1
|
Faisal Hamdi AI, How SH, Islam MK, Lim JCW, Stanslas J. Adaptive therapy to circumvent drug resistance to tyrosine kinase inhibitors in cancer: is it clinically relevant? Expert Rev Anticancer Ther 2022; 22:1309-1323. [PMID: 36376248 DOI: 10.1080/14737140.2022.2147671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Cancer is highly adaptable and is constantly evolving against current targeted therapies such as tyrosine kinase inhibitors. Despite advances in recent decades, the emergence of drug resistance to tyrosine kinase inhibitors constantly hampers therapeutic efficacy of cancer treatment. Continuous therapy versus intermittent clinical regimen has been a debate in drug administration of cancer patients. An ecologically-inspired shift in cancer treatment known as 'adaptive therapy' intends to improve the drug administration of drugs to cancer patients that can delay emergence of drug resistance. AREAS COVERED We discuss improved understanding of the concept of drug resistance, the basis of continuous therapy, intermittent clinical regimens, and adaptive therapy will be reviewed. In addition, we discuss how adaptive therapy provides guidance for future cancer treatment. EXPERT OPINION The current understanding of drug resistance in cancer leads to poor prognosis and limited treatment options in patients. Fighting drug resistance mutants is constantly followed by new forms of resistance. In most reported cases, continuous therapy leads to drug resistance and an intermittent clinical regimen vaguely delays it. However, adaptive therapy, conceptually, exploits multiple parameters that can suppress the growth of drug resistance and provides safe treatment for cancer patients in the future.
Collapse
Affiliation(s)
- Amir Imran Faisal Hamdi
- Pharmacotherapeutics Unit, Department of Medicine, Universiti Putra MalaysiaMedicine, 43400, Serdang, Malaysia
| | - Soon Hin How
- Kuliyyah of Medicine, International Islamic University Malaysia, Kuantan Campus, Kuliyyah of Medicine, 25200, Kuantan, Malaysia
| | | | - Jonathan Chee Woei Lim
- Pharmacotherapeutics Unit, Department of Medicine, Universiti Putra MalaysiaMedicine, 43400, Serdang, Malaysia
| | - Johnson Stanslas
- Pharmacotherapeutics Unit, Department of Medicine, Universiti Putra MalaysiaMedicine, 43400, Serdang, Malaysia
| |
Collapse
|
2
|
van Linde ME, Labots M, Brahm CG, Hovinga KE, De Witt Hamer PC, Honeywell RJ, de Goeij-de Haas R, Henneman AA, Knol JC, Peters GJ, Dekker H, Piersma SR, Pham TV, Vandertop WP, Jiménez CR, Verheul HM. Tumor Drug Concentration and Phosphoproteomic Profiles After Two Weeks of Treatment With Sunitinib in Patients with Newly Diagnosed Glioblastoma. Clin Cancer Res 2022; 28:1595-1602. [PMID: 35165100 PMCID: PMC9365363 DOI: 10.1158/1078-0432.ccr-21-1933] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/14/2021] [Accepted: 02/09/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE Tyrosine kinase inhibitors (TKI) have poor efficacy in patients with glioblastoma (GBM). Here, we studied whether this is predominantly due to restricted blood-brain barrier penetration or more to biological characteristics of GBM. PATIENTS AND METHODS Tumor drug concentrations of the TKI sunitinib after 2 weeks of preoperative treatment was determined in 5 patients with GBM and compared with its in vitro inhibitory concentration (IC50) in GBM cell lines. In addition, phosphotyrosine (pTyr)-directed mass spectrometry (MS)-based proteomics was performed to evaluate sunitinib-treated versus control GBM tumors. RESULTS The median tumor sunitinib concentration of 1.9 μmol/L (range 1.0-3.4) was 10-fold higher than in concurrent plasma, but three times lower than sunitinib IC50s in GBM cell lines (median 5.4 μmol/L, 3.0-8.5; P = 0.01). pTyr-phosphoproteomic profiles of tumor samples from 4 sunitinib-treated versus 7 control patients revealed 108 significantly up- and 23 downregulated (P < 0.05) phosphopeptides for sunitinib treatment, resulting in an EGFR-centered signaling network. Outlier analysis of kinase activities as a potential strategy to identify drug targets in individual tumors identified nine kinases, including MAPK10 and INSR/IGF1R. CONCLUSIONS Achieved tumor sunitinib concentrations in patients with GBM are higher than in plasma, but lower than reported for other tumor types and insufficient to significantly inhibit tumor cell growth in vitro. Therefore, alternative TKI dosing to increase intratumoral sunitinib concentrations might improve clinical benefit for patients with GBM. In parallel, a complex profile of kinase activity in GBM was found, supporting the potential of (phospho)proteomic analysis for the identification of targets for (combination) treatment.
Collapse
Affiliation(s)
- Myra E. van Linde
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Mariette Labots
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Cyrillo G. Brahm
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Koos E. Hovinga
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Philip C. De Witt Hamer
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Richard J. Honeywell
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Pharmacy, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Richard de Goeij-de Haas
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Alex A. Henneman
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Jaco C. Knol
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Godefridus J. Peters
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | - Henk Dekker
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Sander R. Piersma
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Thang V. Pham
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - William P. Vandertop
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Connie R. Jiménez
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Henk M.W. Verheul
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Medical Oncology, Radboud UMC, Nijmegen, the Netherlands
| |
Collapse
|
3
|
Su YH, Chiang CL, Yang HC, Hu YS, Chen YW, Luo YH, Chen CJ, Wu HM, Lin CJ, Lee CC. Cerebrospinal fluid diversion and outcomes for lung cancer patients with leptomeningeal carcinomatosis. Acta Neurochir (Wien) 2022; 164:459-467. [PMID: 33646444 DOI: 10.1007/s00701-021-04763-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 02/08/2021] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To investigate the outcomes of cerebrospinal fluid (CSF) diversion in lung cancer patients with leptomeningeal carcinomatosis (LMC). METHODS A retrospective review of consecutive lung cancer patients with LMC suffering from increased intracranial pressure (IICP) and hydrocephalus between February 2017 and February 2020. We evaluated the survival benefit of CSF diversion surgery and assessed the outcomes of treatments administered post-LMC in terms of overall survival and shunt-related complications. RESULTS The study cohort included 50 patients (median age: 59 years). Ventricular peritoneal (VP) shunts were placed in 33 patients, and lumbar peritoneal (LP) shunts were placed in 7 patients. Programmable shunts were placed in 36 patients. Shunt adjustment was performed in 19 patients. Kaplan-Meier analysis revealed that shunt placement increased overall survival from 1.95 months to 6.21 months (p = 0.0012) and increased Karnofsky Performance Scores (KPS) from 60 to 70. Univariate analysis revealed no difference between VP or LP shunts in terms of survival. No differences in post-shunt systemic treatments (tyrosine kinase inhibitors (TKIs) or systemic treatments) were observed in overall survival. Shunt-related complications were noted in 7 patients, including shunt obstruction (n = 4), infection (n = 1), and over-drainage (n = 2). CONCLUSION CSF diversion (VP or LP shunt) appears to be an effective and safe treatment for lung cancer patients with LMC and hydrocephalus. Programmable shunts should be considered for complex cases, which commonly require pressure adjustments as the disease progresses.
Collapse
|
4
|
Mammatas LH, Zandvliet AS, Rovithi M, Honeywell RJ, Swart EL, Peters GJ, Menke-van der Houven van Oordt CW, Verheul HMW. Sorafenib administered using a high-dose, pulsatile regimen in patients with advanced solid malignancies: a phase I exposure escalation study. Cancer Chemother Pharmacol 2020; 85:931-940. [PMID: 32274565 PMCID: PMC7188706 DOI: 10.1007/s00280-020-04065-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/24/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND (Pre)clinical evidence is accumulating that intermittent exposure to increased doses of protein kinase inhibitors may improve their treatment benefit. In this phase I trial, the safety of high-dose, pulsatile sorafenib was studied. PATIENTS AND METHODS High-dose sorafenib was administered once weekly in exposure escalation cohorts according to a 3 + 3 design. Drug monitoring was performed in weeks 1-3 and doses were adjusted to achieve a predefined target plasma area under the curve (AUC)(0-12 h). The effect of low gastric pH on improving sorafenib exposure was investigated by intake of the acidic beverage cola. RESULTS Seventeen patients with advanced malignancies without standard treatment options were included. Once weekly, high-dose sorafenib exposure was escalated up to a target AUC(0-12 h) of 125-150 mg/L/h, achieving a twofold higher Cmax compared to standard continuous dosing. Dose-limiting toxicity was observed in three patients: grade 3 duodenal perforation (2800 mg sorafenib), grade 5 multiorgan failure (2800 mg sorafenib) and grade 5 biliary tract perforation (3600 mg sorafenib). The mean difference between observed and target AUC(0-12 h) was 45% (SD ± 56%) in week 1 using a fixed starting dose of sorafenib compared to 2% (SD ± 32%) in week 3 as a result of drug monitoring (P = 0.06). Dissolving sorafenib in cola, instead of water, did not improve sorafenib exposure. Clinical benefit with stable disease as the best response was observed in two patients. CONCLUSION Treatment with high-dose, once weekly sorafenib administration resulted in dose-limiting toxicity precluding dose escalation above the exposure cohort of 125-150 mg/L/h. Drug monitoring was a successful strategy to pursue a target exposure.
Collapse
Affiliation(s)
- L H Mammatas
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VUmc University Medical Center Amsterdam, Amsterdam, The Netherlands
| | - A S Zandvliet
- Department of Clinical Pharmacology and Pharmacy, Cancer Center Amsterdam, Amsterdam UMC, VUmc University Medical Center Amsterdam, Amsterdam, The Netherlands
| | - M Rovithi
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VUmc University Medical Center Amsterdam, Amsterdam, The Netherlands
| | - R J Honeywell
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VUmc University Medical Center Amsterdam, Amsterdam, The Netherlands
| | - E L Swart
- Department of Clinical Pharmacology and Pharmacy, Cancer Center Amsterdam, Amsterdam UMC, VUmc University Medical Center Amsterdam, Amsterdam, The Netherlands
| | - G J Peters
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VUmc University Medical Center Amsterdam, Amsterdam, The Netherlands
- Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | - C W Menke-van der Houven van Oordt
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VUmc University Medical Center Amsterdam, Amsterdam, The Netherlands
| | - H M W Verheul
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VUmc University Medical Center Amsterdam, Amsterdam, The Netherlands.
- Department of Medical Oncology, Radboud University Medical Center, Geert Grooteplein Zuid 8, Internal postal code 452, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
5
|
Li HY, Xie Y, Yu TT, Lin YJ, Yin ZY. Durable response to pulsatile icotinib for central nervous system metastases from EGFR-mutated non-small cell lung cancer: A case report. World J Clin Cases 2020; 8:370-376. [PMID: 32047787 PMCID: PMC7000937 DOI: 10.12998/wjcc.v8.i2.370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/13/2019] [Accepted: 12/22/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Central nervous system (CNS) metastases are a catastrophic complication of non-small cell lung cancer (NSCLC), including brain and leptomeningeal carcinomatosis, and are always accompanied by a poor prognosis. Despite the continuous development of existing treatments, the therapy of CNS metastases remains challenging.
CASE SUMMARY We report a patient who was definitively diagnosed with brain and leptomeningeal metastases from NSCLC with a targeted mutation in epidermal growth factor receptor (EGFR). A standard dosage of icotinib (125 mg three times daily) was implemented but ineffective. CNS lesions developed despite stable systemic control, so pulsatile icotinib (1125 mg every 3 d) was administered. This new strategy for administration has lasted 25 mo so far, and resulted in complete remission of neurological symptoms, almost vanished lesions, and longer survival with no notable side effects.
CONCLUSION This is the first successful example of pulsatile icotinib for treating isolated CNS progression from EGFR mutation-positive NSCLC, providing a new alternative for the local treatment of CNS metastases.
Collapse
Affiliation(s)
- Hui-Ying Li
- Department of Geriatric Oncology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China
| | - Yu Xie
- Department of Geriatric Oncology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China
| | - Ting-Ting Yu
- Department of Geriatric Oncology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China
| | - Yong-Juan Lin
- Department of Geriatric Oncology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China
| | - Zhen-Yu Yin
- Department of Geriatric Oncology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China
| |
Collapse
|
6
|
Bouchnita A, Volpert V, Koury MJ, Hellander A. A multiscale model to design therapeutic strategies that overcome drug resistance to tyrosine kinase inhibitors in multiple myeloma. Math Biosci 2019; 319:108293. [PMID: 31809782 DOI: 10.1016/j.mbs.2019.108293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 11/10/2019] [Accepted: 11/26/2019] [Indexed: 02/06/2023]
Abstract
Drug resistance (DR) is a phenomenon characterized by the tolerance of a disease to pharmaceutical treatment. In cancer patients, DR is one of the main challenges that limit the therapeutic potential of the existing treatments. Therefore, overcoming DR by restoring the sensitivity of cancer cells would be greatly beneficial. In this context, mathematical modeling can be used to provide novel therapeutic strategies that maximize the efficiency of anti-cancer agents and potentially overcome DR. In this paper, we present a new multiscale model devoted to the interaction of potential treatments with multiple myeloma (MM) development. In this model, MM cells are represented as individual objects that move, divide, and die by apoptosis. The fate of each cell depends on intracellular and extracellular regulation, as well as the administered treatment. The model is used to explore the combined effects of a tyrosine-kinase inhibitor (TKI) with a pentose phosphate pathway (PPP) inhibitor. We use numerical simulations to tailor effective and safe treatment regimens that may eradicate the MM tumors. The model suggests that an interval for the daily dose of the PPP inhibitor can maximize the responsiveness of MM cells to the treatment with TKIs. Then, it demonstrates that the combination of high-dose pulsatile TKI treatment with high-dose daily PPP inhibitor therapy can potentially eradicate the tumor.The predictions of numerical simulations using such a model can be considered as testable hypotheses in future pre-clinical experiments and clinical studies.
Collapse
Affiliation(s)
- Anass Bouchnita
- Division of Scientific Computing, Department of Information Technology, Uppsala University, Uppsala 75105, Sweden; Ecole Centrale Casablanca, Ville Verte, Bouskoura, 20000 Casablanca, Morocco.
| | - Vitaly Volpert
- Institut Camille Jordan, Université Lyon 1, Villeurbanne 69622, France; INRIA Team Dracula, INRIA Lyon La Doua, Villeurbanne 69603, France; Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow 117198, Russian Federation
| | - Mark J Koury
- Vanderbilt University Medical Center, Nashville, TN 37232-6307, USA
| | - Andreas Hellander
- Division of Scientific Computing, Department of Information Technology, Uppsala University, Uppsala 75105, Sweden
| |
Collapse
|
7
|
Xing P, Mu Y, Hao X, Wang Y, Li J. Data from real world to evaluate the efficacy of osimertinib in non-small cell lung cancer patients with central nervous system metastasis. Clin Transl Oncol 2019; 21:1424-1431. [DOI: 10.1007/s12094-019-02071-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/23/2019] [Indexed: 12/25/2022]
|
8
|
Tan WL, Ng QS, Lim C, Tan EH, Toh CK, Ang MK, Kanesvaran R, Jain A, Tan DSW, Lim DWT. Influence of afatinib dose on outcomes of advanced EGFR-mutant NSCLC patients with brain metastases. BMC Cancer 2018; 18:1198. [PMID: 30509246 PMCID: PMC6276185 DOI: 10.1186/s12885-018-5110-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/20/2018] [Indexed: 12/12/2022] Open
Abstract
Background Afatinib is an oral irreversible epidermal growth factor receptor (EGFR) tyrosine-kinase inhibitor (TKI) indicated in first-line treatment of advanced EGFR-mutant (EGFRm+) non-small cell lung cancer (NSCLC). Dose dependent side effects can limit drug exposure, which may impact on extracranial and central nervous system (CNS) disease control. Methods We performed a retrospective study of 125 patients diagnosed with advanced EGFRm+ NSCLC treated with first-line afatinib at a tertiary Asian cancer center, exploring clinicopathological factors that may influence survival outcomes. Median progression free survival (PFS) was estimated using the Kaplan-Meier method. Comparison of PFS between subgroups of patients was done using log-rank tests and Cox proportional hazards models. Results Out of 125 patients, 62 (49.6%) started on 40 mg once daily (OD) afatinib, 61 (48.8%) on 30 mg OD and 1 (0.8%) on 20 mg OD. After median follow-up of 13.8 months from afatinib initiation, the observed response rate was 70.4% and median PFS 11.9 months (95% CI 10.3–19.3). 42 (33.6%) patients had baseline brain metastases (BM) and PFS of those who started on 40 mg OD (n = 17) vs. 30 mg OD (n = 25) was 13.3 months vs. 5.3 months (HR 0.39, 95% CI 0.15–0.99). BM+ patients who started on 40 mg had similar PFS to patients with no BM (13.3 months vs. 15.0 months; HR 0.79, 95% CI 0.34–1.80). Conclusion In patients with advanced EGFRm+ NSCLC with BM+, initiating patients on afatinib 40 mg OD was associated with improved PFS compared to 30 mg OD, underscoring the potential importance of dose intensity in control of CNS disease.
Collapse
Affiliation(s)
- Wan-Ling Tan
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Quan Sing Ng
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Cindy Lim
- Clinical Trials & Epidemiological Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Eng Huat Tan
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Chee Keong Toh
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Mei-Kim Ang
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Ravindran Kanesvaran
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Amit Jain
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Daniel S W Tan
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore.,Genome Institute of Singapore, A*STAR, Singapore, Singapore
| | - Darren Wan-Teck Lim
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore. .,Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore.
| |
Collapse
|
9
|
Suh CH, Park HS, Kim KW, Pyo J, Hatabu H, Nishino M. Pneumonitis in advanced non-small-cell lung cancer patients treated with EGFR tyrosine kinase inhibitor: Meta-analysis of 153 cohorts with 15,713 patients: Meta-analysis of incidence and risk factors of EGFR-TKI pneumonitis in NSCLC. Lung Cancer 2018; 123:60-69. [PMID: 30089596 DOI: 10.1016/j.lungcan.2018.06.032] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/27/2018] [Accepted: 06/30/2018] [Indexed: 01/06/2023]
Abstract
PURPOSE Pneumonitis is a significant toxicity of EGFR tyrosine kinase inhibitors (EGFR-TKI) in non-small-cell lung cancer (NSCLC) patients. We studied the incidence of pneumonitis in clinical trials of EGFR-TKI published in 2003-2017, and performed subgroups analyses to identity predisposing factors. METHODS Ovid-MEDLINE and EMBASE search up to 4/17/17 using the keywords, "erlotinib", "gefitinib", "afatinib", "osimertinib", and "lung cancer", resulted in a total of 153 eligible trial cohorts with 15,713 advanced NSCLC patients treated with EGFR-TKI. The pooled incidence of all-grade, high-grade, and grade 5 pneumonitis was obtained. Subgroup analyses were performed with meta-regression using study-level covariates. RESULTS Among the patients without prior exposure to EGFR-TKI, the overall incidence was 1.12% (95% CI:0.79-1.58%) for all-grade, 0.61% (95% CI:0.40-0.93%) for high-grade, and 0.20% (95% CI:0.11-0.38%) for grade 5 pneumonitis. The incidence was significantly higher in Japanese studies compared to studies of non-Japan origin, for all-grade (4.77% vs. 0.55%, p < 0.001), high grade (2.49% vs. 0.37%, p < 0.001), and grade 5 pneumonitis (1.00% vs. 0.18%, p < 0.001). Multivariate analyses demonstrated higher odds of pneumonitis in Japanese studies for all-grade (odds ratio [OR]: 5.04; 95% CI:3.14-8.11, p < 0.001), high-grade (OR: 4.45; 95% CI:2.50-7.93, p < 0.001), and grade 5 pneumonitis (OR: 4.55; 95% CI:2.20-9.44, p < 0.001) compared to others, after adjusting for types of EGFR-TKI and lines of therapy. In patients with EGFR retreatment analyzed separately, the pooled incidence was 1.13% (95% CI:0.40-3.15%) for all-grade, 0.49% (95% CI:0.21-1.11%) for high-grade, and 0.16% (95% CI:0.04-0.65%) for grade 5 pneumonitis. CONCLUSIONS The overall incidence of EGFR-TKI pneumonitis was 1.12% in patients without prior exposure to EGFR-TKI, and 1.13% in EGFR-TKI retreatment group. The cohorts from Japan had significantly higher incidence of pneumonitis, providing insights for further mechanistic studies.
Collapse
Affiliation(s)
- Chong Hyun Suh
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 86 Asanbyeongwon-Gil, Songpa-Gu, Seoul 138-736, Republic of Korea
| | - Hye Sun Park
- Department of Radiology, Brigham and Women's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston MA, USA
| | - Kyung Won Kim
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 86 Asanbyeongwon-Gil, Songpa-Gu, Seoul 138-736, Republic of Korea
| | - Junhee Pyo
- WHO Collaborating Center for Pharmaceutical Policy and Regulation, Department of Pharmaceutical Science, Utrecht University, David de Wiedgebouw, Universiteitsweg 99 3584 CG Utrecht, Netherlands
| | - Hiroto Hatabu
- Department of Radiology, Brigham and Women's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston MA, USA
| | - Mizuki Nishino
- Department of Radiology, Brigham and Women's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston MA, USA.
| |
Collapse
|
10
|
Lin L, Li L, Chen X, Zeng B, Lin T. Preliminary evaluation of the potential role of β-elemene in reversing erlotinib-resistant human NSCLC A549/ER cells. Oncol Lett 2018; 16:3380-3388. [PMID: 30127938 DOI: 10.3892/ol.2018.8980] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 12/22/2017] [Indexed: 12/23/2022] Open
Abstract
β-elemene (β-ELE) is a natural compound extracted from Curcuma zedoaria Roscoe that has shown promise as a novel anticancer drug to treat malignant tumors. Recent studies have demonstrated that β-ELE can reverse the drug resistance of tumor cells. To the best of our knowledge, there are no reports concerning the reversal of erlotinib resistance by β-ELE in human non-small cell lung cancer (NSCLC) cells. Therefore, the present study investigated the effects of β-ELE on erlotinib-resistant human NSCLC A549/ER cells in vitro and its possible mechanism of action. The sensitivity of A549/ER cells to erlotinib, the cytotoxicity of β-ELE on the growth of A549/ER cells and the effects of β-ELE on the reversal of drug resistance in A549/ER cells were determined by MTT assay. The cell apoptosis rate, cell cycle phase distribution and intracellular rhodamine 123 (Rh123) fluorescence intensity were detected by flow cytometry. The expression level of P-glycoprotein (P-gp) was detected by western blotting. A549/ER cells had a stable drug-resistance to erlotinib. β-ELE inhibited the proliferation of A549/ER cells in a time- and dose-dependent manner, enhanced the sensitivity of A549/ER cells to erlotinib and reversed the drug resistance in A549/ER cells. Treatment with 15 µg/ml β-ELE combined with 10 µmol/l erlotinib caused an increased rate of cell apoptosis and G0/G1 phase arrest. Furthermore, β-ELE reduced the efflux of Rh123 from A549/ER cells, increased the intracellular accumulation of Rh123 and decreased the expression of P-gp. The results of the present study indicated that β-ELE could reverse drug resistance in erlotinib-resistant human NSCLC A549/ER cells in vitro through a mechanism that may involve the decreased expression of P-gp, inhibition of P-gp dependent drug efflux and the increased intracellular concentration of anticancer drugs.
Collapse
Affiliation(s)
- Lan Lin
- Department of Respiratory Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Lianbin Li
- Department of Internal Medicine, Xiamen Haicang Hospital, Xiamen, Fujian 361026, P.R. China
| | - Xiangqi Chen
- Department of Respiratory Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Bangwei Zeng
- Department of Hospital Infection Management, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Tingyan Lin
- Department of Respiratory Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
11
|
Vaca SD, Connolly ID, Ho C, Neal J, Hayden Gephart M. Commentary: Treatment Considerations for Patients With Epidermal Growth Factor Receptor-Mutated Non-Small Cell Lung Cancer Brain Metastases in the Era of Tyrosine Kinase Inhibitors. Neurosurgery 2018; 82:E6-E14. [PMID: 28945866 DOI: 10.1093/neuros/nyx429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 07/14/2017] [Indexed: 11/13/2022] Open
Abstract
Brain metastasis is a serious complication of non-small cell lung cancer (NSCLC) affecting up to 40% of NSCLC patients. A subset of NSCLC tumors has mutations in the epidermal growth factor receptor (EGFR) gene, and determination of tumor EGFR mutation status is essential in guiding treatment decisions, as it directly affects the treatment approach. Patients with EGFR-mutated NSCLC have a higher cumulative incidence of brain metastases, and are especially sensitive to EGFR tyrosine kinase inhibitors (TKIs). Patients with newly diagnosed EGFR-mutated lung cancer presenting to a neurosurgeon with a new diagnosis of brain metastases now have a variety of treatment options available, including whole brain radiation therapy, stereotactic radiosurgery, surgical resection, chemotherapy, and targeted therapeutics such as the EGFR TKIs. In this review, we discuss the impact of EGFR mutation status on brain and leptomeningeal metastasis treatment considerations. Additionally, we present clinical cases of patients treated with EGFR TKIs alone and in combination with other therapies to highlight treatment alternatives.
Collapse
Affiliation(s)
- Silvia Daniela Vaca
- Department of Neurosurgery, Stanford University School of Medicine Stanford, California
| | - Ian David Connolly
- Department of Neurosurgery, Stanford University School of Medicine Stanford, California
| | - Clement Ho
- Department of Radiation Oncology, Stanford University School of Medicine Stanford, California
| | - Joel Neal
- Department of Medicine, Division of Oncology, Stanford University School of Medicine Stanford, California
| | | |
Collapse
|
12
|
Liu C, Xing J, Gao Y. UNBS5162 inhibits the proliferation of human A549 non-small-cell lung cancer cells by promoting apoptosis. Thorac Cancer 2018; 9:105-111. [PMID: 29130641 PMCID: PMC5754305 DOI: 10.1111/1759-7714.12546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/26/2017] [Accepted: 09/26/2017] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Lung cancer is one of the most frequently diagnosed malignancies in the world, thus developing novel anticancer reagents for lung cancer treatment is critical. METHODS We performed cell counting kit-8 and cell colony formation assays to investigate the role of UNBS5162 in the proliferation of A549 cells. Invasion and migration assays were applied to study the inhibitory effect of UNBS5162 on non-small cell lung cancer cells. To detect the effect of UNBS5162 on A549 cell apoptosis, Annexin-V fluorescein isothiocyanate and propidium iodide staining methods were used. Protein expression was analyzed using Western blot assay. RESULTS UNBS5162 not only inhibited proliferation but also decreased invasion and migration in A549 cells. Most cells were intact (96.93%) under control conditions, but the number of intact cells decreased (84.8%) after 24 hours of treatment with UNBS5162, and the number of early and late apoptotic cells significantly increased (P < 0.05). Anti-apoptotic protein Bcl-2 expression in the UNBS5162 group was significantly decreased (P < 0.05), and expression of proapoptotic proteins Bim, Bax, and active caspase-3 were significantly increased (P < 0.05) compared to the control. In the PI3K signaling pathway, phospo-AKT and phospo-mTOR levels were significantly decreased (P < 0.05), while S6K and Cyclin D1 protein levels were significantly decreased in UNBS5162 treated A549 cells (P < 0.05). CONCLUSION These findings suggest that UNBS5162 could inhibit A549 cell proliferation and metastasis by inhibiting PI3K pathway mediated apoptosis.
Collapse
Affiliation(s)
- Cuicui Liu
- Department of OncologyLinyi City People's HospitalLinyiChina
| | - Jiaqiang Xing
- Department of Thoracic SurgeryLinyi Cancer HospitalLinyiChina
| | - Yujun Gao
- Department of Thoracic SurgeryAffiliated Hospital of Shandong Academy of Medical SciencesJinanChina
| |
Collapse
|
13
|
Shukla S, Saxena S, Singh BK, Kakkar P. BH3-only protein BIM: An emerging target in chemotherapy. Eur J Cell Biol 2017; 96:728-738. [PMID: 29100606 DOI: 10.1016/j.ejcb.2017.09.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/01/2017] [Accepted: 09/19/2017] [Indexed: 12/19/2022] Open
Abstract
BH3-only proteins constitute major proportion of pro-apoptotic members of B-cell lymphoma 2 (Bcl-2) family of apoptotic regulatory proteins and participate in embryonic development, tissue homeostasis and immunity. Absence of BH3-only proteins contributes to autoimmune disorders and tumorigenesis. Bim (Bcl-2 Interacting Mediator of cell death), most important member of BH3-only proteins, shares a BH3-only domain (9-16 aa) among 4 domains (BH1-BH4) of Bcl-2 family proteins and highly pro-apoptotic in nature. Bim initiates the intrinsic apoptotic pathway under both physiological and patho-physiological conditions. Reduction in Bim expression was found to be associated with tumor promotion and autoimmunity, while overexpression inhibited tumor growth and drug resistance as cancer cells suppress Bim expression and stability. Apart from its role in normal homeostasis, Bim has emerged as a central player in regulation of tumorigenesis, therefore gaining attention as a plausible target for chemotherapy. Regulation of Bim expression and stability is complicated and regulated at multiple levels viz. transcriptional, post-transcriptional, post-translational (preferably by phosphorylation and ubiquitination), epigenetic (by promoter acetylation or methylation) including miRNAs. Furthermore, control over Bim expression and stability may be exploited to enhance chemotherapeutic efficacy, overcome drug resistance and select anticancer drug regimen as various chemotherapeutic agents exploit Bim as an executioner of cell death. Owing to its potent anti-tumorigenic activity many BH3 mimetics e.g. ABT-737, ABT-263, obatoclax, AT-101and A-1210477 have been developed and entered in clinical trials. It is more likely that in near future strategies commanding Bim expression and stability ultimately lead to Bim based therapeutic regimen for cancer treatment.
Collapse
Affiliation(s)
- Shatrunajay Shukla
- Herbal Research Laboratory, Food Drug & Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Post Box No. 80, Mahatma Gandhi Marg, Lucknow 226001, India
| | - Sugandh Saxena
- Herbal Research Laboratory, Food Drug & Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Post Box No. 80, Mahatma Gandhi Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research, CSIR-IITR, Lucknow campus, India
| | - Brijesh Kumar Singh
- Laboratory of Hormonal Regulation, Duke-NUS Graduate Medical School, No 8 College Road, 169857, Singapore
| | - Poonam Kakkar
- Herbal Research Laboratory, Food Drug & Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Post Box No. 80, Mahatma Gandhi Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research, CSIR-IITR, Lucknow campus, India.
| |
Collapse
|
14
|
Zhao X, Lu C, Chu W, Zhang B, Zhen Q, Wang R, Zhang Y, Li Z, Lv B, Li H, Liu J. MicroRNA-124 suppresses proliferation and glycolysis in non-small cell lung cancer cells by targeting AKT-GLUT1/HKII. Tumour Biol 2017; 39:1010428317706215. [PMID: 28488541 DOI: 10.1177/1010428317706215] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Non-small cell lung cancer accounts for 85% of all types of lung cancer and is the leading cause of worldwide cancer-associated mortalities. MiR-124 is epigenetically silenced in various types of cancer and plays important roles in tumor development and progression. MiR-124 was also significantly downregulated in non-small cell lung cancer patients. Glycolysis has been considered as a feature of cancer cells; hypoxia-inducible factor 1-alpha/beta and Akt are key enzymes in the regulation of glycolysis and energy metabolism in cancer cells. However, the role of miR-124 in non-small cell lung cancer cell proliferation, glycolysis, and energy metabolism remains unknown. In this research, cell proliferation was investigated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; furthermore, glucose consumption and lactic acid production were assessed; adenosine triphosphate content and NAD+/NADH were also detected. These tests were conducted using the normal non-small cell lung cancer cell line A549, which was transfected variedly with miR-mimics, miR-124 mimics, miR-124 inhibitor, pc-DNA3.1(+)-AKT1, and pc-DNA3.1(+)-AKT2 plasmid. Here, we show that miR-124 overexpression directly decreased cell growth, glucose consumption, lactate production, and energy metabolism. MiR-124 also negatively regulates glycolysis rate-limiting enzymes, glucose transporter 1 and hexokinase II. Our results also showed that miR-124 negatively regulates AKT1 and AKT2 but no regulatory effect on hypoxia-inducible factor 1-alpha/beta. Overexpression of AKT reverses the inhibitory effect of miR-124 on cell proliferation and glycolytic metabolism in non-small cell lung cancer. AKT inhibition blocks miR-124 silencing-induced AKT1/2, glucose transporter 1, hexokinase II activation, cell proliferation, and glycolytic or energy metabolism changes. In summary, this study demonstrated that miR-124 is able to inhibit proliferation, glycolysis, and energy metabolism, potentially by targeting AKT1/2-glucose transporter 1/hexokinase II in non-small cell lung cancer cells.
Collapse
Affiliation(s)
- Xiaojian Zhao
- 1 Department of Thoracic Surgery, The First Hospital of Shijiazhuang, Shijiazhuang, China
| | - Caiping Lu
- 2 Department of Endocrinology, The First Hospital of Shijiazhuang, Shijiazhuang, China
| | - Weiwei Chu
- 1 Department of Thoracic Surgery, The First Hospital of Shijiazhuang, Shijiazhuang, China
| | - Bing Zhang
- 1 Department of Thoracic Surgery, The First Hospital of Shijiazhuang, Shijiazhuang, China
| | - Qiang Zhen
- 1 Department of Thoracic Surgery, The First Hospital of Shijiazhuang, Shijiazhuang, China
| | - Renfeng Wang
- 1 Department of Thoracic Surgery, The First Hospital of Shijiazhuang, Shijiazhuang, China
| | - Yaxiao Zhang
- 1 Department of Thoracic Surgery, The First Hospital of Shijiazhuang, Shijiazhuang, China
| | - Zhe Li
- 1 Department of Thoracic Surgery, The First Hospital of Shijiazhuang, Shijiazhuang, China
| | - Baolei Lv
- 1 Department of Thoracic Surgery, The First Hospital of Shijiazhuang, Shijiazhuang, China
| | - Huixian Li
- 1 Department of Thoracic Surgery, The First Hospital of Shijiazhuang, Shijiazhuang, China
| | - Jiabao Liu
- 1 Department of Thoracic Surgery, The First Hospital of Shijiazhuang, Shijiazhuang, China
| |
Collapse
|
15
|
Li KL, Li L, Zhang P, Kang J, Wang YB, Chen HY, He Y. A Multicenter Double-blind Phase II Study of Metformin With Gefitinib as First-line Therapy of Locally Advanced Non–Small-cell Lung Cancer. Clin Lung Cancer 2017; 18:340-343. [DOI: 10.1016/j.cllc.2016.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 12/13/2016] [Indexed: 01/15/2023]
|
16
|
Yang Z, Hackshaw A, Feng Q, Fu X, Zhang Y, Mao C, Tang J. Comparison of gefitinib, erlotinib and afatinib in non-small cell lung cancer: A meta-analysis. Int J Cancer 2017; 140:2805-2819. [PMID: 28295308 DOI: 10.1002/ijc.30691] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 02/18/2017] [Accepted: 02/28/2017] [Indexed: 12/21/2022]
Abstract
Gefitinib, erlotinib and afatinib are three widely used epidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKIs) for treating advanced non-small cell lung cancer (NSCLC) with proven efficacy. We undertook a systematic review and meta-analysis to synthesize existing studies with direct comparisons of EGFR TKIs in NSCLC in terms of both efficacy and safety. Eight randomized trials and 82 cohort studies with a total of 17,621 patients were included for analysis. Gefitinib and erlotinib demonstrated comparable effects on progression-free survival (hazard ratio [HR], 1.00; 95% confidence interval [CI], 0.95 to 1.04), overall survival (HR, 0.99; 95% CI, 0.93 to 1.06), overall response rate (risk ratio [RR], 1.05; 95% CI, 1.00 to 1.11), and disease control rate (RR, 0.98; 95% CI, 0.96 to 1.01), which did not vary considerably with EGFR mutation status, ethnicity, line of treatment, and baseline brain metastasis status. Gefitinib was associated with more grade 3/4 liver dysfunction, but tended to cause lower rates of dose reduction, treatment discontinuation, total grade 3/4 adverse events (RR, 0.78; 95% CI 0.65 to 0.94), and a number of specific adverse events such as rash and diarrhea. No solid evidence was found that afatinib had greater efficacy than gefitinib or erlotinib in first-line treatment of EGFR-mutant NSCLC. However, afatinib was more effective than erlotinib as second-line treatment of patients with advanced squamous cell carcinoma. The grade 3/4 adverse events rate of afatinib was comparable to that of erlotinib but higher than that of gefitinib.
Collapse
Affiliation(s)
- Zuyao Yang
- Division of Epidemiology, the Jockey Club School of Public Health and Primary Care, the Chinese University of Hong Kong, Hong Kong, China.,The Hong Kong Branch of the Chinese Cochrane Centre, the Chinese University of Hong Kong, Hong Kong, China
| | - Allan Hackshaw
- Cancer Research UK and University College London Cancer Trials Centre, 90 Tottenham Court Rd, London, W1T 4TJ, United Kingdom
| | - Qi Feng
- Division of Epidemiology, the Jockey Club School of Public Health and Primary Care, the Chinese University of Hong Kong, Hong Kong, China
| | - Xiaohong Fu
- Division of Epidemiology, the Jockey Club School of Public Health and Primary Care, the Chinese University of Hong Kong, Hong Kong, China
| | - Yuelun Zhang
- Division of Epidemiology, the Jockey Club School of Public Health and Primary Care, the Chinese University of Hong Kong, Hong Kong, China
| | - Chen Mao
- Division of Epidemiology, the Jockey Club School of Public Health and Primary Care, the Chinese University of Hong Kong, Hong Kong, China.,Shenzhen Key Laboratory for Health Risk Analysis, Shenzhen Research Institute of the Chinese University of Hong Kong, Shenzhen, Guangdong Province, China
| | - Jinling Tang
- Division of Epidemiology, the Jockey Club School of Public Health and Primary Care, the Chinese University of Hong Kong, Hong Kong, China.,The Hong Kong Branch of the Chinese Cochrane Centre, the Chinese University of Hong Kong, Hong Kong, China.,Shenzhen Key Laboratory for Health Risk Analysis, Shenzhen Research Institute of the Chinese University of Hong Kong, Shenzhen, Guangdong Province, China
| |
Collapse
|
17
|
Chukwueke UN, Brastianos PK. Sequencing brain metastases and opportunities for targeted therapies. Pharmacogenomics 2017; 18:585-594. [PMID: 28290769 DOI: 10.2217/pgs-2016-0170] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
CNS metastases have long been recognized as a common and late complication of systemic malignancies. They represent the most common tumor of the brain. As outcomes and overall survival improve with better tolerated and more durable responses from therapies for systemic cancers, the incidence and prevalence of brain metastases is likely to increase. Among the most common systemic cancers leading to brain metastases include lung, melanoma, breast (triple-negative histology) and renal cell cancers. To date, there has been infrequent involvement of gastrointestinal and gynecologic malignancies; however, this may also change, reflecting improvement in overall survival and therapeutic regimens. Traditional therapy of brain metastases has focused on surgery, radiation therapy or best supportive/palliative care. The advent of modern genomic techniques, including next-generation and whole-exome sequencing, has allowed for the identification of unique markers and potential drivers of metastatic pathways. This review aims to discuss and highlight the known drivers of disease and the opportunities for ultimate development of targeted therapies.
Collapse
Affiliation(s)
- Ugonma N Chukwueke
- Division of Hematology & Oncology, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Division of Neuro-Oncology, Department of Neurology Massachusetts General Hospital, Boston, MA 02114, USA
| | - Priscilla K Brastianos
- Division of Hematology & Oncology, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Division of Neuro-Oncology, Department of Neurology Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
18
|
How J, Mann J, Laczniak AN, Baggstrom MQ. Pulsatile Erlotinib in EGFR-Positive Non-Small-Cell Lung Cancer Patients With Leptomeningeal and Brain Metastases: Review of the Literature. Clin Lung Cancer 2017; 18:354-363. [PMID: 28245967 DOI: 10.1016/j.cllc.2017.01.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/24/2017] [Accepted: 01/31/2017] [Indexed: 02/08/2023]
Abstract
Patients with epidermal growth factor receptor (EGFR)-positive (EGFR+) non-small-cell lung cancer (NSCLC) show improved response rates when treated with tyrosine kinase inhibitors (TKIs) such as erlotinib. However, standard daily dosing of erlotinib often does not reach therapeutic concentrations within the cerebrospinal fluid (CSF), resulting in progression of central nervous system (CNS) disease. Intermittent, high-dose administration of erlotinib reaches therapeutic concentrations within the CSF and is well tolerated in patients. Experience with "pulsatile" dosing, however, is limited. We review the literature on the pharmacology and clinical outcomes of pulsatile erlotinib in the treatment of EGFR+ NSCLC with brain and leptomeningeal metastases, and include available data on the use of next-generation TKIs in CNS progression. We also provide our institution's experience with patients treated with pulsatile erlotinib for CNS metastasis, and propose clinical criteria for its use. Pulsatile erlotinib is a reasonable alternative in EGFR+ patients with new or worsening CNS disease, without evidence of systemic progression, and without confirmed T790M resistance mutations within the CNS.
Collapse
Affiliation(s)
- Joan How
- Barnes-Jewish Hospital, St Louis, MO
| | - Janelle Mann
- Mallinckrodt Institute of Radiology at Washington University, St Louis, MO
| | - Andrew N Laczniak
- Division of Pharmacology, Washington University School of Medicine, St Louis, MO
| | - Maria Q Baggstrom
- Division of Oncology, Washington University School of Medicine, St Louis, MO.
| |
Collapse
|
19
|
Genova C, Rijavec E, Biello F, Rossi G, Barletta G, Dal Bello MG, Vanni I, Coco S, Alama A, Grossi F. New systemic strategies for overcoming resistance to targeted therapies in non-small cell lung cancer. Expert Opin Pharmacother 2016; 18:19-33. [DOI: 10.1080/14656566.2016.1261109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Carlo Genova
- Lung Cancer Unit, San Martino Hospital – National Institute for Cancer Research, Genova, Italy
| | - Erika Rijavec
- Lung Cancer Unit, San Martino Hospital – National Institute for Cancer Research, Genova, Italy
| | - Federica Biello
- Lung Cancer Unit, San Martino Hospital – National Institute for Cancer Research, Genova, Italy
| | - Giovanni Rossi
- Lung Cancer Unit, San Martino Hospital – National Institute for Cancer Research, Genova, Italy
| | - Giulia Barletta
- Lung Cancer Unit, San Martino Hospital – National Institute for Cancer Research, Genova, Italy
| | | | - Irene Vanni
- Lung Cancer Unit, San Martino Hospital – National Institute for Cancer Research, Genova, Italy
| | - Simona Coco
- Lung Cancer Unit, San Martino Hospital – National Institute for Cancer Research, Genova, Italy
| | - Angela Alama
- Lung Cancer Unit, San Martino Hospital – National Institute for Cancer Research, Genova, Italy
| | - Francesco Grossi
- Lung Cancer Unit, San Martino Hospital – National Institute for Cancer Research, Genova, Italy
| |
Collapse
|