1
|
Jiang Z, Wei C, Luo Y, Xiao Y, Wang L, Guo W, Yuan X. Ornithine aminotransferase and carbamoyl phosphate synthetase 1 involved in ammonia metabolism serve as novel targets for early stages of gastric cancer. J Clin Lab Anal 2022; 36:e24692. [PMID: 36098904 PMCID: PMC9551119 DOI: 10.1002/jcla.24692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/21/2022] [Accepted: 08/27/2022] [Indexed: 11/24/2022] Open
Abstract
Objective The sensitivity and specificity of current biomarkers for gastric cancer were insufficient. The aim of the present study was to screen novel biomarkers and determine the diagnostic values of ornithine aminotransferase (OAT) and carbamoyl phosphate synthetase 1 (CPS1) for detecting gastric cancer. Methods With stable isotope tags, we labelled an initial discovery group of four paired gastric cancer tissue samples and identified with LC‐ESI‐MS/MS. A validation group of 159 gastric cancer samples and 30 healthy controls were used to validate the candidate targets. GSEA was used to explore the pathways activated in gastric cancer. Results Four hundred and thirty one proteins were found differentially expressed in gastric cancer tissues. Of these proteins, OAT and CPS1 were found over‐expressed in gastric cancer patients, with sensitivity of 70.4% (95% CI: 63.3%–77.6%) and specificity of 80.5% (95% CI: 74.3%–86.7%) for ornithine aminotransferase, and with sensitivity of 68.6% (95% CI: 61.3%–75.8%) and specificity of 73% (95% CI: 66%–79.9%) for carbamoyl phosphate synthetase 1. The co‐expression of OAT and CPS1 in gastric cancer tissues has a sensitivity of 81% (95% CI: 73.2%–88.8%) and specificity of 89% (95% CI: 83%–95%). Furthermore, both OAT and CPS1 were overexpressed in patients with local invasion T3 and T4 stages than those in patients with T1 and T2 stages. The co‐expression of OAT and CPS1 was strongly correlated with histological grade I 68% (95% CI: 58.7%–77.3%) and TNM stage I/II 52% (95% CI: 42%–62%). The areas under ROC curves were up to 0.758 for the co‐expression of OAT and CPS1 in gastric cancer. GSEA results showed that two gene sets and 30 gene sets were activated in OAT high‐ and CPS1 high‐expression patients with gastric cancer, respectively. Conclusions The present findings indicated a tight correlation between the co‐expression of OAT and CPS1 and the histological grade, local invasion, and TNM stages of gastric cancer. Therefore, OAT and CPS1 might be predictors for gastric cancer invasion and potential targets for anticancer drug design for gastric cancer.
Collapse
Affiliation(s)
- Zhen Jiang
- Department of Biochemistry and Molecular Biology, School of Preclinical Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, Sichuan Province, China
| | - Chen Wei
- Department of Biochemistry and Molecular Biology, School of Preclinical Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, Sichuan Province, China
| | - Yaomin Luo
- Department of Biochemistry and Molecular Biology, School of Preclinical Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, Sichuan Province, China
| | - Yang Xiao
- Department of Biochemistry and Molecular Biology, School of Preclinical Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, Sichuan Province, China
| | - Li Wang
- Research Center for Integrative Medicine, Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Wubin Guo
- Department of General Surgery, the TCM Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaoxia Yuan
- Department of Biochemistry and Molecular Biology, School of Preclinical Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, Sichuan Province, China
| |
Collapse
|
2
|
Wang P, Bai C, Hu Z, Li X, Shen F, He M. MicroRNA (miR)-355 Suppressed Small Cell Lung Cancer Cell Metastasis via Regulating P38 Mitogen-Activated Protein Kinases (MAPKs) Signaling. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
MicroRNA (miR)-355 was reported to mediate p38 mitogen-activated protein kinases (MAPKs) signaling, which exerted an effect on cell invasion and metastasis. But whether miR-355 could inhibit small cell lung cancer cell line H446 cell metastasis by regulating p38 MAPKs signaling needs
further study. H446 cells were cultured to establish miR-355 overexpression group and blank group. The expression of MT1-MMP, the activity and migration of H446 cells were evaluated. Further, the ability of invasion, the level of p-p38 MAPKs and the activity degree of MT1-MMP were observed
in H446 cells. MT1-MMP was mainly expressed on the cell membrane. miR-355 overexpression significantly decreased cellular viability and reduced MT1-MMP and p-p38 MAPKs levels relative to the blank group without influencing p38 MAPKs level. In addition, miR-355 overexpression suppressed cell
migration and invasive ability in H446 cells. Finally, miR-355 overexpression reduced pro-MMP and MMP-2 activity in H446 cells. miR-355 overexpression suppressed H446 cell metastasis through regulating P38 MAPKs signaling.
Collapse
Affiliation(s)
- Peng Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of the Naval Medical University, Changhai Hospital, Shanghai, 200433, P. R. China
| | - Chong Bai
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of the Naval Medical University, Changhai Hospital, Shanghai, 200433, P. R. China
| | - Zhenli Hu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of the Naval Medical University, Changhai Hospital, Shanghai, 200433, P. R. China
| | - Xingjing Li
- Respiratory Medicine, Wusong Central Hospital, Baoshan District, Shanghai, 200940 P. R. China
| | - Fang Shen
- Respiratory Medicine, Wusong Central Hospital, Baoshan District, Shanghai, 200940 P. R. China
| | - Mudan He
- Respiratory Medicine, Wusong Central Hospital, Baoshan District, Shanghai, 200940 P. R. China
| |
Collapse
|
3
|
Li L, Qi R, Zhang L, Yu Y, Hou J, Gu Y, Song D, Wang X. Potential biomarkers and targets of mitochondrial dynamics. Clin Transl Med 2021; 11:e529. [PMID: 34459143 PMCID: PMC8351522 DOI: 10.1002/ctm2.529] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 12/19/2022] Open
Abstract
Mitochondrial dysfunction contributes to the imbalance of cellular homeostasis and the development of diseases, which is regulated by mitochondria-associated factors. The present review aims to explore the process of the mitochondrial quality control system as a new source of the potential diagnostic biomarkers and/or therapeutic targets for diseases, including mitophagy, mitochondrial dynamics, interactions between mitochondria and other organelles (lipid droplets, endoplasmic reticulum, endosomes, and lysosomes), as well as the regulation and posttranscriptional modifications of mitochondrial DNA/RNA (mtDNA/mtRNA). The direct and indirect influencing factors were especially illustrated in understanding the interactions among regulators of mitochondrial dynamics. In addition, mtDNA/mtRNAs and proteomic profiles of mitochondria in various lung diseases were also discussed as an example. Thus, alternations of mitochondria-associated regulators can be a new category of biomarkers and targets for disease diagnosis and therapy.
Collapse
Affiliation(s)
- Liyang Li
- Zhongshan Hospital, Department of Pulmonary and Critical Care Medicine, Shanghai Institute of Clinical BioinformaticsShanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
| | - Ruixue Qi
- Jinshan Hospital Centre for Tumor Diagnosis and TherapyFudan University Shanghai Medical CollegeShanghaiChina
| | - Linlin Zhang
- Zhongshan Hospital, Department of Pulmonary and Critical Care Medicine, Shanghai Institute of Clinical BioinformaticsShanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
| | - Yuexin Yu
- Zhongshan Hospital, Department of Pulmonary and Critical Care Medicine, Shanghai Institute of Clinical BioinformaticsShanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
| | - Jiayun Hou
- Zhongshan Hospital, Department of Pulmonary and Critical Care Medicine, Shanghai Institute of Clinical BioinformaticsShanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
| | - Yutong Gu
- Zhongshan Hospital, Department of Pulmonary and Critical Care Medicine, Shanghai Institute of Clinical BioinformaticsShanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
| | - Dongli Song
- Zhongshan Hospital, Department of Pulmonary and Critical Care Medicine, Shanghai Institute of Clinical BioinformaticsShanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
| | - Xiangdong Wang
- Zhongshan Hospital, Department of Pulmonary and Critical Care Medicine, Shanghai Institute of Clinical BioinformaticsShanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
- Jinshan Hospital Centre for Tumor Diagnosis and TherapyFudan University Shanghai Medical CollegeShanghaiChina
| |
Collapse
|
4
|
Morimoto Y, Oya T, Ichimura-Shimizu M, Matsumoto M, Ogawa H, Kobayashi T, Sumida S, Kakimoto T, Yamashita M, Cheng C, Tsuneyama K. Applying Probe Electrospray Ionization Mass Spectrometry to Cytological Diagnosis: A Preliminary Study by Using Cultured Lung Cancer Cells. Acta Cytol 2021; 65:430-439. [PMID: 34098551 DOI: 10.1159/000516639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 04/18/2021] [Indexed: 11/19/2022]
Abstract
OBJECTIVES Cytology and histology are 2 indispensable diagnostic tools for cancer diagnosis, which are rapidly increasing in importance with aging populations. We applied mass spectrometry (MS) as a rapid approach for swiftly acquiring nonmorphological information of interested cells. Conventional MS, which primarily rely on promoting ionization by pre-applying a matrix to cells, has the drawback of time-consuming both on data acquisition and analysis. As an emerging method, probe electrospray ionization-MS (PESI-MS) with a dedicated probe is capable to pierce sample and measure specimen in small amounts, either liquid or solid, without the requirement for sample pretreatment. Furthermore, PESI-MS is timesaving compared to the conventional MS. Herein, we investigated the capability of PESI-MS to characterize the cell types derived from the respiratory tract of human tissues. STUDY DESIGN PESI-MS analyses with DPiMS-2020 were performed on various type of cultured cells including 5 lung squamous cell carcinomas, 5 lung adenocarcinomas, 5 small-cell carcinomas, 4 malignant mesotheliomas, and 2 normal controls. RESULTS Several characteristic peaks were detected at around m/z 200 and 800 that were common in all samples. As expected, partial least squares-discriminant analysis of PESI-MS data distinguished the cancer cell types from normal control cells. Moreover, distinct clusters divided squamous cell carcinoma from adenocarcinoma. CONCLUSION PESI-MS presented a promising potential as a novel diagnostic modality for swiftly acquiring specific cytological information.
Collapse
Affiliation(s)
- Yuki Morimoto
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Takeshi Oya
- Department of Molecular Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Mayuko Ichimura-Shimizu
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Minoru Matsumoto
- Department of Molecular Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Hirohisa Ogawa
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Tomoko Kobayashi
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Satoshi Sumida
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Takumi Kakimoto
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Michiko Yamashita
- Department of Morphological Laboratory Science, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Chunmei Cheng
- Pharmacology and Histopathology, Novo Nordisk Research Centre China, Beijing, China
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan,
- Department of Molecular Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan,
| |
Collapse
|
5
|
Breast Cancer-Derived Microvesicles Are the Source of Functional Metabolic Enzymes as Potential Targets for Cancer Therapy. Biomedicines 2021; 9:biomedicines9020107. [PMID: 33499132 PMCID: PMC7910888 DOI: 10.3390/biomedicines9020107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/10/2021] [Accepted: 01/18/2021] [Indexed: 11/17/2022] Open
Abstract
Membrane-derived extracellular vesicles, referred to as microvesicles (MVs), have been proposed to participate in several cancer diseases. In this study, MV fractions were isolated by differential ultracentrifugation from a metastatic breast cancer (BC) cell line MDA-MB-231 and a non-cancerous breast cell line MCF10A, then analyzed by nano-liquid chromatography coupled to tandem mass spectrometry. A total of 1519 MV proteins were identified from both cell lines. The data obtained were compared to previously analyzed proteins from small extracellular vesicles (sEVs), revealing 1272 proteins present in both MVs and sEVs derived from the MDA-MB-231 cell line. Among the 89 proteins unique to MDA-MB-231 MVs, three enzymes: ornithine aminotransferase (OAT), transaldolase (TALDO1) and bleomycin hydrolase (BLMH) were previously proposed as cancer therapy targets. These proteins were enzymatically validated in cells, sEVs, and MVs derived from both cell lines. The specific activity of OAT and TALDO1 was significantly higher in MDA-MB-231-derived MVs than in MCF10A MVs. BLMH was highly expressed in MDA-MB-231-derived MVs, compared to MCF10A MVs. This study shows that MVs carry functional metabolic enzymes and provides a framework for future studies of their biological role in BC and potential in therapeutic applications.
Collapse
|
6
|
Liu Z, Xu S, Li L, Zhong X, Chen C, Fan Y, Shen W, Zu L, Xue F, Wang M, Zhou Q. Comparative mitochondrial proteomic analysis of human large cell lung cancer cell lines with different metastasis potential. Thorac Cancer 2019; 10:1111-1128. [PMID: 30950202 PMCID: PMC6501018 DOI: 10.1111/1759-7714.13052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/03/2019] [Indexed: 02/05/2023] Open
Abstract
Background Lung cancer is a highly aggressive cancer with a poor prognosis and is associated with distant metastasis; however, there are no clinically recognized biomarkers for the early diagnosis and prediction of lung cancer metastasis. We sought to identify the differential mitochondrial protein profiles and understand the molecular mechanisms governing lung cancer metastasis. Methods Mitochondrial proteomic analysis was performed to screen and identify the differential mitochondrial protein profiles between human large cell lung cancer cell lines with high (L‐9981) and low (NL‐9980) metastatic potential by two‐dimensional differential gel electrophoresis. Western blot was used to validate the differential mitochondrial proteins from the two cells. Bioinformatic proteome analysis was performed using the Mascot search engine and messenger RNA expression of the 37 genes of the differential mitochondrial proteins were detected by real‐time PCR. Results Two hundred and seventeen mitochondrial proteins were differentially expressed between L‐9981 and NL‐9980 cells (P < 0.05). Sixty‐four analyzed proteins were identified by matrix‐assisted laser desorption/ionization‐time of flight mass spectrometry coupled with database interrogation. Ontology analysis revealed that these proteins were mainly involved in the regulation of translation, amino acid metabolism, tricarboxylic acid cycle, cancer invasion and metastasis, oxidative phosphorylation, intracellular signaling pathway, cell cycle, and apoptosis. Conclusion Our results suggest that the incorporation of more samples and new datasets will permit the definition of a collection of proteins as potential biomarkers for the prediction and diagnosis of lung cancer metastasis.
Collapse
Affiliation(s)
- Zhenkun Liu
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Song Xu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Lu Li
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaorong Zhong
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Chun Chen
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yaguang Fan
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Wang Shen
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Lingling Zu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Feng Xue
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Min Wang
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Qinghua Zhou
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, China.,Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
7
|
Pirok BWJ, Stoll DR, Schoenmakers PJ. Recent Developments in Two-Dimensional Liquid Chromatography: Fundamental Improvements for Practical Applications. Anal Chem 2019; 91:240-263. [PMID: 30380827 PMCID: PMC6322149 DOI: 10.1021/acs.analchem.8b04841] [Citation(s) in RCA: 221] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Bob W. J. Pirok
- University
of Amsterdam, van ’t Hoff
Institute for Molecular Sciences, Analytical-Chemistry Group, Science Park 904, 1098 XH Amsterdam, The Netherlands
- TI-COAST, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Dwight R. Stoll
- Department
of Chemistry, Gustavus Adolphus College, Saint Peter, Minnesota 56082, United States
| | - Peter J. Schoenmakers
- University
of Amsterdam, van ’t Hoff
Institute for Molecular Sciences, Analytical-Chemistry Group, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|