- Changhai Duan
- SZU-HKUST Joint PhD Program in Marine Environmental Science, Shenzhen University, Shenzhen 518060, China
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Yang Liu
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Ying Liu
- Institut Pasteur, Université Paris Cité, Archaeal Virology Unit, Paris 75015, France
| | - Lirui Liu
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Mingwei Cai
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Rui Zhang
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Qinglu Zeng
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, Archaeal Virology Unit, Paris 75015, France
| | - Meng Li
- SZU-HKUST Joint PhD Program in Marine Environmental Science, Shenzhen University, Shenzhen 518060, China
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
2
|
Diao K, Li G, Sun X, Yi H, Zhang S, Xiao W. Genomic Characterization of a Halovirus Representing a Novel Siphoviral Cluster. Viruses 2023; 15:1392. [PMID: 37376691 DOI: 10.3390/v15061392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/01/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Salt mines are a special type of hypersaline environment. Current research mainly focuses on prokaryotes, and the understanding of viruses in salt mines remains limited. Understanding viruses in hypersaline environments is of great significance for revealing the formation and maintenance of microbial communities, energy flow and element cycling, and host ecological functions. A phage infecting Halomonas titanicae was isolated from Yipinglang Salt Mine in China, designated Halomonas titanicae phage vB_HtiS_YPHTV-1 (YPHTV-1). Transmission electron microscopy revealed that YPHTV-1 had an icosahedral head with a diameter of 49.12 ± 0.15 nm (n = 5) and a long noncontractile tail with a length of 141.7 ± 0.58 nm (n = 5), indicating that it was a siphovirus. The one-step growth curve showed that the burst size of YPHTV-1 was 69 plaque forming units (PFUs) cell-1. The genome of YPHTV-1 was 37,980 bp with a GC content of 36.2%. The phylogenetic analysis of the six conserved proteins indicated that YPHTV-1 formed a cluster with Bacillus phages and was separated from phages infecting Halomonas. The average nucleotide identity (ANI), phylogenetic, and network analyses indicated that the phage YPHTV-1 represented a new genus under Caudoviricetes. In total, 57 open reading frames (ORFs) were predicted in the YPHTV-1 genome, 30 of which could be annotated in the database. Notably, several auxiliary metabolic genes were encoded by YPHTV-1, such as ImmA/IrrE family metalloendopeptidase, mannose-binding lectin (MBL) folding metallohydrolase, M15 family of metal peptidases, MazG-like family protein, O antigen ligase, and acyltransferase. These genes potentially enabled the host bacterium to resist ionizing radiation, ultraviolet light (UV), mitomycin C, β-lactam antibiotic, high osmotic pressure, and nutritional deficiencies. These findings highlight the role of haloviruses in the life cycle of halobacteria.
Collapse
Affiliation(s)
- Kaixin Diao
- Yunnan Institute of Microbiology, Yunnan International Joint Laboratory of Virology & Immunology, Yunnan University, Kunming 650500, China
| | - Guohui Li
- Yunnan Institute of Microbiology, Yunnan International Joint Laboratory of Virology & Immunology, Yunnan University, Kunming 650500, China
| | - Xueqin Sun
- Yunnan Institute of Microbiology, Yunnan International Joint Laboratory of Virology & Immunology, Yunnan University, Kunming 650500, China
| | - Hao Yi
- Yunnan Institute of Microbiology, Yunnan International Joint Laboratory of Virology & Immunology, Yunnan University, Kunming 650500, China
| | - Shiying Zhang
- Yunnan Soil Fertilization and Pollution Remediation Engineering Research Center, Yunnan Agricultural University, Kunming 650201, China
| | - Wei Xiao
- Yunnan Institute of Microbiology, Yunnan International Joint Laboratory of Virology & Immunology, Yunnan University, Kunming 650500, China
| |
Collapse
|
3
|
Yi H, Fu C, Diao K, Li Z, Cui X, Xiao W. Characterization and genomic analysis of a novel halovirus infecting Chromohalobacter beijerinckii. Front Microbiol 2022; 13:1041471. [PMID: 36569053 PMCID: PMC9769972 DOI: 10.3389/fmicb.2022.1041471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/15/2022] [Indexed: 12/13/2022] Open
Abstract
Bacteriophages function as a regulator of host communities and metabolism. Many phages have been isolated and sequenced in environments such as the ocean, but very little is known about hypersaline environments. Phages infecting members of the genus Chromohalobacter remain poorly understood, and no Chromohalobacter phage genome has been reported. In this study, a halovirus infecting Chromohalobacter sp. F3, YPCBV-1, was isolated from Yipinglang salt mine. YPCBV-1 could only infect host strain F3 with burst size of 6.3 PFU/cell. It could produce progeny in 5%-20% (w/v) NaCl with an optimal concentration of 10% (w/v), but the optimal adsorption NaCl concentration was 5%-8% (w/v). YPCBV-1 is sensitive to pure water and depends on NaCl or KCl solutions to survive. YPCBV-1 stability increased with increasing salinity but decreased in NaCl saturated solutions, and it has a broader salinity adaptation than the host. YPCBV-1 has a double-stranded DNA of 36,002 bp with a G + C content of 67.09% and contains a total of 55 predicted ORFs and no tRNA genes. Phylogenetic analysis and genomic network analysis suggested that YPCBV-1 is a novel Mu-like phage under the class Caudoviricetes. Auxiliary metabolic gene, SUMF1/EgtB/PvdO family non-heme iron enzyme, with possible roles in antioxidant was found in YPCBV-1. Moreover, DGR-associated genes were predicted in YPCBV-1 genome, which potentially produce hypervariable phage tail fiber. These findings shed light on the halovirus-host interaction in hypersaline environments.
Collapse
|
4
|
Yakimov MM, Merkel AY, Gaisin VA, Pilhofer M, Messina E, Hallsworth JE, Klyukina AA, Tikhonova EN, Gorlenko VM. Cultivation of a vampire: 'Candidatus Absconditicoccus praedator'. Environ Microbiol 2021; 24:30-49. [PMID: 34750952 DOI: 10.1111/1462-2920.15823] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022]
Abstract
Halorhodospira halophila, one of the most-xerophilic halophiles, inhabits biophysically stressful and energetically expensive, salt-saturated alkaline brines. Here, we report an additional stress factor that is biotic: a diminutive Candidate-Phyla-Radiation bacterium, that we named 'Ca. Absconditicoccus praedator' M39-6, which predates H. halophila M39-5, an obligately photosynthetic, anaerobic purple-sulfur bacterium. We cultivated this association (isolated from the hypersaline alkaline Lake Hotontyn Nur, Mongolia) and characterized their biology. 'Ca. Absconditicoccus praedator' is the first stably cultivated species from the candidate class-level lineage Gracilibacteria (order-level lineage Absconditabacterales). Its closed-and-curated genome lacks genes for the glycolytic, pentose phosphate- and Entner-Doudoroff pathways which would generate energy/reducing equivalents and produce central carbon currencies. Therefore, 'Ca. Absconditicoccus praedator' is dependent on host-derived building blocks for nucleic acid-, protein-, and peptidoglycan synthesis. It shares traits with (the uncultured) 'Ca. Vampirococcus lugosii', which is also of the Gracilibacteria lineage. These are obligate parasitic lifestyle, feeding on photosynthetic anoxygenic Gammaproteobacteria, and absorption of host cytoplasm. Commonalities in their genomic composition and structure suggest that the entire Absconditabacterales lineage consists of predatory species which act to cull the populations of their respective host bacteria. Cultivation of vampire : host associations can shed light on unresolved aspects of their metabolism and ecosystem dynamics at life-limiting extremes.
Collapse
Affiliation(s)
| | - Alexander Y Merkel
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Vasil A Gaisin
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Martin Pilhofer
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Enzo Messina
- Institute for Marine Biological Resources and Biotechnology, IRBIM-CNR, Messina, Italy
| | - John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Alexandra A Klyukina
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina N Tikhonova
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir M Gorlenko
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
5
|
A rigorous assessment and comparison of enumeration methods for environmental viruses. Sci Rep 2020; 10:18625. [PMID: 33122683 PMCID: PMC7596560 DOI: 10.1038/s41598-020-75490-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/11/2020] [Indexed: 12/18/2022] Open
Abstract
Determining exact viral titers in a given sample is essential for many environmental and clinical applications, e.g., for studying viral ecology or application of bacteriophages for food safety. However, virus quantification is not a simple task, especially for complex environmental samples. While clonal viral isolates can be quantified with relative high accuracy using virus-specific methods, i.e., plaque assay or quantitative real-time PCR, these methods are not valid for complex and diverse environmental samples. Moreover, it is not yet known how precisely laser-based methods, i.e., epifluorescence microscopy, flow cytometry, and nanoparticle tracking analysis, quantify environmental viruses. In the present study, we compared five state-of-the-art viral quantification methods by enumerating four model viral isolates of different genome and size characteristics as well as four different environmental water samples. Although Nanoparticle tracking analysis combined with gentle staining at 30 °C could be confirmed by this study to be a reliable quantification technique for tested environmental samples, environmental samples still lack an universally applicable and accurate quantification method. Special attention has to be put on optimal sample concentrations as well as optimized sample preparations, which are specific for each method. As our results show the inefficiency when enumerating small, or single-stranded DNA or RNA viruses, the global population of viruses is presumably higher than expected.
Collapse
|
6
|
Baquero DP, Liu Y, Wang F, Egelman EH, Prangishvili D, Krupovic M. Structure and assembly of archaeal viruses. Adv Virus Res 2020; 108:127-164. [PMID: 33837715 DOI: 10.1016/bs.aivir.2020.09.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Viruses of archaea represent one of the most enigmatic parts of the virosphere. Most of the characterized archaeal viruses infect extremophilic hosts and display remarkable diversity of virion morphotypes, many of which have never been observed among bacteriophages or viruses of eukaryotes. However, recent environmental studies have shown that archaeal viruses are widespread also in moderate ecosystems, where they play an important ecological role by influencing the turnover of microbial communities, with a global impact on the carbon and nitrogen cycles. In this review, we summarize recent advances in understanding the molecular details of virion organization and assembly of archaeal viruses. We start by briefly introducing the 20 officially recognized families of archaeal viruses and then outline the similarities and differences of archaeal virus assembly with the morphogenesis pathways used by bacterial and eukaryotic viruses, and discuss the evolutionary implications of these observations. Generally, the assembly of the icosahedral archaeal viruses closely follows the mechanisms employed by evolutionarily related bacterial and eukaryotic viruses with the HK97 fold and double jelly-roll major capsid proteins, emphasizing the overall conservation of these pathways over billions of years of evolution. By contrast, archaea-specific viruses employ unique virion assembly mechanisms. We also highlight some of the molecular adaptations underlying the stability of archaeal viruses in extreme environments. Despite considerable progress during the past few years, the archaeal virosphere continues to represent one of the least studied parts of the global virome, with many molecular features awaiting to be discovered and characterized.
Collapse
Affiliation(s)
- Diana P Baquero
- Archaeal Virology Unit, Department of Microbiology, Institut Pasteur, Paris, France; Sorbonne Université, Collège Doctoral, Paris, France
| | - Ying Liu
- Archaeal Virology Unit, Department of Microbiology, Institut Pasteur, Paris, France
| | - Fengbin Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, United States
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, United States
| | - David Prangishvili
- Archaeal Virology Unit, Department of Microbiology, Institut Pasteur, Paris, France; Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia
| | - Mart Krupovic
- Archaeal Virology Unit, Department of Microbiology, Institut Pasteur, Paris, France.
| |
Collapse
|
7
|
New virus isolates from Italian hydrothermal environments underscore the biogeographic pattern in archaeal virus communities. ISME JOURNAL 2020; 14:1821-1833. [PMID: 32322010 DOI: 10.1038/s41396-020-0653-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/28/2020] [Accepted: 03/31/2020] [Indexed: 12/22/2022]
Abstract
Viruses of hyperthermophilic archaea represent one of the least understood parts of the virosphere, showing little genomic and morphological similarity to viruses of bacteria or eukaryotes. Here, we investigated virus diversity in the active sulfurous fields of the Campi Flegrei volcano in Pozzuoli, Italy. Virus-like particles displaying eight different morphotypes, including lemon-shaped, droplet-shaped and bottle-shaped virions, were observed and five new archaeal viruses proposed to belong to families Rudiviridae, Globuloviridae and Tristromaviridae were isolated and characterized. Two of these viruses infect neutrophilic hyperthermophiles of the genus Pyrobaculum, whereas the remaining three have rod-shaped virions typical of the family Rudiviridae and infect acidophilic hyperthermophiles belonging to three different genera of the order Sulfolobales, namely, Saccharolobus, Acidianus, and Metallosphaera. Notably, Metallosphaera rod-shaped virus 1 is the first rudivirus isolated on Metallosphaera species. Phylogenomic analysis of the newly isolated and previously sequenced rudiviruses revealed a clear biogeographic pattern, with all Italian rudiviruses forming a monophyletic clade, suggesting geographical structuring of virus communities in extreme geothermal environments. Analysis of the CRISPR spacers suggests that isolated rudiviruses have experienced recent host switching across the genus boundary, potentially to escape the targeting by CRISPR-Cas immunity systems. Finally, we propose a revised classification of the Rudiviridae family, with the establishment of six new genera. Collectively, our results further show that high-temperature continental hydrothermal systems harbor a highly diverse virome and shed light on the evolution of archaeal viruses.
Collapse
|
8
|
The complex phylogenetic relationships of a 4mC/6mA DNA methyltransferase in prokaryotes. Mol Phylogenet Evol 2020; 149:106837. [PMID: 32304827 DOI: 10.1016/j.ympev.2020.106837] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 01/30/2020] [Accepted: 04/09/2020] [Indexed: 01/04/2023]
Abstract
DNA methyltransferases are proteins that modify DNA via attachment of methyl groups to nucleobases and are ubiquitous across the bacterial, archaeal, and eukaryotic domains of life. Here, we investigated the complex evolutionary history of the large and consequential 4mC/6mA DNA methyltransferase protein family using phylogenetic reconstruction of amino acid sequences. We present a well-supported phylogeny of this family based on systematic sampling of taxa across superphyla of bacteria and archaea. We compared the phylogeny to a current representation of the species tree of life and found that the 4mC/6mA methyltransferase family has a strikingly complex evolutionary history that likely began sometime after the last universal common ancestor of life diverged into the bacterial and archaeal lineages and probably involved many horizontal gene transfers within and between domains. Despite the complexity of its evolutionary history, we inferred that only one significant shift in molecular evolutionary rate characterizes the diversification of this protein family.
Collapse
|
9
|
Dávila-Ramos S, Castelán-Sánchez HG, Martínez-Ávila L, Sánchez-Carbente MDR, Peralta R, Hernández-Mendoza A, Dobson ADW, Gonzalez RA, Pastor N, Batista-García RA. A Review on Viral Metagenomics in Extreme Environments. Front Microbiol 2019; 10:2403. [PMID: 31749771 PMCID: PMC6842933 DOI: 10.3389/fmicb.2019.02403] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/04/2019] [Indexed: 12/22/2022] Open
Abstract
Viruses are the most abundant biological entities in the biosphere, and have the ability to infect Bacteria, Archaea, and Eukaryotes. The virome is estimated to be at least ten times more abundant than the microbiome with 107 viruses per milliliter and 109 viral particles per gram in marine waters and sediments or soils, respectively. Viruses represent a largely unexplored genetic diversity, having an important role in the genomic plasticity of their hosts. Moreover, they also play a significant role in the dynamics of microbial populations. In recent years, metagenomic approaches have gained increasing popularity in the study of environmental viromes, offering the possibility of extending our knowledge related to both virus diversity and their functional characterization. Extreme environments represent an interesting source of both microbiota and their virome due to their particular physicochemical conditions, such as very high or very low temperatures and >1 atm hydrostatic pressures, among others. Despite the fact that some progress has been made in our understanding of the ecology of the microbiota in these habitats, few metagenomic studies have described the viromes present in extreme ecosystems. Thus, limited advances have been made in our understanding of the virus community structure in extremophilic ecosystems, as well as in their biotechnological potential. In this review, we critically analyze recent progress in metagenomic based approaches to explore the viromes in extreme environments and we discuss the potential for new discoveries, as well as methodological challenges and perspectives.
Collapse
Affiliation(s)
- Sonia Dávila-Ramos
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Hugo G. Castelán-Sánchez
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Liliana Martínez-Ávila
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | | | - Raúl Peralta
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Armando Hernández-Mendoza
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Alan D. W. Dobson
- School of Microbiology, University College Cork, Cork, Ireland
- Environmental Research Institute, University College Cork, Cork, Ireland
| | - Ramón A. Gonzalez
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Nina Pastor
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Ramón Alberto Batista-García
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| |
Collapse
|
10
|
Dyall-Smith M, Palm P, Wanner G, Witte A, Oesterhelt D, Pfeiffer F. Halobacterium salinarum virus ChaoS9, a Novel Halovirus Related to PhiH1 and PhiCh1. Genes (Basel) 2019; 10:E194. [PMID: 30832293 PMCID: PMC6471424 DOI: 10.3390/genes10030194] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/21/2019] [Accepted: 02/25/2019] [Indexed: 11/17/2022] Open
Abstract
The unexpected lysis of a large culture of Halobacterium salinarum strain S9 was found to be caused by a novel myovirus, designated ChaoS9. Virus purification from the culture lysate revealed a homogeneous population of caudovirus-like particles. The viral genome is linear, dsDNA that is partially redundant and circularly permuted, has a unit length of 55,145 nt, a G + C% of 65.3, and has 85 predicted coding sequences (CDS) and one tRNA (Arg) gene. The left arm of the genome (0⁻28 kbp) encodes proteins similar in sequence to those from known caudoviruses and was most similar to myohaloviruses phiCh1 (host: Natrialbamagadii) and phiH1 (host: Hbt. salinarum). It carries a tail-fiber gene module similar to the invertible modules present in phiH1 and phiCh1. However, while the tail genes of ChaoS9 were similar to those of phiCh1 and phiH1, the Mcp of ChaoS9 was most similar (36% aa identity) to that of Haloarcula hispanica tailed virus 1 (HHTV-1). Provirus elements related to ChaoS9 showed most similarity to tail/assembly proteins but varied in their similarity with head/assembly proteins. The right arm (29⁻55 kbp) of ChaoS9 encoded proteins involved in DNA replication (ParA, RepH, and Orc1) but the other proteins showed little similarity to those from phiH1, phiCh1, or provirus elements, and most of them could not be assigned a function. ChaoS9 is probably best classified within the genus Myohalovirus, as it shares many characteristics with phiH1 (and phiCh1), including many similar proteins. However, the head/assembly gene region appears to have undergone a recombination event, and the inferred proteins are different to those of phiH1 and phiCh1, including the major capsid protein. This makes the taxonomic classification of ChaoS9 more ambiguous. We also report a revised genome sequence and annotation of Natrialba virus phiCh1.
Collapse
Affiliation(s)
- Mike Dyall-Smith
- Computational Biology Group, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
- Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3052, Australia.
| | - Peter Palm
- Computational Biology Group, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| | - Gerhard Wanner
- AG Ultrastrukturforschung, Biozentrum der LMU, Großhadernerstrasse 2-4, 82152 Martinsried, Germany.
| | - Angela Witte
- Department of Microbiology, Immunobiology and Genetics, MFPL Laboratories, University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria.
| | - Dieter Oesterhelt
- Computational Biology Group, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| | - Friedhelm Pfeiffer
- Computational Biology Group, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| |
Collapse
|
11
|
Archaeal Viruses from High-Temperature Environments. Genes (Basel) 2018; 9:genes9030128. [PMID: 29495485 PMCID: PMC5867849 DOI: 10.3390/genes9030128] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/19/2018] [Accepted: 02/21/2018] [Indexed: 12/21/2022] Open
Abstract
Archaeal viruses are some of the most enigmatic viruses known, due to the small number that have been characterized to date. The number of known archaeal viruses lags behind known bacteriophages by over an order of magnitude. Despite this, the high levels of genetic and morphological diversity that archaeal viruses display has attracted researchers for over 45 years. Extreme natural environments, such as acidic hot springs, are almost exclusively populated by Archaea and their viruses, making these attractive environments for the discovery and characterization of new viruses. The archaeal viruses from these environments have provided insights into archaeal biology, gene function, and viral evolution. This review focuses on advances from over four decades of archaeal virology, with a particular focus on archaeal viruses from high temperature environments, the existing challenges in understanding archaeal virus gene function, and approaches being taken to overcome these limitations.
Collapse
|
12
|
Characterization of ecologically diverse viruses infecting co-occurring strains of cosmopolitan hyperhalophilic Bacteroidetes. ISME JOURNAL 2017; 12:424-437. [PMID: 29099492 PMCID: PMC5776456 DOI: 10.1038/ismej.2017.175] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/16/2017] [Accepted: 08/23/2017] [Indexed: 12/12/2022]
Abstract
Hypersaline environments close to saturation harbor the highest density of virus-like particles reported for aquatic systems as well as low microbial diversity. Thus, they offer unique settings for studying virus–host interactions in nature. However, no viruses have been isolated so far infecting the two most abundant inhabitants of these systems (that is, the euryarchaeon Haloquadratum walsbyi and the bacteroidetes Salinibacter ruber). Here, using three different co-occurring strains, we have isolated eight viruses infecting the ubiquitous S. ruber that constitute three new different genera (named as ‘Holosalinivirus’, ‘Kryptosalinivirus’ and ‘Kairosalinivirus’) according to their genomic traits, different host range, virus–host interaction capabilities and abundances in natural systems worldwide. Furthermore, to get a more complete and comprehensive view of S. ruber virus assemblages in nature, a microcosm experiment was set with a mixture of S. ruber strains challenged with a brine virus concentrate, and changes of viral populations were monitored by viral metagenomics. Only viruses closely related to kairosalinivirus (strictly lytic and wide host range) were enriched, despite their low initial abundance in the natural sample. Metagenomic analyses of the mesocosms allowed the complete recovery of kairosalinivirus genomes using an ad hoc assembly strategy as common viral metagenomic assembly tools failed despite their abundance, which underlines the limitations of current approaches. The increase of this type of viruses was accompanied by an increase in the diversity of the group, as shown by contig recruitment. These results are consistent with a scenario in which host range, not only virus and host abundances, is a key factor in determining virus fate in nature.
Collapse
|
13
|
Eskelin K, Lampi M, Meier F, Moldenhauer E, Bamford DH, Oksanen HM. Halophilic viruses with varying biochemical and biophysical properties are amenable to purification with asymmetrical flow field-flow fractionation. Extremophiles 2017; 21:1119-1132. [PMID: 29019077 DOI: 10.1007/s00792-017-0963-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 09/14/2017] [Indexed: 01/21/2023]
Abstract
Viruses come in various shapes and sizes, and a number of viruses originate from extremities, e.g. high salinity or elevated temperature. One challenge for studying extreme viruses is to find efficient purification conditions where viruses maintain their infectivity. Asymmetrical flow field-flow fractionation (AF4) is a gentle native chromatography-like technique for size-based separation. It does not have solid stationary phase and the mobile phase composition is readily adjustable according to the sample needs. Due to the high separation power of specimens up to 50 µm, AF4 is suitable for virus purification. Here, we applied AF4 for extremophilic viruses representing four morphotypes: lemon-shaped, tailed and tailless icosahedral, as well as pleomorphic enveloped. AF4 was applied to input samples of different purity: crude supernatants of infected cultures, polyethylene glycol-precipitated viruses and viruses purified by ultracentrifugation. All four virus morphotypes were successfully purified by AF4. AF4 purification of culture supernatants or polyethylene glycol-precipitated viruses yielded high recoveries, and the purities were comparable to those obtained by the multistep ultracentrifugation purification methods. In addition, we also demonstrate that AF4 is a rapid monitoring tool for virus production in slowly growing host cells living in extreme conditions.
Collapse
Affiliation(s)
- Katri Eskelin
- Department of Biosciences, University of Helsinki, Viikinkaari 9, 00014, Helsinki, Finland
| | - Mirka Lampi
- Department of Biosciences, University of Helsinki, Viikinkaari 9, 00014, Helsinki, Finland
| | - Florian Meier
- Postnova Analytics, Max-Planck-Str. 14, 86899, Landsberg, Germany
| | | | - Dennis H Bamford
- Department of Biosciences, University of Helsinki, Viikinkaari 9, 00014, Helsinki, Finland
| | - Hanna M Oksanen
- Department of Biosciences, University of Helsinki, Viikinkaari 9, 00014, Helsinki, Finland.
| |
Collapse
|
14
|
Complete genome sequence of Halomonas ventosae virulent halovirus QHHSV-1. Arch Virol 2017; 162:3215-3219. [PMID: 28608126 DOI: 10.1007/s00705-017-3415-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 04/19/2017] [Indexed: 10/19/2022]
Abstract
A virulent halovirus QHHSV-1 which lyses Halomonas ventosae QH52-2 originating from the Qiaohou salt mine in Yunnan, Southwest China was characterized. The complete genome of QHHSV-1 is composed of a circular double-stranded DNA of 37,270 base pairs in length, with 66.8% G+C content and 69 putative open reading frames (ORFs), which were classified into five functional groups, including morphogenesis, replication/regulation, packaging, lysis and lysogeny. A putative Cro repressor gene and an integrase gene were found in the genome, showing that QHHSV-1 may utilize a lambda-like repression system under unfavorable conditions. QHHSV-1 is the first report of the whole genome sequence of the virulent Halomonas phage belonging to the family Siphoviridae.
Collapse
|
15
|
A Novel Type of Polyhedral Viruses Infecting Hyperthermophilic Archaea. J Virol 2017; 91:JVI.00589-17. [PMID: 28424284 DOI: 10.1128/jvi.00589-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 04/11/2017] [Indexed: 11/20/2022] Open
Abstract
Encapsidation of genetic material into polyhedral particles is one of the most common structural solutions employed by viruses infecting hosts in all three domains of life. Here, we describe a new virus of hyperthermophilic archaea, Sulfolobus polyhedral virus 1 (SPV1), which condenses its circular double-stranded DNA genome in a manner not previously observed for other known viruses. The genome complexed with virion proteins is wound up sinusoidally into a spherical coil which is surrounded by an envelope and further encased by an outer polyhedral capsid apparently composed of the 20-kDa virion protein. Lipids selectively acquired from the pool of host lipids are integral constituents of the virion. None of the major virion proteins of SPV1 show similarity to structural proteins of known viruses. However, minor structural proteins, which are predicted to mediate host recognition, are shared with other hyperthermophilic archaeal viruses infecting members of the order Sulfolobales The SPV1 genome consists of 20,222 bp and contains 45 open reading frames, only one-fifth of which could be functionally annotated.IMPORTANCE Viruses infecting hyperthermophilic archaea display a remarkable morphological diversity, often presenting architectural solutions not employed by known viruses of bacteria and eukaryotes. Here we present the isolation and characterization of Sulfolobus polyhedral virus 1, which condenses its genome into a unique spherical coil. Due to the original genomic and architectural features of SPV1, the virus should be considered a representative of a new viral family, "Portogloboviridae."
Collapse
|
16
|
Demina TA, Atanasova NS, Pietilä MK, Oksanen HM, Bamford DH. Vesicle-like virion of Haloarcula hispanica pleomorphic virus 3 preserves high infectivity in saturated salt. Virology 2016; 499:40-51. [DOI: 10.1016/j.virol.2016.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 09/01/2016] [Accepted: 09/03/2016] [Indexed: 12/26/2022]
|
17
|
Bipartite Network Analysis of the Archaeal Virosphere: Evolutionary Connections between Viruses and Capsidless Mobile Elements. J Virol 2016; 90:11043-11055. [PMID: 27681128 DOI: 10.1128/jvi.01622-16] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 09/19/2016] [Indexed: 11/20/2022] Open
Abstract
Archaea and particularly hyperthermophilic crenarchaea are hosts to many unusual viruses with diverse virion shapes and distinct gene compositions. As is typical of viruses in general, there are no universal genes in the archaeal virosphere. Therefore, to obtain a comprehensive picture of the evolutionary relationships between viruses, network analysis methods are more productive than traditional phylogenetic approaches. Here we present a comprehensive comparative analysis of genomes and proteomes from all currently known taxonomically classified and unclassified, cultivated and uncultivated archaeal viruses. We constructed a bipartite network of archaeal viruses that includes two classes of nodes, the genomes and gene families that connect them. Dissection of this network using formal community detection methods reveals strong modularity, with 10 distinct modules and 3 putative supermodules. However, compared to similar previously analyzed networks of eukaryotic and bacterial viruses, the archaeal virus network is sparsely connected. With the exception of the tailed viruses related to bacteriophages of the order Caudovirales and the families Turriviridae and Sphaerolipoviridae that are linked to a distinct supermodule of eukaryotic and bacterial viruses, there are few connector genes shared by different archaeal virus modules. In contrast, most of these modules include, in addition to viruses, capsidless mobile elements, emphasizing tight evolutionary connections between the two types of entities in archaea. The relative contributions of distinct evolutionary origins, in particular from nonviral elements, and insufficient sampling to the sparsity of the archaeal virus network remain to be determined by further exploration of the archaeal virosphere. IMPORTANCE Viruses infecting archaea are among the most mysterious denizens of the virosphere. Many of these viruses display no genetic or even morphological relationship to viruses of bacteria and eukaryotes, raising questions regarding their origins and position in the global virosphere. Analysis of 5,740 protein sequences from 116 genomes allowed dissection of the archaeal virus network and showed that most groups of archaeal viruses are evolutionarily connected to capsidless mobile genetic elements, including various plasmids and transposons. This finding could reflect actual independent origins of the distinct groups of archaeal viruses from different nonviral elements, providing important insights into the emergence and evolution of the archaeal virome.
Collapse
|